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Preface

This LNCS volume contains the papers presented at the 3rd International Con-
ference on Advances in Pattern Recognition (ICAPR 2005) organized in August,
2005 in the beautiful city of Bath, UK. The conference was first organized in
November 1998 in Plymouth, UK and subsequently in March 2001 in Rio de
Janeiro, Brazil. The conference encouraged papers that made significant theo-
retical and application-based contributions in pattern recognition. The emphasis
was on an open exchange of ideas and shared learning. The papers submitted
to ICAPR 2005 were thoroughly reviewed by up to three referees per paper and
less than 40% of the submitted papers were accepted. The papers have been
finally published as two volumes of LNCS and these are organized under the
themes of Pattern Recognition and Data Mining (which included papers from
the tracks on Pattern Recognition Methods, Knowledge and Learning, and Data
Mining), and Pattern Recognition and Image Analysis (which included papers
from the Applications track). From the conference technical programme point
of view, the first volume contains papers on pattern recognition, data mining,
signal processing and OCR/document analysis. The second volume contains pa-
pers from the Workshop on Pattern Recognition for Crime Prevention, Security
and Surveillance, Biometrics, Image Processing and Medical Imaging.

ICAPR 2005 was run in parallel with the International Workshop on Pattern
Recognition for Crime Prevention, Security and Surveillance that was organized
on the 22nd of August, 2005. This workshop brought together a number of excel-
lent papers that focussed on how pattern recognition techniques can be used to
develop systems that help with crime prevention and detection. On the same day,
a number of tutorials were also organized. Each tutorial focussed on a specific
research area and gave an exhaustive overview of the scientific tools and state-
of-the-art research in that area. The tutorials organized dealt with the topics of
Computational Face Recognition (given by Dr. Babback Moghaddam, MERL,
USA), 2-D and 3-D Level Set Applications for Medical Imagery (given by Dr.
Jasjit Suri, Biomedical Technologies, USA; Dr. Gilson Antonio Giraldi, National
Laboratory of Computer Science, Brazil; Prof. Sameer Singh, Loughborough
University, UK; and Prof. Swamy Laxminarayan, Idaho State University, USA),
Geometric Graphs for Instance-Based Learning (given by Prof. Godfried Tous-
saint, McGill University, Canada), and Dissimilarity Representations in Pattern
Recognition (given by Prof. Bob Duin and Elzbieta Pekalska, Delft University
of Technology, The Netherlands).

The conference also had three plenary speeches that were much appreciated
by the audience. On the first day of the conference, Prof. David Hogg from
the University of Leeds, UK gave an excellent speech on learning from objects
and activities. On the second day of the conference Prof. Ingemar Cox from
University College London, UK gave the second plenary speech. On the final
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day of the conference Prof. John Oommen from Carlton University, Canada
gave a plenary speech on the general problem of syntactic pattern recognition
and string processing.

ICAPR was a fully reviewed and well-run conference. We would like to thank
a number of people for their contribution to the review process, especially the
Program Chairs, Tutorial Chair Dr. Majid Mirmehdi and Workshops Chair Prof.
Marco Gori. The members of the Program Committee did an excellent job with
reviewing most of the papers. Some papers were also reviewed by academics who
were not in the committee and we thank them for their efforts. We would also like
to thank the local arrangements committee and University of Bath Conference
Office for their efforts in ensuring that the conference ran smoothly. In particular,
our thanks are due to Dr. Maneesha Singh, Organizing Chair and Mr. Harish
Bhaskar, Organizing Manager who both worked tirelessly. The conference was
supported by the British Computer Society and a number of local companies
within the UK. We would like to thank Springer in extending their support to
publish the proceedings as LNCS volumes. Finally, we thank all the delegates
who attended the conference and made it a success.

August 2005 Sameer Singh
Maneesha Singh

Chid Apte
Petra Perner
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Vicente Atienza, Ángel Rodas, Gabriela Andreu, Alberto Pérez . . . . . . 636
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Abstract. This paper1 [5] deals with the problem of estimating, using
enhanced AI techniques, a transmitted string X∗ by processing the cor-
responding string Y , which is a noisy version of X∗. We assume that
Y contains substitution, insertion and deletion errors, and that X∗ is
an element of a finite (possibly large) dictionary, H . The best estimate
X+ of X∗ is defined as that element of H which minimizes the Gener-
alized Levenshtein Distance D(X, Y ) between X and Y , for all X ∈ H .
In this paper, we show how we can evaluate D(X, Y ) for every X ∈ H
simultaneously, when the edit distances are general and the maximum
number of errors is not given a priori, and when H is stored as a trie. We
first introduce a new scheme, Clustered Beam Search (CBS), a heuristic-
based search approach that enhances the well known Beam Search (BS)
techniques [33] contained in Artificial Intelligence (AI). It builds on BS
with respect to the pruning time. The new technique is compared with
the Depth First Search (DFS) trie-based technique [36] (with respect
to time and accuracy) using large and small dictionaries. The results
demonstrate a marked improvement up to (75%) with respect to the to-
tal number of operations needed on three benchmark dictionaries, while
yielding an accuracy comparable to the optimal. Experiments are also
done to show the benefits of the CBS over the BS when the search is
done on the trie. The results also demonstrate a marked improvement
(more than 91%) for large dictionaries.

1 Introduction

1.1 Problem Statement

We consider the traditional problem involved in the syntactic Pattern Recogni-
tion (PR) of strings, namely that of recognizing garbled words (sequences). Let

1 Patent applications have been filed to protection the intellectual property and the
results contained in this paper.

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3686, pp. 1–17, 2005.
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Y be a misspelled (noisy) string obtained from an unknown word X∗, which is
an element of a finite (possibly, large) dictionary H , where Y is assumed to con-
tain Substitution, Insertion and Deletion (SID) errors. Various algorithms have
been proposed to obtain an appropriate estimate X+ of X∗, by processing the
information contained in Y , and the literature contains hundreds (if not thou-
sands) of associated papers. We include a brief review here. In what follows, we
assume that the dictionary is stored as a trie.

1.2 Contribution of the Paper

Most techniques proposed to prune the search in the trie have applied the so-
called “cutoff” strategy to decrease the search. The “cutoff” is based on the
assumption that the maximum permitted error is known a priori, and is more
useful when the inter-symbol costs are of form 0/1. In this paper, we show how we
can optimize non-sequential PR computations by incorporating heuristic search
schemes used in AI into the approximate string matching problem. First, we
present a new technique enhancing the Beam Search (BS), which we call the
Clustered Beam Search (CBS), and which can be applied to any tree searching
problem2. We then apply the new scheme to the approximate string matching
when the dictionary is stored as a trie. The trie is implemented as a Linked List
of Prefixes (LLP) as shown in [27]. The latter permits level-by-level traversal
of the trie (as opposed to traversal along the “branches”). The newly-proposed
scheme can be used for Generalized Levenshtein distances and also when the
maximum number of errors is not given a priori. It has been rigorously tested
on three benchmarks dictionaries by recognizing noisy strings generated using
the model discussed in [28], and the results have been compared with the ac-
claimed standard [32], the Depth-First-Search (DFS) trie-based technique [36].
The new scheme yields a marked improvement (of up to 75%) with respect to
the number of operations needed, and at the same time maintains almost the
same accuracy. The improvement in the number of operations increases with the
size of the dictionary. The CBS heuristic is also compared with the performance
of the original BS heuristic when applied to the trie structure, and the experi-
ments again show a surprising improvement of more than 91%. Furthermore, by
marginally sacrificing a small accuracy in the general error model, or by permit-
ting an error model that increases the errors as the length of the word increases
(as explained presently), an improvement of more than 95% in the number of
operations can be obtained.

2 The State-of-the-Art

The literature contains hundreds of papers which deal with the Syntactic PR of
strings/sequences. Excellent recent surveys about the field can be found in [12],
[25].
2 The new scheme can also be applied to a general graph structure, but we apply

it to the trie due to the dominance of the latter in our application domain, i.e.,
approximate string matching.
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2.1 Dictionary-Based Approaches

Most of the time-efficient methods currently available require that the max-
imum number of errors be known a priori, and these schemes are optimized
for the case when the edit distance costs are of a form 0/1. In [14], Du and
Chang proposed an approach to design a very fast algorithm for approximate
string matching that divided the dictionary into partitions according to the
lengths of the words. They limited their discussion to cases where the error dis-
tance between the given string and its nearest neighbors in the dictionary was
“small”.

Bunke [10] proposed the construction of a finite state automaton for com-
puting the edit distance for every string in the dictionary. These automata are
combined into one “global” automaton that represents the dictionary, later used
to calculate the nearest neighbor for the noisy string when compared against
the active dictionary. This algorithm requires time which is linear in the length
of the noisy string. However, the number of states of the automaton grows ex-
ponentially. Oflazer [26] also considered another method that could easily deal
with very large lexicons. To achieve this, he used the notion of a cut-off edit
distance: this measures the minimum edit distance between an initial substring
of the incorrect input string, and the (possibly partial) candidate correct string.
The cutoff-edit distance required a priori knowledge of the maximum number
of errors found in Y and that the inter-symbol distances are of a form 0/1, or
when general distances are used, a maximum error value.

Fig. 1. An example of a dictionary stored as a trie with the words {for, form, fort,
fortran, formula, format, forward, forget}

Baeza-Yates and Navarro [6] proposed two speed-up techniques for on-line
approximate searching in large indexed textual databases when the search is
done on the vocabulary of the text. The efficiency of this method depends on
the number of allowable error value.

The literature3 also reports some methods that have proposed a filtering
step so as to decrease the number of words in the dictionary that need to be
3 More details about the state-of-art can be found in [4] and [5].
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considered for calculations. One such method is “the similarity” keys method
[35] that offers a way to select a list of possible correct candidates in the first
step. This correction procedure, proposed in [35], can be argued to be a variant
of Oflazer’s approach [26]. The time required depends merely on the permitted
number of edit operations involved in the distance computations.

A host of optimizing strategies have also been reported in the literature
for methods which model the language probabilistically using N -grams, and
for Viterbi-type algorithms [9], [17], [37], [3]. These methods do not explicitly
use a “finite-dictionary” (trie or any other) model, and so we believe that it
is not necessary to survey them here. The same is also true for methods that
apply to error correct parsing [2], [31] and grammatical inference [24], where
the dictionary is represented by the language generated by a grammar whose
production probabilities are learnt in the “training” phase of the algorithm.

2.2 Dictionaries Represented as Tries

The trie is a data structure that can be used to store a dictionary when the
dictionary4 is represented as a set of words. Words are searched as a character
by character basis. Figure 1 shows an example of a trie for a simple dictionary
of words {for, form, fort, forget, format, formula, fortran, forward}.

With regard to traversal, the trie can be considered as a graph and can be
searched using any of the possible search strategies applicable to AI problems.
The literature includes two possible strategies that have been applied to tries,
namely the Breadth First Search strategy [18], [27] and the Depth First Search
strategy [36], currently recognized as an “industrial benchmark” [32].

Although the methods proposed in [36] are elegant, in order to apply these
cutoff principles the user has to know the maximum number of errors, K, a
priori, and also resort to the use of 0/1 costs for inter-symbol edit distances.

3 Heuristic Search

Heuristics and the design of algorithms to implement heuristic search have long
been a core concern of AI research [22], [30]. Game playing and theorem proving
are two of the oldest applications in AI: both of these require heuristics to prune
spaces of possible solutions. It is not feasible to examine every inference that can
be made in a domain of mathematics, or to investigate every possible move that
can be made on a chessboard, and thus a heuristic search is often the only practi-
cal answer. It is useful to think of heuristic algorithms as consisting of two parts:
the heuristic measure and an algorithm that uses it to search the state space5.

4 In terms of notation, A is a finite alphabet, H is a finite (possibly large) dictionary,
and μ is the null string, distinct from λ, the null symbol. The left derivative of order
one of any string Z = z1z2 . . . zk is the string Zp = z1z2 . . . zk−1. The left derivative
of order two of Z is the left derivative of order one of Zp, and so on.

5 When we refer to heuristic search we imply those methods that are used for solving
the problems possessing ambiguities or which are inherently time consuming. In both
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3.1 Beam Search (BS)

The simplest way to implement a heuristic search is through a Hill-Climbing
(HC) procedure [22], [30]. HC strategies expand the current state in the search
space and evaluate its children. The best child is selected for further expansion
and neither its siblings nor its parent are retained. The search halts when it
reaches a state that is better than any of its children. The algorithm cannot
recover from failures because it keeps no history. A major drawback to HC
strategies is their tendency to become stuck at local maxima/minima.

To overcome the problems of HC, and to provide better pruning than BFS,
researchers have proposed other heuristics such as the Beam Search6 (BS) [33].
In BS, we retain q states, rather than a single state as in HC, and these are
stored in a single pool. We then evaluate them using the objective function. At
each iteration, all the successors of all the q states are generated, and if one is
the goal, we stop. Otherwise, we select the best q successors from the complete
list and repeat the process. This BS avoids the combinatorial explosion of the
Breadth-First search by expanding only the q most promising nodes at each
level, where a heuristic is used to predict which nodes are likely to be closest to
the goal and to pick the best q successors.

One potential problem of the BS is that the q states chosen tend to quickly
lack diversity. The major advantage of the BS, however, is that it increases both
the space and time efficiency dramatically, and the literature includes many ap-
plications in which the BS pruning heuristic has been used. These applications
are include: handwriting recognition [15], [20], [23], Optical Character Recogni-
tion (OCR) [16], word recognition [19], speech recognition [8], [21], information
retrieval [38] and error-correcting Viterbi parsing [2].

3.2 Proposed Clustered Beam Search (CBS)

We propose a new heuristic search strategy that can be considered as an en-
hanced scheme for the BS. The search will be done level-by-level for the tree
structure7, where by “level” we mean the nodes at the same depth from the
start state. At each step we maintain |A| small priority queues, where A is
the set of possible clusters that we can follow in moving from one node to its
children8. The lists maintain only the best first q nodes corresponding to each
cluster, and in this way the search space is pruned to have only q|A| nodes in
each level.

CBS is like BS in that it only considers some nodes in the search and discards
the others from further calculations. Unlike BS, it does not compare all the nodes

these cases, we seek a heuristic to efficiently prune the space and lead to a good (albeit
suboptimal) solution.

6 When we speak about Beam Search, we are referring to local beam search, a combina-
tion of an AI-based local search and the traditional beam search [33] methodologies.

7 For the case where the graph is a general structure (and not a tree), we need to
maintain the traditional Open and Close lists that are used for Best First Search
[22], [30].

8 For example, A can be the set of letters in the alphabet in the case of the trie.
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in the same level in a single priority queue, but rather compares only the nodes in
the same cluster. The advantage of such a strategy is that the load of maintaining
the priority queue is divided into |A| priority queues. In this way, the number of
minimization operations needed will dramatically decrease for the same number
of nodes taken from each level.

As we increase q, the accuracy increases and the pruning ability decreases.
When the evaluation function is informative, we can use small values for q.
As q increases, the cost associated with maintaining the order of the lists may
overcome the advantage of pruning. The possibility of including a larger number
of nodes per level increases with the new CBS scheme when compared to the BS
leading to increased accuracy.

3.3 The Proposed CBS Algorithm and Its Complexity

The pseudo code for the proposed algorithm is shown in Algorithm 1. The saving
of the CBS over the BS appears in step 8, in which we only maintain a small
queue.

If the number of nodes after pruning in any level is O(q|A|), the number of
children considered for pruning in the next level is O(q|A|2), which is then divided
among the |A| clusters. For each cluster, we need to maintain a priority queue
containing q nodes. The search cost will be O(ch(q|A|2) log(q)), where c is the
cost of calculating the heuristic function per node, and h is the maximum height
of the tree (maximum number of levels). If the |A| queues can be maintained in
parallel, then the cost will be reduced to O(ch(q|A|) log(q)). This is in contrast
with the BS where the search cost will be O(ch(q|A|2) log(q|A|)), because the
corresponding BS maintains only one queue of length O(q|A|). The benefits of
CBS increases as |A| increases while the performance of the BS will decrease.

4 The CBS for Approximate String Matching

For approximate string matching the problem encountered involves both ambi-
guities and the excessive time required as the dictionary is large. Observe that
there is no exact solution for the noisy string that one is searching for, and at the
same time the process is time consuming because one has to search the entire
space to find it. We thus seek a heuristic to determine the nearest neighbor to
the noisy string, and one which can also be used to prune the space. The ambi-
guity of the problem can be resolved by several methods as explained previously.
One of the methods is the Depth-First-Search trie-based heuristic that uses the
dynamic equations and edit distance calculations described in the next section.

We attempt to describe a heuristic search for the approximate string match-
ing problem to also prune the search space when the inter-symbol distances are
general, and the maximum number of errors cannot be known a priori. We will
first present the heuristic measure, the data structures used to facilitate the cal-
culations, and finally, the algorithm as applied to approximate string matching.
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Algorithm 1. CBS
Input:
a. The tree to be searched, T , with clusters, A.
b. The matrix Q[|A| × q] to maintain the priority queues.
c. The beam width, q, considered for each cluster.
d. The goal we need to search for.
Output: Success or Failure.
Method:

1: Form |A| single-element queues, Q[1, . . . , |A|], where each queue Q[i] contains the
child in cluster i of the root node.

2: while Q is not empty and the goal is not found do
3: Determine if any of the elements in Q is the goal.
4: if goal found then
5: return Success.
6: else
7: for each Q[i], where 1 ≤ i ≤ |A| do
8: Sort the nodes originally in Q[i] in terms of the heuristic, keeping only the

first best q nodes.
9: Replace each of the q nodes by its successors, and add each successor to the

end of the corresponding Q[c] according to its cluster c.
10: end for
11: end if
12: end while
13: return Failure.
14: End Algorithm CBS

4.1 The Heuristic Measure

In string-processing applications, the traditional distance metrics quantify
D(X, Y ) as the minimum cost of transforming one string X into Y . This distance
is intricately related to the costs associated with the individual edit operations,
the SID operations. These inter-symbol distances can be of a form 0/1, para-
metric, or entirely symbol dependent. If they are symbol dependent [18], [34],
they are usually assigned in terms of the confusion probabilities:

d(x, y) = − ln[Pr(x → y) ÷ Pr(x → x)]
d(x, λ) = − ln[Pr(x is deleted) ÷ Pr(x → x)]
d(λ, x) = Kd(x, λ), (1)

where K is an empirically determined constant.
We have discovered that there are two possible heuristic functions that can

be used to measure the similarity between strings. Both those heuristic func-
tions can also be used as a measure to prune the search space. These measures
are:
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Algorithm 2. CBS-LLP-based Scheme
Input:
a. The dictionary, H , represented as a Linked Lists of Prefixes, LLP , with alphabet,
A.
b. The matrix QM to maintain the priority queues.
c. The width of the beam considered for each alphabet q.
d. The noisy word, Y , for which we need to find the nearest neighbor.
Output: X+, the nearest neighbor string in H to Y .
Method:

1: Start from the first level in LLP, which contains the root of the trie.
2: Initialize minnode to null, which stores the node representing the string that is

nearest neighbor to Y so far.
3: Initialize childq to 1, which is the number of nodes to be considered in the current

level.
4: while childq �= 0 do
5: Initialize QM to be empty.
6: for for each node n in the childq nodes of the current level do
7: Get the character c represented by node n.
8: Calculate the edit distances D(X, Y ), for the string represented by node n and

using the column information stored in the parent of n.
9: Add n to QM [c] if it is one of the best q nodes already in the list according

to the distance value. If the distance value of n is equal to one of the q nodes,
one of the solutions we use is to extend the QM [c] to include n.

10: if n is an accept node, i.e., a word in the dictionary then
11: Compare D(X, Y ) with the minimum found so far and if it has lower edit

distance value, store n in minnode.
12: end if
13: end for
14: Move all the children of the best nodes in QM to the beginning of the next level

in LLP, if any, and store their number in childq.
15: Increment current level to the next level.
16: end while
17: return the string X+, corresponding to the path from minnode to the root.
18: End Algorithm CBS-LLP-based Scheme

– Heuristic function F1: The Edit distance D(X, Y )
F1 can be computed using the dynamic programming rule:

D(x1. . . xN , y1 . . . yM )= min [ {D(x1 . . . xN−1, y1 . . . yM−1) + d(xN , yM )},
{D(x1 . . . xN , y1 . . . yM−1) + d(λ, yM )},
{D(x1 . . . xN−1, y1 . . . yM ) + d(xN , λ)}], (2)

where X = x1x2 . . . xN and Y = yx1y2 . . . yM .
Recognition using distance criteria is obtained by essentially evaluating the
string in the dictionary which is “closest” to the noisy one as per the metric
under consideration.
These dynamic equation are exactly the ones that are used for the DFS-trie-
based technique [36], where the actual inter-symbol costs are of a form 0/1,
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and the transposition evaluation is added to the dynamic equation. Both the
trie and the matrix are needed in the calculations. When the DFS is used in
the calculations, the reader will observe that only a single column will have
to be calculated at any given time, and this only depends on the previously
calculated column already stored in the matrix (thus preserving the previous
calculations).

– Heuristic function F2: The Pseudo-distance D1(X, Y )
The second heuristic function, F2, is the pseudo-distance proposed by
Kashyap et al. [18]. For each character in Y , the pseudo-distance is cal-
culated for the whole trie (level-by-level), and for each character of Y that
is processed, we consider two additional levels of the trie.

4.2 Characteristics of the Heuristic Functions

The first heuristic function, F1, seems to be very effective for a CBS, as will be
seen presently. The problem with using F2 as a pruning measure is that it needs
an additional parameter that has to be tuned, in addition to the parameter q.
This additional parameter is the length of the prefix of Y that has to be pro-
cessed after which we can start applying the pruning strategy - to avoid early
removal of entire portions of the trie. Indeed, if we used the pseudo-distance as
a measure for pruning, we believe that it will not yield the same accuracy as
when the measure D(X, Y ) is used, except if excessive tuning is permitted, thus
rendering it impractical.

4.3 Data Structures Used

There are two main data structures used to facilitate the computations:

– The Linked List of Prefixes (LLP): To calculate the best estimate X+, we
need to divide the dictionary into sets of prefixes. Each set H(p) is the set
of all the prefixes of H of length equal to p, where 1 ≤ p ≤ Nm, and Nm is
the length of longest word in H . More precisely, we want to process the trie
level-by-level. The trie divides the prefixes and the dictionary in the way that
we want, and further represents the FSM. The problem in the trie structure
is that it can be implemented in different ways, and it is not easily traversed
level-by-level. We need a data structure that facilitates the trie traversal,
and that also leads to a unique representation which can always be used to
effectively compute the edit distances or pseudo-distances for the prefixes.
We called this data structure the Linked Lists of Prefixes (LLP).

The LLP can be built from the trie by implementing it as an ensemble of
linked lists, and where all the lists at the same level are “coalesced” together
to make one list. Simultaneously, the LLP also permits us to keep the same
parent and children information. The LLP consists of a linked list of levels,
where each level is a level in the corresponding trie. Each level, in turn,
consists of a linked list of all prefixes that have the same length p. The levels
are ordered in an increasing order of the length of the prefixes, exactly as in
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the case of the trie levels. Figure 2 shows the corresponding LLP for the trie
of Figure 1. The links for children and parent are omitted in the figure for
simplification.

Within each entry of the LLP, we keep a link to the column information
that is needed for the calculations required for the next children. In this way,
we need only to maintain this column information for the first childq nodes
of each level. This column link is set to NULL if the node is already pruned.
The storage requirement for the LLP is the same as the trie, in addition to
the links between children in the same level, and between the different levels
themselves and the links to the column information.

– The Queues Matrix (QM): This matrix structure is used during the pruning
done for each level in the LLP. A newly initialized QM matrix is needed for
each level. The matrix, QM (of dimension |A| × q), can be used to maintain
the |A| priority queues and keep pointers to the best q nodes in each cluster.
Each entry in the matrix keeps a pointer to a node in the LLP, and all the
pointers in the matrix will be to nodes in the same level. The space required
for this matrix is O(q|A|).

Fig. 2. The corresponding LLP for the trie with words {for, form, fort, fortran, formula,
format, forward, forget}

The two data structures are used simultaneously, in a conjunctive manner,
to achieve the pruning that is needed. This will be illustrated in more detail in
the next section.

4.4 Applying the CBS

The pseudo code, as shown in Algorithm 2, illustrates how the CBS can be
applied to approximate string matching, namely the CBS-LLP-based scheme. It
also shows how the proposed data structures, presented in the previous section,
can be used to facilitate the calculations. The LLP helps to maintain the list
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Table 1. Statistics of the data sets used in the experiments

Eng Dict Webster

Size of dictionary 8KB 225KB 944KB
number of words in dictionary 964 24,539 90,141

min word length 4 4 4
max word length 15 22 21

of the best nodes and to achieve the pruning expediently. Moving the nodes in
the same lists will not affect the trie order at all, but helps us to effectively
maintain information about which nodes are to be processed and which are to
be discarded. The QM also helps us to maintain the queues and to retain the
required column information.

5 Experimental Results

To investigate the power of our new method with respect to computation we
conducted various experiments on three benchmark dictionaries. The results ob-
tained were (in our opinion) remarkable with respect to the gain in the number of
computations needed to get the best estimate X+. By computations we mean the
number of addition and minimization operations needed. The CBS-LLP-based
scheme was compared with the acclaimed DFS-trie-based work for approximate
matching [36] when the maximum number of errors was not known a priori.

Three benchmark data sets were used in our experiments. Each data set
was divided into two parts: a dictionary and the corresponding noisy file. The
dictionary was the words or sequences that had to be stored in the trie. The
noisy files consisted of the strings which were searched for in the corresponding
dictionary. The three dictionaries we used were as follows:

– Eng9: This dictionary consisted of 946 words obtained as a subset of the
most common English words [13] augmented with words used in computer
literature. The average length of a word was approximately 8.3 characters.

– Dict10: This is a dictionary file used in the experiments done by Bentley and
Sedgewick in [7].

– Webster’s Unabridged Dictionary: This dictionary was used by Clement et.
al. [1], [11] to study the performance of different trie implementations.

The statistics of these data sets are shown in Table 1. The alphabet is as-
sumed to be the 26 lower case letters of the English letters. For all dictionaries
we removed words of length smaller than or equal to 4.

Three sets of corresponding noisy files were created using the technique de-
scribed in [29], and in each case, the files were created for three specific error

9 This file is available at www.scs.carleton.ca/∼oommen/papers/WordWldn.txt
10 This file can be downloaded from www.cs.princeton.edu/∼rs/strings/dictwords
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Fig. 3. The results for comparing the CBS-LLP-based method with the DFS-trie-
based method for (top) the Eng dictionary, (middle) the Dict dictionary, and (bottom)
the Webster dictionary. The time is represented by total number of operations in
millions.

characteristics, where the latter means the number of errors per word. The three
error values tested were for 1, 2 and 3, referred to by the three sets SA, SB, and
SC respectively.

Each of the three sets, SA, SB and SC were generated using the noise
generator model described in [28]. We assumed that the number of insertions was
geometrically distributed with parameter β = 0.7. The conditional probability of
inserting any character a ∈ A given that an insertion occurred was assigned the
value 1/26, and the probability of deletion was 1/20. The table of probabilities for
substitution (typically called the confusion matrix) was based on the proximity
of character keys on the standard QWERTY keyboard and is given in [28]11.

The two algorithms, the DFS-trie-based and our algorithm, CBS-LLP-based,
were tested with the three sets of noisy words for each of the three dictionaries. We
report the results obtained in terms of the number of computations (additions and
minimizations) and the accuracy for the three sets. The calculations were done on
a Pentium V processor, 3.2 GHZ. Figure 3 shows a graphical representation of the
results. The figures compares both time and accuracy. The numbers are shown in

11 It can be downloaded from www.scs.carleton.ca/∼oommen/papers/QWERTY.doc
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Fig. 4. The results for comparing the CBS-LLP-based method with the BS-LLP-
based method for the Dict dictionary when applied to set SA. The time is represented
by total number of operations in millions.

Fig. 5. The results for comparing the CBS-LLP-based method with the DFS-trie-
based method for the Dict dictionary when the optimized error model is used and
q = 5. The time is represented by total number of operations in millions.

millions. The results show the significant benefit of the CBS-based method with
respect to the number of computations, while maintaining excellent accuracy. For
example consider the Webster dictionary, for the SA set, and q = 100: the number
of operations for DFS-trie-based is 1,099,279, and for the CBS-LLP-based method
is 271,188 representing a savings of 75.3%, and a loss of accuracy of only 0.5%. For
the Dict dictionary, for the SA set, and q = 100, the number of operations for
the DFS-trie-based is 72,115, and for the CBS-LLP-based method is 44,254 which
represents a savings of 36.6%, and a loss of accuracy of only 0.2%. When q = 50,
the number of operations for the CBS-LLP-based method is 21,366, representing
a savings of 70.4%, with a loss of accuracy of only 0.5%. There is always a trade-off
between time and accuracy but the loss of accuracy here is negligible compared to
the “phenomenal” savings in time.

To show the benefits of the CBS over the BS, we show the results when
applying the BS for the dict dictionary in Figure 5, when the approximately
equivalent width (number of nodes taken per level) is considered for the BS.
The width is considered approximately equal when we approximately equate the
number of addition operations. The figure shows only the result when applied to
set SA, as the results for the other sets are representative of the other sets too.
From the figures the reader will observe the tremendous gain in the minimization
operations needed when the same ordering technique is used for arranging all
the priority queues. The results are shown only for q = 10 and q = 50, because
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if we increase q it will yield bad results for the BS which is much worse than
when q = 50. For example, the number of operations for BS-LLP-based method
is 256,970, and for the CBS-trie-based method is 21,366, representing a savings
of 91.7% in total number of operations with accuracy 92.3%. In this case, the
number of operations for the BS method is much more than the 72,115 operations
of the DFS-trie-based method. From Figure 3 (middle), we see that we can
increase q in CBS-LLP-based method to 100 and get an accuracy of 92.6 with
savings of 36.6% in total number of operations with respect to DFS-trie-based
method. This is not feasible by the applying the BS method.

6 Optimizing Computations When Changing the Error
Model

A we see from the results in the previous section, by marginally sacrificing a
small accuracy value for the general error model (by less than 1%) a noticeable
improvement can be obtained with respect to time.

By permitting an error model that increases the errors as the length of the
word increases (i.e., the errors do not appear at the very beginning of the word),
an improvement of more than 95% in the number of operations can be obtained,
which is, in our opinion, absolutely amazing. This is because if errors are less
likely to appear at the very beginning of the word, the quality of pruning, with
respect to accuracy, will be more efficient at the upper levels of the tree. Thus we
can utilize a small value for q, the width of the beam, and as a result achieve more
pruning. All our claims have been verified experimentally as shown in Figure 5.
The results are shown for q = 5, (which is a very small width) demonstrating
very high accuracy. For example, for the set SA, the number of operations for
DFS-LLP-based method is 74,167, and for the CBS-trie-based method is just
3,374, representing a savings of 95.5%. This has obviously great benefits if the
noisy words received are not noisy at the beginning, in which case we still need
to apply approximate string matching techniques. Even here we would like to
make use of the approximately exact part at the very beginning of the word
which is variant from one word to another, where we cannot use partition of the
noisy word to apply exact match.

7 Conclusion and Future Work

In this paper we have presented a feasible solution for the problem of estimating a
transmitted string X∗ by processing the corresponding string Y (a noisy version
of X∗), an element of a finite (possibly large) dictionary H , when the whole
dictionary is considered simultaneously.

First, we proposed a new AI-based search called the Clustered Beam Search
(CBS) that can be considered an enhancement of the Beam Search (BS) used in
AI. The new scheme can be used to search a graph more efficiently with respect
to the number of operations needed. The CBS was applied to dictionary-based
approximate string matching, where the dictionary is stored using a trie.
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Secondly, we proposed a new representation of the trie, namely the Linked List
of Prefixes (LLP), to facilitate the computations. The new implementation strat-
egy helps prune the search space more efficiently and dramatically decreases the
number of operations needed to get the nearest neighbor to a noisy string Y .

Thirdly, the CBS-LLP-based approximate string matching has been com-
pared with the acclaimed Depth First trie-based technique proposed by Shang
et.al. [36] using big and small dictionaries. The results demonstrates a signifi-
cant improvement with respect to the number of operations needed (up to 75%)
while keeping the accuracy comparable to the optimum. It has also been com-
pared with the BS-LLP-based method to show the benefits of CBS over BS. The
results shows improvements of more than 90% when q equals 50.

Finally the new scheme, CBS-LLP-based, has also been tested using a new
error model, where the error predominantly appears at the end of the string.
The results demonstrates a great improvement of more than 95%, while keeping
the accuracy the same.

As a future work, we would like to apply the proposed new search scheme,
CBS, to approximate string matching when a probabilistic model, discussed in
[29], is used in the computations instead of the edit distance model used here. We
anticipate that we can get more accurate results and at the same time maintain
the same pruning capability.
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Abstract. The heart of an African rhythm is the timeline, a beat that
cyclically repeats thoughout a piece, and is often performed with an iron
bell that all performers can hear. Such rhythms can be represented as
sequences of points on a circular lattice, where the position of the points
indicates the time in the cycle at which the instrument is struck. Whereas
in theory there are thousands of possible choices for such timeline pat-
terns, in practice only a few of these are ever used. This brings up the
question of how these few patterns were selected over all the others, and
of those selected, why some are preferred (have more widespread use)
than others. Simha Arom discovered that the rhythms used in the tra-
ditional music of the Aka Pygmies of Central Africa possess what he
calls the rhythmic oddity property. A rhythm has the rhythmic oddity
property if it does not contain two onsets that partition the cycle into
two half-cycles. Here a broader spectrum of rhythms from West, Central
and South Africa are analysed. A mathematical property of rhythms is
proposed, dubbed “Off-Beatness”, that is based on group theory, and
it is argued that it is superior to the rhythmic oddity property as a
measure of preference among Sub-Saharan African rhythm timelines.
The “Off-Beatness” measure may also serve as a mathematical defini-
tion of syncopation, a feature for music recognition in general, and it
is argued that it is superior to the mathematical syncopation measure
proposed by Michael Keith.

1 Introduction

It is useful for the mathematical analysis of cyclic rhythms to represent them
as ordered sets of points on a circle. The points represent the onsets of notes
in time. For example, the rhythm consisting of five onsets with corresponding
time intervals of (3 2 3 2 2) units is illustrated in Figure 1 (a), where the onsets,
starting at position “zero”, are joined together with straight line segments to
form a convex polygon. This rhythm is used in the traditional music of the
Aka Pygmies of Central Africa [1], [2], [3]. The rhythm contains two intervals
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Fig. 1. (a) A rhythm used by the Aka Pygmies of Central Africa, (b) The Seguiriya

rhythm used in the Flamenco music of Spain

of length three and three intervals of length two. The interval lengths consisting
of one, two, and three units are strongly favoured in the rhythm timelines of
much of Sub-Saharan traditional music [7], [8], [9]. Given only this constraint,
there are usually different ways of arranging the intervals while maintaining their
cardinality fixed (cyclic permutations). For example, in the preceeding rhythm
of Figure 1 (a) the two intervals of length three may be placed side by side as in
Figure 1 (b). The resulting rhythm, with time intervals (interval vector) given
by (2 2 3 3 2), is the Seguiriya metric pattern used in the Flamenco music of
Andalucia in Southern Spain [4].

The question then arizes as to how the Aka Pygmies evolved to prefer the first
of these two rhythms over the second. Simha Arom [1] discovered that the Aka
Pygmies use rhythms that have the rhythmic-oddity property [2], [3]. A rhythm
consisting of an even number of time units, has the rhythmic-oddity property
if no two onsets partition the cycle (entire time span) into two sub-intervals of
equal length. Such a partition will be called an equal bi-partition. Note that the
rhythm of the Aka Pygmies in Figure 1 (a) has the rhythmic-oddity property,
whereas the Seguiriya rhythm of Figure 1 (b) does not.

A note is in order to clarify what we mean when we write that one rhythm is
“preferred” over another. This preference has not been established scientifically
in a laboratory by experiments conducted by music perception psychologists.
Rather, it is inferred from the existence and ubiquity of the rhythms observed
in the field by ethnomusicologists [1]. It is assumed for example that rhythms
that are played, are preferred over those that are not.

Before proceeding it is useful to define some terminology. A necklace token
is a circular chain of n elements of m different colors. Two n-element necklace
tokens are considered to be one and the same necklace if one token can be
rotated so that there is a one-to-one correspondence between the colors of their
elements. However, a necklace token may not be turned over to find such a
correspondence [6]. A Lyndon word is a non-periodic necklace [6].

The two rhythms depicted in Figure 1 with interval vectors (3 2 3 2 2) and
(2 2 3 3 2) can be viewed as necklaces, where the intervals of the rhythms cor-
respond to the elements of the necklaces and the two different lengths (2 and
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Fig. 2. The Mokongo rhythm used by the Aka Pygmies

3 units) of the intervals correspond to the two colors of the elements. In other
words, both rhythms are distinct 5-element necklaces of two different colors with
the additional constraint that the color of the 3-unit intervals is used exactly
twice. This additional constraint is called fixed density. It is an interesting com-
putational problem to generate efficiently all necklaces and Lyndon words under
these constraints [10]. It follows from Pólya’s Theorem [6], and the reader may
easily verify, that the two rhythms of Figure 1 are the only necklaces possible
composed of five elements of two colors with exactly two elements of one color.
Both rhythms are also Lyndon words (non-periodic).

The Aka Pygmies also play two other rhythm timelines that use intervals
of length two and three units in a time span of 24 units [1], [2], [3]. The first
is the pattern (3 2 2 2 2 3 2 2 2 2 2) containing two intervals of length three
and nine intervals of length two. There are five distinct necklaces of eleven ele-
ments of two colors with exactly two elements of one color. Using interval vector
notation the five necklaces are: (3 3 2 2 2 2 2 2 2 2 2), (3 2 3 2 2 2 2 2 2 2 2),
(3 2 2 3 2 2 2 2 2 2 2), (3 2 2 2 3 2 2 2 2 2 2), (3 2 2 2 2 3 2 2 2 2 2). Only the
last one of these, selected by the Aka Pygmies, has the rhythmic oddity property,
and none of the other four patterns are used by the Aka Pygmies.

The second 24-unit pattern used by the Aka Pygmies is (3 3 3 2 3 3 2 3 2)
which contains six intervals of length three and three intervals of length two. This
rhythm depicted in Figure 2 is called the Mokongo, and also has the rhythmic
oddity property.

One might hypothesise that the rhythmic-oddity property is a good measure
of preference used as a selection criterion (perhaps unconciously) for the adoption
of rhythms by the peoples of Central Africa in general, and the Aka Pygmies
in particular. One might even hope that this property could predict rhythm
preference in other parts of Africa. However, for these purposes the rhythmic-
oddity property has some limitations.

Consider for example the ten fundamental West (and South) African bell
timelines composed of seven onsets in a time span of twelve units, with five
intervals of length two and two intervals of length one (see [12] for more details).
The ten rhythms and their interval vectors are as follows: Soli = (2 2 2 2 1 2 1),
Tambú = (2 2 2 1 2 2 1), Bembé = (2 2 1 2 2 2 1), Bembé-2 = (1 2 2 1 2 2 2),
Yoruba = (2 2 1 2 2 1 2), Tonada = (2 1 2 1 2 2 2), Asaadua = (2 2 2 1 2 1 2),
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Sorsonet = (1 1 2 2 2 2 2), Bemba = (2 1 2 2 2 1 2), Ashanti = (2 1 2 2 1 2 2).
All ten rhythms are obtained by suitable rotations of one of three necklaces as
pictured in Figure 3. None of these ten rhythms, nor any of the other eleven
that are not used but belong to the same three generating necklaces, has the
rhythmic-oddity property. Furthermore, among the group of ten that are used,
some are more widespread than others, but the rhythmic oddity property does
not offer an explanation for this preference.

Turning to the Mokongo rhythm of the Aka Pygmies, there are ten distinct
necklaces of nine elements of two colors with exactly six elements of one color.
Using interval vector notation the ten necklaces are:

(3 3 3 3 3 3 2 2 2), (3 3 3 3 3 2 3 2 2), (3 3 3 3 3 2 2 3 2), (3 3 3 3 2 3 3 2 2),
(3 3 3 3 2 3 2 3 2), (3 3 3 3 2 2 3 3 2), (3 3 3 2 3 3 3 2 2), (3 3 3 2 3 3 2 3 2),

(3 3 3 2 3 2 3 3 2), (3 3 2 3 3 2 3 3 2).

The last of these is periodic and therefore not of interest in this context.
Of the nine distinct Lyndon words remaining, the last three have the rhythmic
oddity property. Therefore the rhythmic-oddity property fails to explain how the
Mokongo pattern is favored over the other two.

Here a broader spectrum of rhythm timelines from West, Central, and South
Africa are considered. A mathematical property of rhythms is proposed, dubbed
“off-beatness”, based on group generators, and it is argued that it is superior to
the rhythmic-oddity property as a measure of preference in Sub-Saharan African
rhythm. First we take a small detour to describe a generalization of the rhythmic
oddity property that widens its applicability.

2 A Generalization of the Rhythmic Oddity Property

Simha Arom [1] defines the rhythmic oddity property in a strictly binary mode,
i.e., a rhythm either has or does not have the rhythmic oddity property. This
concept may be generalized by defining a multi-valued variable that measures the
amount of rhythmic oddity a rhythm possesses. This variable (rhythmic oddity)
is defined as the number of equal bi-partitions that a rhythm admits. The fewer
equal bi-partitions a rhythm admits, the more rhythmic oddity it possesses. As
in [1], this property makes sense only for time spans of even length. Figure 3
shows the three necklace patterns that generate the ten West and South African
bell timelines, with all the bi-partitions (in dotted lines) contained in each. The
necklaces are labelled with the name of the most representative of its rhythms.
We see that the rhythms belonging to the Sorsonet necklace contain three equal
bi-partitions, the rhythms belonging to the Tonada necklace contain two equal
bi-partitions and the rhythms belonging to the Bembé necklace contain one such
bi-partition.

The Sorsonet necklace is the least preferred of the three, yielding only two
rhythms used in traditional music [12], the Sorsonet rhythm (1 1 2 2 2 2 2) used
in West Africa and the Persian kitaab al-adwaar rhythm given by (2 2 2 2 1 1 2).
The Tonada necklace is encountered more frequently, yielding two West African
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Fig. 3. The three necklaces comprising the ten 12/8 time bell patterns

rhythms, the Tonada = (2 1 2 1 2 2 2) and the Asaadua = (2 2 2 1 2 1 2), and
one Persian rhythm, the Al-ramal = (2 2 2 2 1 2 1). The Bembé necklace is
clearly preferred over the other two necklaces. All seven rhythms obtained by
starting the cycle at every one of its seven onsets are heavily used [8], [9]. The six
listed in the preceeding section are used predominantly in West African, South
African, and Afro-American traditional music [7], [12]. The seventh rhythm,
given by (1 2 2 2 1 2 2), is a Bondo rhythm used in Central Africa [1].

It is evident then that among this family of rhythms there is a marked pref-
erence for those that admit as few as possible equal bi-partitions, and thus a
high degree of rhythmic oddity. Nevertheless, although this measure performs
better than the rhythmic oddity property, it still has limitations. Among the
seven rhythms determined by the Bembé necklace some are more popular than
others. In fact, one of these, the Bembé = (2 2 1 2 2 2 1) is by far the most pre-
ferred of the seven, and is considered to be the African signature bell-pattern.
The master drummer Desmond K. Tai has called it the Standard Pattern [5].
Afro-Cuban music has escorted it across the planet, and it is used frequently on
the ride cymbal in jazz. Since all seven rhythms belonging to this necklace have
exactly one equal bi-partition, even the multi-valued rhythmic-oddity measure
does not discriminate among them, and thus does not favor the Bembé rhythm
over the other six.

3 The Off-Beatness Measure

Consider first the rhythms defined in a 12-unit time span. A twelve-unit interval
may be evenly divided (with no remainders) by four numbers greater than one
and less than twelve. These are the numbers six, four, three and two. Dividing
the twelve unit circle by these numbers yields a bi-angle, triangle, square, and
hexagon, respectively, as depicted in Figure 4. African music usually incorporates
a drum or other percussion instrument on which at least one or portions of
these patterns are played. Sometimes the music is accompanied by hand-clapping
rhythms that use some or all of these patterns. For example, the Neporo funeral
piece of Northwestern Ghana uses the triangle, square, and hexagon clapping
patterns [13] shown in Figure 4. In any case the rhythm has a steady fundamental
beat which we may associate with position “zero” in the cycle. In polyrhythmic
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music these four sub-patterns form the possible underlying pulses (sub-beats).
Two of the patterns (bi-angle and square) are binary pulses and two (triangle
and hexagon) ternary pulses. Therefore notes played in other positions are off-
beat in a strong polyrhythmic sense. There are four positions not used by these
four pulse patterns. They are positions 1, 5, 7, and 11. Onsets at these positions
will be called off-beat onsets. A rhythm that contains at least one off-beat onset
will be said to contain the off-beatness property. A measure of the off-beatness
of a rhythm is therefore the number of off-beat onsets that it contains.

These off-beat positions (1, 5, 7, and 11) also have a group-theoretic inter-
pretation. The twelve positions of the possible notes in the cycle form the cyclic
group of order 12 denoted by C12. The four off-beat position values correspond
to the sizes of the intervals that have the property that if one traverses the cycle
starting at, say “zero” in a clockwise direction in jumps equal to the size of one
of these intervals, then one eventually returns to the starting point after having
visited all twelve positions. Conversely, if the lengths of the jumps are taken
from the complementary set (2, 3, 4, 6, 8, 9, 10) then the start point will be
reached without having visited all twelve positions in the cycle. For this reason
the elements (1, 5, 7, and 11) are called the generators of the group C12.

Returning to the ten West-African bell patterns in 12/8 time discussed in the
preceeding, recall that the Bembé rhythm is the most frequently used of these
patterns. Among these ten rhythms, the highest value of off-beatness is three
and only the Bembé realizes this value.

Since every cyclic group Cn has a set of generators, the off-beatness measure
described in the preceeding generalizes to rhythms defined on n-unit time spans
for other values of n. Although the measure works best for even values of n, it
also has some applicability for odd n. On the other hand, if n is some prime
number p then every number from 1 to p − 1 is relatively prime to p. In such a
case the measure is useless since all the onset positions from 1 to p − 1 would
be off-beatness notes under the present definition of off-beatness. For rhythms
that have a 24-unit time span the eight off-beatness onsets are determined by
the generators of C24, namely, (1, 5, 7, 11, 13, 17, 19, 23).

The ten necklaces of nine elements of two colors with density six, of which
the Mokongo rhythm of the Aka Pygmies is a member, are listed in Figure 5
along with the number of equal bi-partitions admitted by each. Also included
(in the last column) are the off-beatness values of the rhythms in their canonical



24 G. Toussaint

rotational positions. Of the four rhythms that have the rhythmic oddity property
(zero bi-partitions) there are three Lyndon words of interest (shown shaded).
Rhythms 7 and 9 have off-beatness values of two, whereas rhythm 8, the Mokongo
has a value of three. Hence the off-beatness measure offers an explanation for
selecting the Mokongo rhythm over the other two rhythms, both of which have
the rhythmic oddity property.
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Fig. 5. The ten necklaces of nine elements of two colors with density six

The number of bi-partitions a rhythm possesses is invariant to cyclic rotations
of the rhythm. In other words this property has the same value for a necklace
as it does for all the rhythms it generates. By contrast, the off-beatness measure
clearly does not have this property. However, there are several ways to obtain an
off-beatness measure that is invariant under rotations. One natural method is
to simply add the off-beatness values over all its onsets used as starting points.
This yields an off-beatness value averaged over all starting points. If this is done
for the Lyndon words with zero bi-partitions in Figure 5, the Mokongo necklace
is still the winner with a score of 27. Necklace No. 9 comes second with a score
of 26 and Necklace No. 7 is third with a score of 24.

Another (worst-case) rotation-invariant measure of off-beatness, counts the
number of onsets that yield the minimum off-beatness value when these onsets
are used as starting points in the rhythm. The smaller such a number is, the
greater is the guarantee that any starting point of the necklace will yield a
rhythm with high off-beatness value. If this number is calculated for necklaces
7, 8, and 9 in Figure 5, the Mokongo necklace is again the winner. The Mokongo
necklace (no. 8 in the figure) has one starting onset that yields the minimum
off-beatness value of two. Necklace No. 9 comes second with two starting onsets,
and necklace No. 7 is third with four such onsets.

4 Off-Beatness as a Measure of Syncopation

The off-beatness measure may also serve as a precisely defined mathematical
measure of syncopation. According to Michael Keith [6], “although syncopation



Mathematical Features for Recognizing Traditional Rhythm Timelines 25

in music is relatively easy to perceive, it is more than a little difficult to define
precisely.” Indeed, most definitions have in common that syncopation involves
accenting an onset that is not normally accented, which begs for a definition
of normal. Keith [6] proposed a mathematical measure of syncopation based on
three types of events (notes) he calls hesitation, anticipation, and syncopation,
where syncopation is the combination of hesitation and anticipation. To these
events he gives the weights 1, 2, and 3, respectively. An anticipation occurs if the
start of the note is “off the beat”, whereas a hesitation occurs if the end of the
note is “off the beat”. What remains to be defined precisely is the notion of “off
the beat”. Unfortunately Keith defines “off the beat” only for meters with time
spans equal to a power of 2 and a partition consisting of all 2’s. His definition is
as follows:

Let δ be the duration of the event (note) as a multiple of 1/2d beats, and
let S be the start time of the event (with time positions numbered starting with
0), expressed in the same units. Furthermore, let D = δ rounded down to the
nearest power of 2. Then the start of the event is defined to be “off the beat”
if S is not a multiple of D, and the end of the event is defined to be “off the
beat” if (S +δ) is not a multiple of D. The syncopation value for the i− th event
(note) in the rhythmic pattern, denoted by si is defined as: si = (2 if starti is
off the beat) + (1 if endi is off the beat) Finally, the measure of syncopation of
a rhythmic pattern is the sum of the syncopation values si summed over all i.

It is interesting to compare the syncopation measure of Keith with the off-
beatness measure proposed here. Since Keith’s definition holds only for time
spans of units equal to powers of 2, we cannot compare it to the off-beatness
measure using the rhythms of the Aka Pygmies discussed in the preceeding,
since they have time spans of 12 and 24 units. However, we may perform the
comparison using the 4/4 time clave patterns studied in [11] which have time
spans of 16 units. The six fundamental timelines are:

[x . . . x . x . . . x . x . . .] - Shiko
[x . . x . . x . . . x . x . . .] - Son
[x . . x . . . x . . x . x . . .] - Rumba
[x . . x . . x . . . x x . . . .] - Soukous
[x . . x . . x . . . x . . x . .] - Bossa-Nova
[x . . x . . x . . . x . . . x .] - Gahu

It is also interesting to compare these Afro-American timelines with one of
the most popular ostinatos used in classical music given by:

[x . x . x . . . x . . . x . . .] - classical ostinato
The values of Syncopation and off-beatness for these seven rhythmic pat-

terns are shown in Figure 6. The syncopation measure makes global sense on
these seven rhythms but is rather coarse and yields several questionable judge-
ments. In contrast, the off-beatness measure shows remarkable agreement with
human perception of syncopation. There is no doubt that the classical ostinato
and Shiko patterns are less syncopated than the Son, Rumba, and Soukous pat-
terns. There is also no doubt that the Bossa-Nova is more syncopated than all of
these. Both measures support these conclusions. However, the Rumba is clearly
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Fig. 6. A comparison of the syncopation and off-beatness measures

more syncopated than the Son, something the off-beatness measure bears out
but the syncopation measure does not. It is difficult to decide which of Soukous
or Rumba is the more syncopated of the two. The off-beatness measure reflects
this difficulty whereas the syncopation measure judges the Soukous as being
more syncopated. The Bossa-Nova feels more syncopated than the Gahu, some-
thing the off-beatness measure also bears out but the syncopation measure does
not. There appears to be only one point in favor of the syncopation measure.
The Shiko is more syncopated than the classical ostinato. Here the syncopation
measure agrees more with human perception than does the off-beatness measure.

5 Concluding Remarks

The analysis of Sub-Saharan African rhythm timelines suggests that the off-
beatness measure is a good mathematical predictor of the frequency (and thus
preference) with which they are used in traditional music. It should be a useful
feature for music information retrieval systems, as well as other applications.

The data (4/4 time clave patterns) analysed in the preceeding section suggest
that the off-beatness measure also provides more agreement with human percep-
tion of syncopation than does the syncopation measure of Keith [6]. Therefore it
should be a useful feature for recognizing syncopated music. It would be inter-
esting to generalize Keith’s measure to hold for general rhythmic patterns and
to compare such a generalization with the off-beatness measure proposed here.
Measuring off-beatness for rhythms with time spans consisting of n units, where
n is a prime number such as 7, 11, 13, etc., is a challenging open problem.
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4. José Manuel Gamboa. Cante por Cante: Discolibro Didactico de Flamenco. New
Atlantis Music, Alia Discos, Madrid, 2002.

5. A. M. Jones. Studies in African Music. Oxford University Press, Amen House,
London, 1959.
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Abstract. Here we revisit the Näıve Bayes Classifier (NB). A problem
from veterinary medicine with assumed independent features led us to
look once again at this model. The effectiveness of NB despite viola-
tion of the independence assumption is still open for discussion. In this
study we try to develop a bound relating dependency level of features
and the classification error of Näıve Bayes. As dependency between more
than two features is difficult to define and express analytically, we con-
sider a simple two class two feature example problem. Using simulations
we established empirical bounds measured by Yules Q-statistic between
calculable error and error related to the true distribution.

1 Introduction

The Näıve Bayes (NB) classifier has proved to be a useful classification tool,
despite the independence assumption imposed upon the features. NB has been
shown in numerous studies to perform well even when the features obviously
violate the assumption [1,2, 3,4, 5, 6].

A non-traditional dataset originating from the veterinary medicine domain
motivated us to look at Näıve Bayes again. BSE in cattle and Scrapie in sheep
are important notifiable neurodegenerative diseases. They are currently of global
concern with the first case of BSE being diagnosed in the USA in December
2003 [7]. The datasets concerning BSE and Scrapie are non-traditional in the
sense that they consist of probability estimates of a feature (clinical sign) being
present given a certain class (disease). These probability estimates were given by
field experts. Since only the marginal probabilities were estimated features were
assumed to be independent. Each of the two datasets contains 200+ features
and 50+ diseases. We had no information about any dependencies amongst the
features, therefore it made sense to try NB first. The NB model has had success
in the medical domain in the past, [8,9]. Medical experts often prefer the NB to
other algorithms due to its explanation potential. It appears that the decision
made by NB follows a path similar to their own decision making process [9].

In this study we took the NB model and tried to find out how much the
calculable error of an assumed independent distribution differed from the true
(Bayes) error.
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2 Types of Error

Consider the two feature, two class problem outlined in Table 1. In this exam-
ple, ω1 can be class Scrapie and ω2, class non-Scrapie. We can think of x1 as the
feature (sign) Licking and Biting and x2 as the feature (sign) Nibbling reflex. Fea-
tures may either be present (having the value 1) or absent (having the value 0).
The entries in the table are the class-conditional probabilities for the respective
combination of signs. For example a = P (x1 = 0, x2 = 0|ω1). We call this table
“the dependent distribution” because x1 and x2 are not assumed to be indepen-
dent given any of the two classes. We note that a+ b+ c+ d = 1 = e+ f + g +h.
We also assume that P (ω1) = P (ω2) = 1

2 , i.e., both classes (diseases) are equally
prevalent.

The true Bayes error for the problem in Table 1 is

E1 =
1
2
{min{a, e} + min{b, f} + min{c, g} + min{d, h}} (1)

Table 1. The dependent distribution

ω1 x1 = 0 x1 = 1
x2 = 0 a b

x2 = 1 c d

ω2 x1 = 0 x1 = 1
x2 = 0 e f

x2 = 1 g h

If x1 and x2 were assumed to be independent their joint distribution will be
as shown in Table 2 (called “independent distribution”). We are interested in
finding out how the classification error will be affected if we use Table 2 instead
of Table 1. The independent distribution can be obtained from the dependent
distribution by using the calculations in Table 2. However, the dependent distri-
bution cannot be recovered from Table 2.

Table 2. The independent distribution

ω1 x1 = 0 x1 = 1
x2 = 0 A = (a + b)(a + c) B = (a + b)(b + d)
x2 = 1 C = (a + c)(c + d) D = (b + d)(c + d)

ω2 x1 = 0 x1 = 1
x2 = 0 E = (e + f)(e + g) F = (e + f)(f + h)
x2 = 1 G = (e + g)(g + h) H = (f + h)(g + h)

Denote by E�
2 the error made if we use the independent distribution. There

is no easy way of expressing this error analytically because it will depend on
whether or not the true (Bayes) classifier (Table 1) and NB make the same
decision. For example, if (a > e and A > E) or (a < e and A < E), then E�

2 will
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have min{a, e} as the first error term in the brackets. If the opposite holds, E�
2

will have max{a, e} as the first error term. If we assume that Table 2 gives the
true distribution, our (incorrect) estimate of the error will be E2

E2 =
1
2
{min{A, E} + min{B, F} + min{C, G} + min{D, H}} (2)

The best way to see the difference in these two errors is to consider an
example. Consider the problem outlined in Tables 3 and 4. Let x = [0, 0]T be
the case submitted for classification.

Table 3. The dependent distribution

ω1 x1 = 0 x1 = 1
x2 = 0 0.4 0.2
x2 = 1 0.1 0.3

ω2 x1 = 0 x1 = 1
x2 = 0 0.3 0.1
x2 = 1 0.5 0.1

Table 4. The independent distribution calculated from Table 3

ω1 x1 = 0 x1 = 1
x2 = 0 0.3 0.3
x2 = 1 0.2 0.2

ω2 x1 = 0 x1 = 1
x2 = 0 0.32 0.08
x2 = 1 0.48 0.12

In the dependent distribution x = [0, 0]T would be classified as class ω1 with
the error of this decision being P1(error,x = [0, 0]T ) = min{0.4, 0.3}× 1

2 = 0.15.
However, when we look at the independent distribution modelled from the

dependent distribution we see that x = [0, 0]T would be classified as class ω2. Ac-
cording to the independent distribution P2(error,x = [0, 0]T ) = min{0.3, 0.32}×
1
2 = 0.15. However, there is a mistake according to the true distribution, i.e.,
P �

2 (error,x = [0, 0]T ) = 0.4 × 1
2 = 0.2, so E�

2 is increased.
In the non-traditional dataset we can only calculate E2 as we have no other

information available. In this study we wanted to look at the relationship between
the error we can calculate and the error we were making in relation to the true
distribution.

3 Experiments

3.1 Empirical

We generated 10,000 pairs of random matrices of dependent classes as in Table
1. We then calculated the the independent distributions from these as in Table
2. We took our measure of dependence to be Yules Q statistic. Q1 depicts the
level of dependency in class ω1 and is calculated as

Q1 =
ad − bc

ad + bc
(3)
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The Q-statistic varies from −1 to 1. A value of −1 means the two features
are negatively dependent, i.e., the two features always take opposite values; 1
indicates that the features are positively dependent, i.e., the two features always
take the same value. A Q-value of zero means the two features are completely
independent of one another.

For this simulation we restricted the distribution of class ω2 so that the two
features were independent given class ω2. This meant that Q2 = eh−fg

eh+fg = 0
throughout and the subtables for ω2 in Tables 1 and 2 were identical. Only class
ω1 had a true dependent distribution and an independent distribution calculated
from this.

The 10,000 points (Q1, E�
2 − E2) are plotted in figure 1. The figure shows

that

– E�
2 − E2 can be both positive and negative. This indicates that we can

overestimate or underestimate the error of NB. However, from this simulation
it is not clear in what situations over- or underestimation occurs.

– When Q1 is zero, so is the difference between E2 and E�
2 . This is expected

as this is when the features are conditionally independent for both classes
and so NB is known to be optimal.

– The relationship between E2 and E�
2 is symmetrical about 0. As the encoding

is arbitrary we can interchange the values of 0 and 1 for the features, which
is the explanation for the symmetrical pattern.

– As the value of Q1 reaches out to ±1 the maximum difference in the two
error values increases but there are also points plotted along the zero line
indicating that there is no way of knowing exactly what the difference will
be even if we know the Q-value of the two features.

– The figure has a pronounced shape which implies there is the possibility of
finding a bound on the error difference.

3.2 Bounds

There has been work done on the bounds of the probability of error of NB [10,11].
These bounds have been shown to be arbitrarily tight to the probability of error
of the NB model [11]. However, these studies did not look into how the level
of dependence of features affects the probability of error of NB. The bounds
proposed here are looking at the difference of the two types of error related to
the level of dependency of the features.

From the simulations we are able to place an empirical bound onto the dif-
ference between E2 and E�

2 . Bound 1 given in equation (4) encloses 95% of the
points depicted, in Fig. 1.

B1 = ± (Q1 + Q 3
1 )

20
(4)

The bound is plotted with a solid line in Fig. 1. Taking the bound one step
further we can give a second bound that encompasses 100% of the 10,000 error
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Fig. 1. Scatterplot of the 10,000 data points (Q1, E�
2 − E2) randomly generated as

described

differences, see Fig. 1. The formula for the second bound is given below

B2 = ± (Q1 + Q 5
1 )

15
. (5)

This bound is plotted with the dashed line in Fig. 1. These bounds show us
that if we know that the two features are independent in one class and we know
the Q-value of the features dependency in the second class then it is likely that
we will be within ±B2 of the true error committed on the true distribution.

3.3 Real Data

Using four data sets from the UCI data repository (SPECT, Wine, Thyroid
and Glass) 1 it was possible to find pairs of features replicating the conditions
required by the empirical simulations.

– Only binary data was considered. Any data sets that were not binary were
converted by using the Gini criterion as a splitting function.

– All problems were transformed into two class ones. If the data set contained
more then two classes only class one and class two were used.

– The classes were assumed to be equiprobable.
– Our scenario requires that the two features were independent in one class.

We looked at all pairs of features in the two classes and selected all pairs
that were indeed independent in one class i.e. had a Q-value of zero in one
of the two classes.

1 Data sets available at: http://www.ics.uci.edu/∼mlearn/MLRepository.html
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Plotted in Fig. 2 all the pairs of features that were independent in one class.
The x-axis is their Q-value in the second class and the y-axis is E�

2 − E2. Also
plotted is the bound B2 shown as the dashed line. From Fig. 2 we can see that
all the points fit within the bound. All feature pairs that were independent in
both classes had no difference in their values of E2 and E�

2 as expected and are
all plotted on (0,0). This strengthens our findings during the empirical study
but cannot serve as a proof of this bound.
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Fig. 2. Scatterplot of the pairs of features found in the real data analysis fitting the
requirements of the study. Bound B2 is also plotted. SPECT - •, Wine - ×, Thyroid -
�, Glass - �.

4 Conclusion

In this study we looked again at the probability of error when using the NB
classifier. By considering the dependency between features we investigated the
difference in the error we can calculate from an independent distribution and
the true error.

We derived two empirical bounds on the difference in the errors. If two fea-
tures are independent in one class and we have the Q-value of their dependence
for the other class then E�

2 − E2 is contained within ± B2.
This finding was then strengthened by the use of real data sets from the

UCI repository. The difference of E2 and E�
2 of all feature pairs fitting the

requirements of the simulation fell within the constraint of bound B2. This is an
initial study which opens up interesting questions. The next step would be to
look for bounds for more than two features and also for the cases of dependent
distribution (not fixing Q2 = 0).
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Abstract. This study investigates the effectiveness of probability forecasts out-
put by standard machine learning techniques (Neural Network, C4.5, K-Nearest
Neighbours, Naive Bayes, SVM and HMM) when tested on time series datasets
from various problem domains. Raw data was converted into a pattern classifica-
tion problem using a sliding window approach, and the respective target predic-
tion was set as some discretised future value in the time series sequence. Exper-
iments were conducted in the online learning setting to model the way in which
time series data is presented. The performance of each learner’s probability fore-
casts was assessed using ROC curves, square loss, classification accuracy and
Empirical Reliability Curves (ERC) [1]. Our results demonstrate that effective
probability forecasts can be generated on time series data and we discuss the
practical implications of this.

1 Introduction

Probability forecasting has become an increasingly popular doctrine in the machine
learning community [1], [2]. Probability forecasting is a practically useful generali-
sation of the standard pattern classification problem where the aim is to estimate the
conditional probability (otherwise known as a probability forecast) of a possible label
given an observed object. The problem of making effective probability forecasts is well
studied [1], [2], [3], [4]. Dawid (1985) gives two simple criteria for describing how
effective probability forecasts are:

1. Reliability - The probability forecasts “should not lie”. When a probability p̂ is
assigned to an event, there should be roughly 1 − p̂ relative frequency of the event
not occurring.

2. Resolution - The probability forecasts should be practically useful and enable the
observer to easily rank the events in order of their likelihood of occurring. This
criterion is more related to classification accuracy and ROC area [1].

Effective probability forecasting is a desirable goal, especially in cost-sensitive deci-
sion making domains such as medical and financial applications [1], [2]. However,
probability forecasting studies mainly consider data which is roughly drawn from i.i.d.
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probability distributions. We wanted to know whether traditional machine learning al-
gorithms could give effective probability forecasts with time series (or non-i.i.d.) data.
We have tested several machine learning algorithms on time series datasets from vary-
ing problem domains (text, industrial, financial and meteorological). The raw data was
converted into a pattern classification problem using a sliding window approach (of size
w), and the respective target prediction was set as some discretised future value in the
raw time series sequence. Experiments were conducted in the online learning setting,
where the learner is continually updated with data, thus modelling the natural way in
which time series data is presented. The results demonstrate the ability of the learners
to output effective probability forecasts with time series data in addition to revealing
the misleading nature of classification accuracy.

2 Pattern Classification of Time Series Data

Our notation will extend upon the commonly used supervised learning approach to
pattern classification. Nature outputs information pairs called examples. Each example
zi = (xi, yi) ∈ X = Z × Y consists of an object xi ∈ X and its label yi ∈ Y =
{1, 2, . . . , |Y|}. All experiments given in this paper test n training examples in the
online learning setting, as this seems a natural method of testing time series data -
the true value will often become available with some time lag. With online learning,
each object xi, i > 1 is considered in turn as a ‘trial’ in the online process and a
prediction (in our problem a set of probability forecasts) is made by the learner Γ using
the previous i−1 training examples Γ (z1, . . . , zi−1). At the end of each trial the learner
Γ is updated with the true label yi of the ith object, and the process is repeated until all
data is tested. In this study we will consider a sequence of n probability forecasts for
the |Y| possible labels output by a learner Γ . Let P̂ (yi = j | xi) = p̂i,j represent the
estimated conditional probability of the jth label matching the true label yi for the ith
object tested.

2.1 Conversion of Time Series Data Using a Sliding Window Approach

Our raw multi-variate time series data si,j has k attribute readings over m time epochs

s1,1 s1,2 . . . s1,k

s2,1 s2,2 . . . s2,k

...
...

...
...

sm,1 sm,2 . . . sm,k

Usually the values sij are continuous, but can also be discrete (as with the text dataset
used in this study). We convert the raw time series data into a pattern classification
problem using a simple sliding window technique. Firstly, we choose some window
size w, and generate a set of n = m − w training examples, each with kw attributes

xi = 〈si−w,1, . . . , si,1, . . . , si−w,k, . . . , si,k〉 (1)
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Secondly, we choose a time shift f ≥ 1 of how far into the future we would like to
predict for a chosen attribute 1 ≤ j ≤ k. Now to generate the corresponding label yi

for each object we can use a variety of methods depending on the task:

1. yi = si+f,j shift to the next value (as with text data)

2. yi = C
(

si+f,j−si,j

si,j
× 100

)
shift in a percentage change (as with finance, meteoro-

logical and industrial data)

where C is a discretising function breaking the continuous real value into a set of inter-
vals. In our experiments we used a simple equal width discretisation. Let slow and sup

be the minimum and maximum percentage deviations of the chosen attribute

slow = argmin
1≤i≤n

{
si+f,j − si,j

si,j
× 100

}
and sup = argmax

1≤i≤n

{
si+f,j − si,j

si,j
× 100

}

If we let srange = |sup−slow|
|Y| be the absolute size of each discrete bin interval between

sup and slow and include the infinite boundary cases then the discretising function C
maps a real value onto |Y| disjoint bins

C : R →
{
(−∞, slow + srange), [slow + srange, slow + 2srange), . . . , [sup − srange,∞)

}
In our experiments sup and slow are estimated from the training data, which can be
seen as ‘cheating’ as the learner is indirectly biased by the data before classication has
taken place. However it is reasonable to assume that for practical applications, a basic
knowledge of the range of deviation in the data will be known apriori, or at least can
be estimated from historical data. Of course any other discretisation method could be
used, such as one that encodes some semantic meaning about the sequence deviation.

3 Reliable Probability Forecasting: A Machine Learning
Perspective

To calculate the reliability of a finite number of probability forecasts a method of dis-
cretising forecasts must be used. For predicted probabilities p̂i,j of each class j ∈ Y
we define a set of ‘bins’ (disjoint sub-intervals) Bj , for example one possible bin

choice would be to choose k equal width bins Bj =
{
[0, 1

k ), [ 1
k , 2

k ), . . . , [k−1
k , 1]

}
.

Let nj
b =

∑n
i=1 I{p̂i,j∈b} count the number of forecasts p̂i,j for class j ∈ Y that fall

within bin interval b ∈ Bj . There are many possible choices of bin sizes, however
we aim to specify bin sizes which encompass enough forecasts (make nj

b as large as
possible for each bin) to obtain practically useful estimates.

Once the sets of bins Bj, j ∈ Y have been defined, we can define reliability by
calculating various statistics from the individual bins b ∈ Bj . Reliability ensures that
for each bin of forecasts with predicted values ≈ p̂, the frequency of this label not
occurring in that bin is ≈ 1− p̂. To obtain a practically useful estimate of the predicted
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value represented by each bin we use the average predicted probability φj
n(b) for each

bin interval b

φj
n(b) =

∑n
i=1 I{p̂i,j∈b}p̂i,j

nj
b

(2)

The empirical frequency ρj
n(b) of each bin b calculates the proportion of predictions in

that bin that had true class yi = j

ρj
n(b) =

∑n
i=1 I{yi=j}I{p̂i,j∈b}

nj
b

(3)

To determine whether a bin b contains enough forecasts to be practically useful to

gather the ρj
n(b) and φj

n(b) statistics, an extra weighting term νj
n(b) = nj

b

n is used.
An example of the bin statistics for the Naive Bayes probability forecasts of class label
yi = (−25%, − 15%] on the pH chemical dataset are given below

Set of bins b in B(−15%,−25%]

Bin Interval b φ(b) nb ρ(b) × nb ρ(b) ν(b) Colour
(0-0.052] 0.013 1068 156 0.146 0.536

(0.052-0.113] 0.069 178 41 0.230 0.089
(0.113-0.879] 0.538 221 64 0.289 0.111

(0.879-1] 0.959 510 205 0.402 0.256

These statistics show that the Naive Bayes learner is unreliable since the predicted
probability φ(b) and empirical frequency ρ(b) are divergent from one another. Every
learner’s performance in the reliability criterion can be categorised using the functions
ρj

n(b), φj
n(b) and νj

n(b). Using them intuitively defines reliability. A learner is well
calibrated (reliable) if its forecasts {p̂1,1, . . . , p̂1,|Y|, . . . , p̂n,1, . . . , p̂n,|Y|} and a fixed
specification of bins Bj , j ∈ Y satisfy

R(Γ, n) =
|Y|∑
j=1

∑
b∈Bj

νj
n(b)|ρj

n(b) − φj
n(b)| ≈ 0 (4)

3.1 Assessment of Probability Forecasts

At present the most popular techniques for assessing the quality of probability forecasts
are square loss 1

n

∑n
i=1

∑|Y|
j=1(I{yi=j} − p̂i,j)2 [5] and ROC curves [6]. The square

loss function assesses a combination of reliability and resolution [4]. The area under
the ROC curve is commonly used as a measure of the usefulness of the probability
forecasts; the larger the area, the better the forecasts.

The Empirical Reliability Curve (ERC) is a visual interpretation of the theoretical
definition of reliability (cf. 4) [1]. Unlike the previous methods, the ERC allows visu-
alisation of over- and under-estimation of probability forecasts. For more detail about
ERC implementation please refer to [1]. In brief, each coordinate (marked as

⊙
) on
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Table 1. Descriptions of the time series data tested and the sliding window conversion parameters
used to convert the raw data into an online pattern classification problem. From left to right: name
of the dataset, number of examples n, number of raw data attributes k, number of classes/bins
|Y|, chosen window size w, chosen time shift f , chosen class index j and general description of
the data.

Data Name No.
Expl

No.
Att

No.
Class

Win
Size

Time
Shift

Class
Indx

Description of Data

pHdata 1991 10 4 3 5 3 Simulation data of a pH neutralisation pro-
cess in a stirring tank. Time is measured in
10 second epochs.

spotexrates 2546 12 4 4 14 8 Spot prices (foreign currency in dollars) and
the returns for daily exchange rates of AUD,
BEF, CAD, FRF, DEM, JPY, NLG, NZD,
ESP, SEK, CHF, GBP against the US dollar.

darwin 1386 8 5 7 1 7 Monthly values of the Darwin SLP series,
from 1882 to 1998. This series is a key indi-
cator of climatological patterns.

Emma 4994 6 6 5 1 1 Created from raw text of the famous novel
‘Emma’.

the ERC represents the statistics computed for each bin1 b, and the coordinate
⊙

is
coloured according the weighting of that bin ν(b) (black = 1, 1 > shades of grey > 0,
white = 0). An example of ERC coordinates and their respective colouring can be seen
in the table above. The respective ERC plot for the coordinates in the table above can
be seen in Figure 1. A reliable classifier will have ERC coordinates

(
φ(b), ρ(b)

)
close

to the diagonal line of calibration (0, 0) → (1, 1) (where predicted probability equals
empirical frequency cf. 2, 3). A trend line is predicted from these coordinates using a
weighted regression algorithm [8] (where each training example is weighted according
to the value ν(b)). This allows the coordinates which relate to a bin containing a large
sample of forecasts to have a greater influence on the shape of the curve. An associated
reliability score is computed using the absolute deviation of the ERC coordinates from
the line of calibration (cf. 4).

4 Experimental Design

We tested the following learning algorithms as provided by WEKA: Naive Bayes, Dis-
tance Weighted K-Nearest Neighbours (DW K-NN), Neural Networks, C4.5 Decision
Tree using Laplace Smoothing and Linear Kernel Pairwise Coupled Support Vector Ma-
chine using Logistic Regression (PC LR SVM) [9]. We also tested the traditional time
series analysis technique, Hidden Markov Models (HMM), as provided by the JAHMM
project2. To ensure that learning was taking place, we also tested two simple classi-
fiers as controls: NegR which outputs forecasts randomly from a uniform distribution,

1 For our ERC we used the Discretize filter provided by WEKA [5] which uses an MDL criterion
to optimally define bin interval sizes [7].

2 http://www.run.montefiore.ulg.ac.be/˜francois/software/jahmm/
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and ZeroR which outputs mere label frequencies in the training data, i.e. no object xi

information is used. Window sizes for each dataset were determined by maximising
auto-correlation and auto-covariance using correlograms [10]. The shift parameter f
(which describes how far into the future we would like to predict) for each dataset was
chosen to give an appropriate level of deviation between time epochs (on average ap-
proximately ±25% deviation). The learners were tested on 4 time series datasets in the
online learning setting, converting the data as detailed in Table 1.

The pHdata, spotexrates and darwin datasets are from the UCR public time
series data repository3. For the Emma text dataset4, each of the 6 window attributes
represent 28 possible characters (26 alphabet letters, full stop and space characters).
Rather than predicting 28 next possible characters, the task was simplified to 6 letter
groupings commonly used in cryptography studies{{a, t, n, o, r, i, s}, {b, g, p, y, w}, {c, d, h, l, f, m, u}, {j, k, q, v, x, z}, {e}, {’ ’, ’.’}}
5 Experimental Results

The results in Table 2 show the various performance scores of probability forecasts
output by standard learning algorithms and simple base learners (NegR and ZeroR)
when tested on the time series data. Although the error rates across all data are quite
high for the standard learners (greater than 18%), they do outperform the error rates
of the base learners indicating that learning has taken place on the data. In terms of
the reliability score (cf. 4), the base learner ZeroR performed very well. However, this
is because ZeroR is effectively estimating the unconditional probability of each label
Pr(y), instead of the conditional probability of each label Pr(y | x) on each object that
we desire.

We tested a variety of DW K-NN learners and Table 2 shows the performance
scores of probability forecasts when K = 1 and for the value of K that gave the best
overall performance. When K = 1 the error rate is generally lower than for other
values of K . This result supports other studies where 1-NN learners were found to be
good classifiers on time series data [11]. However, our results show that larger values
of K tend to give better performance in terms of reliability, ROC area and square loss.
This is because the estimates of the DW 1-NN are too extreme (close to zero or one),
whereas averaging over larger K gives more refined estimates.

Figure 1 shows the ERC plots of probability forecasts output by the HMM, C4.5
Decision Tree and Naive Bayes learners when tested on the pHdata chemical dataset.
The ERC plots for the Naive Bayes learner show the most obvious pattern of over-
and under-estimation of probability forecasts. For example, when Naive Bayes makes
a prediction with estimated probability 0.9, the empirical frequency of correct label
prediction is only 0.4 (over-estimation). In contrast when a prediction is made with es-
timated probability 0.1, the empirical frequency of correct label prediction is ≈ 0.28
(under-estimation). Over- and under-estimation of probability forecasts is made by the
C4.5 learner although to a much lesser extent. Probability forecasts made by the HMM

3 http://www.cs.ucr.edu/˜eamonn/TSDMA/index.html
4 Raw text downloaded from http://www.gutenberg.org/catalog/
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Fig. 1. ERC plots for HMM, C4.5 Decision Tree and Naive Bayes learners tested on the pH chem-
ical dataset. The solid diagonal line represents the line of calibration, where predicted probability
(horizontal) equals observed fraction of correct predictions (vertical). Under- and over-estimation
of probability forecasts are represented by the reliability curve (dashed line) deviating above and
below the line of calibration respectively.

are far more reliable, and this is indicated by the HMM’s respective ERC plot which is
tight to the line of calibration. These observations are also supported by the reliability
scores given on the same dataset in Table 2. The Neural Network and SVM learners
display mid-range performance across data but are the slowest and most computation-
ally intensive learners. This is because the particular implementations tested are not
incremental by design, and so suffer heavily when tested online.

The Naive Bayes learner’s probability forecasts perform the worst of all the stan-
dard learners tested, often performing worse than the base learners in terms of reliability
and square loss. This is probably because the assumption of independence of attributes
is invalid for time series data tested using our sliding window approach. We were un-
able to get results with the HMM learner on the Emma text dataset because the huge
(286 × 6) state space made effective computation on the relatively small data sample
(4994 examples) impossible. When tested on the pHdata and spotexrates data,
the HMM learner gave the most effective probability forecasts of all learners, whilst
still attaining the best classification accuracy. The good performance of the HMM on
the spotexrates financial data can be expected because many financial engineering
models (such as Black Scholes) have long assumed, and empirical studies have also
validated that price deviations of financial assets such as stocks and currency exchange
rates are roughly Gaussian [12]. However, when tested on the darwin dataset the
HMM gives probability forecasts of comparatively poor classification accuracy. Fur-
ther analysis with the darwin dataset demonstrates the important characteristics of
the reliability and resolution criteria [3]. Comparing the performance of the HMM and
Naive Bayes on the darwin dataset, HMM exhibits higher error rate (66.5% versus
48.2%) and ROC area (0.64 versus 0.79) but the reliability of the HMM learner is far
better than Naive Bayes (0.007 versus 0.024). This observation shows that good relia-
bility does not always follow from good classification accuracy and ROC area, as these
scores are often more related to the resolution criteria i.e. the forecasts rank labels effec-
tively. Interestingly, despite these differences between the probability forecasts of Naive
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Table 2. Performance of probability forecasts output by various machine learning algorithms
when tested on time series data in the online learning setting

Emma Text Data

Learner Error Reliability ROC Area Sqr Loss Time (secs)
NegR 83.68 0.025 0.494 0.891 0.98
ZeroR 59.632 0.004 0.475 0.741 3.56

Naive Bayes 51.502 0.008 0.721 0.663 23.06
DW 1-NN 46.796 0.023 0.736 0.739 15.15
DW 5-NN 50.34 0.007 0.723 0.648 15.44

C4.5 44.393 0.011 0.756 0.636 939
Neural Network 51.343 0.007 0.714 0.649 11458.32

PC LR SVM 52.503 0.014 0.699 0.729 71586.18
HMM - - - - -

pH Chemical Data

Command Error Reliability ROC Area Sqr Loss Time (secs)
NegR 75.088 0.028 0.505 0.824 0.59
ZeroR 75.088 0.016 0.612 0.752 0.91

Naive Bayes 52.637 0.052 0.735 0.876 22.97
DW 1-NN 35.610 0.042 0.711 0.706 4.73
DW 9-NN 43.144 0.016 0.808 0.568 4.81

C4.5 31.090 0.029 0.841 0.533 591.67
Neural Network 37.820 0.017 0.841 0.531 6375.66

PC LR SVM 48.016 0.019 0.764 0.633 6999.74
HMM 18.282 0.009 0.914 0.327 18

Spot Exchange Rate Data

Learner Error Reliability ROC Area Sqr Loss Time (secs)
NegR 75.059 0.029 0.500 0.827 1.41
ZeroR 75.334 0.010 0.542 0.752 2.52

Naive Bayes 64.140 0.066 0.621 1.123 370.74
DW 1-NN 27.651 0.032 0.808 0.549 71.22
DW 2-NN 34.289 0.024 0.830 0.516 70.81

C4.5 45.837 0.049 0.722 0.831 16436.29
Neural Network 43.873 0.023 0.777 0.631 221513.64

PC LR SVM 61.626 0.012 0.639 0.723 27658.76
HMM 25.727 0.004 0.876 0.412 213.69

Darwin Climate Data

Learner Error Reliability ROC Area Sqr Loss Time (secs)
NegR 79.870 0.019 0.499 0.867 0.46
ZeroR 83.189 0.008 0.450 0.803 0.66

Naive Bayes 48.268 0.024 0.797 0.762 13.35
DW 1-NN 58.153 0.044 0.642 1.136 3.76

DW 10-NN 47.980 0.008 0.806 0.619 3.5
C4.5 53.463 0.029 0.700 0.885 257.41

Neural Network 47.835 0.007 0.811 0.619 5264.13
PC LR SVM 47.835 0.007 0.806 0.629 4651.11

HMM 66.522 0.007 0.641 0.762 8.08
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Bayes and HMM, both learner’s forecasts make the same square loss on the darwin
data. This is because square loss measures a mixture of the resolution and reliability cri-
teria [4]. So in effect the differences between both performance criteria for the HMM
and Naive Bayes learners cancel one another out to give the same square loss. The
HMM learner’s relatively poor performance on the darwin data could be attributed to
the assumption that the objects xi are drawn from a multi-variate Gaussian distribution,
whereas other standard learning techniques make much weaker i.i.d assumptions about
the data’s probability distribution and so perform better.

6 Discussion

This study has shown that standard learning techniques can be used to generate effective
probability forecasts on time series data in the online learning setting. The main findings
are as follows:

– Traditional machine learning techniques, namely K-NN, Neural Network, SVM
and C4.5, can be a viable alternative to the classical time series analysis technique
of HMM, perhaps because they are able to exploit the geometric representation of
the problem, and are not restricted to parametric assumptions (such as Gaussian).

– The probability forecasts of the HMM can outperform those of the other standard
learning techniques, perhaps when the data windows are roughly Gaussian.

– The Naive Bayes learner demonstrates poor performance for time series data proba-
bility forecasting. Despite reasonable classification accuracy, the Naive Bayes prob-
ability forecasts are unreliable. This is probably because the Naive Bayes learner
invalidly assumes independence of attributes in the sliding window data.

We believe there is much scope for further research. For example, one could investigate
various commonly used meta-learning techniques such as Boosting and Bagging which
primarily improve classification accuracy [5]. In addition, one could investigate newly
developed meta-learning techniques such as Defensive Forecasting [13], which makes
no assumption about probability distributions, and Probing [14] which has the useful
guarantee that improvement in accuracy is matched with an improvement in reliability.
Preliminary research into these meta-learners has indicated significant improvement in
accuracy and reliability of probability forecasts. It may also be fruitful to investigate
further distance metrics (such as Dynamic Time Warping [15]) and different kernels
[9], however this additional complexity would not be suitable unless more efficient
incremental versions of algorithms such as SVM and Neural Networks were tested [16].
Further, it may be interesting to investigate a possible correlation between the type of
time series data and the performance of the learner used for classification. This may
identify learners which are best suited for each data type prior to analysis.

We believe that the methodology presented in this study is practically useful for
many time series applications, especially where classification accuracy is not a prior-
ity. For example, imagine a financial application where the user may act upon a given
prediction by deciding when to invest in a commodity. If the user knows that the predic-
tions have been made by a reliable and reasonably accurate forecaster, they are then in
the position to wait for the most ideal situation to invest, i.e. when a desired prediction
has a highly emphatic probability forecast.
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Via E. Orabona 4, I-70125 Bari, Italy

delbuono@dm.uniba.it
2 Dipartimento di Matematica, Politecnico di Bari,

Via Amendola 126/B, I-70126 Bari, Italy
politi@poliba.it

Abstract. Collaborative filtering is a recent technique that recommends
products to customers using other users’ preference data. The perfor-
mance of a collaborative filtering system generally degrades when the
number of customers and products increases, hence the dimensionality
of filtering database needs to be reduced. In this paper, we discuss the
use of weighted low rank matrix approximation to reduce the dimen-
sionality of a partially known dataset in a collaborative filtering system.
Particularly, we introduce a projected gradient flow approach to compute
a weighted low rank approximation of the dataset matrix.

1 Introduction

Collaborative filtering represents a fundamental issue in the context of data
mining and knowledge discovery from data. Techniques related to this field of
research (also referred to as social information filtering or recommender system
designing) encourage the employment of partial information, collected about a
group of users, to predict the unknown tendencies of different users [1,6].

Recommender systems are largely spread in E-Commerce web-sites [7,11].
Particular recommender systems, for instance, are employed to suggest books to
customers, based on the pieces of information about books that other customers
purchase or like. Another specific recommender system helps customers in the
choice of a CD as gift, based on other CDs the recipient has appreciated in the
past. More generally, collaborative filtering (CF) can be reviewed as a mechanism
for analysing an incomplete dataset (organised into a particular matrix, which
will be referred to as rating matrix), in the attempt to determine the values of
missing data. Predictions of unknown entries can be performed on the basis of
a-priori knowledge or by adapting to the information collected by the passing of
time. In the first case the system will rely on the similarity degree which can be
assessed among the users’ profiles, with the analysis of the answers furnished to
a number of preference questionnaires. On the other hand, predictions can be

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3686, pp. 45–53, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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grounded by assuming that whenever two users rate items in a similar way, they
share common preferences and, therefore, they will prize new items likewise [6].

Nevertheless, two main problems undermine the performance of a collab-
orative filtering system: (i) the dimensionality of the filtering dataset, rising
with the increasing number of customers and products, (ii) the sparseness of
the matrix dataset. It should be noted that the term sparseness is not used
here in the matrix linear algebra sense, but it indicates that many entries in
the rating matrix are unknown, since the items are not rated by all users.

Singular Value Decomposition (SVD) is a powerful tool, frequently used in
the more general context of Latent Semantic Indexing to reduce the dimension-
ality of the rating matrix and to identify latent factors in the data [2,4,12]. The
employment of the SVD technique has been suggested in [3] and [6] for comput-
ing a low rank matrix approximation to be used as a pre-processing step in a
recommender system. Particularly, the CF problem is treated as a classification
task (with two classes) and the original rating matrix is discretised into a binary
matrix, whose dimensionality is reduced by the SVD. This pre-processing stage
is then used to obtain suitable input data for a feed-forward neural network [3]
or a clustering algorithm [6], in order to learn the preferences and to predict rate
values for new items. In a web mining context, SVD is adopted to reduce the
dimensionality of a Boolean matrix, to recommend web pages [8]. In [10], low
rank matrix approximation is computed via SVD, using the MovieLens dataset,
after a pre-processing step where missing values are firstly replaced by the aver-
age values of available users’ ratings of movies. A further application of SVD can
be found in [9], where a SVD-based collaborative filtering is applied to ensure
users’ privacy and to provide accurate predictions in a E-Commerce application.

In this paper, we propose a peculiar approach, based on a weighted low
rank approximation of the dataset matrix, to solve the two previously delin-
eated problems connected to a recommender system. Particularly, in order to
deal with missing entries in the dataset matrix, we suggest the use of a weight
matrix with the employment of two-values weights for referring to each observed
and unobserved entry. Moreover, to address the dimensionality issue, we adopt a
projected gradient flow approach to compute a continuous weighted low rank ap-
proximation. The paper is organized as follows. In the next section, we formalise
the problem in a linear algebra context, briefly reviewing some concepts con-
nected with the singular value decomposition, and introducing the weighted low
rank approximation associated to a CF problem. Then, we suggest the employ-
ment of the projected gradient flow system to obtain a solution for the weighted
low rank problem. In section 4, we report the obtained results related to a par-
ticular numerical example. Finally, some conclusive remarks and guidelines for
future work are sketched in section 5.

2 Weighted Low Rank Approximation of the Rating
Matrix

A collaborative filtering problem can be modelled within the framework of a
general problem of matrix approximation as follows. Let us represent an initial
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dataset as a matrix A ∈ R
n×m, with rows corresponding to users, columns

referring to items and each element aij indicating the rating assigned by the user i
to the item j. The problem consists in deriving an approximation matrix Ak, with
reduced rank k, which can be used to properly predict missing entries in A. Low
rank matrix approximations of A ∈ R

n×m, with respect to the Frobenius and the
Euclidean norm, can be easily obtained using the Singular Value Decomposition
(SVD):

A = USV � =
r∑

i=1

σiuiv�
i ,

where U ∈ R
n×n, V ∈ R

m×m are orthogonal matrices (U�U = In and V �V =
Im, being Ip the identity matrix of dimension p), S ∈ R

n×m is a diagonal matrix
with nonnegative entries σ1 ≥ σ2 ≥ . . . ≥ σr > 0 and r is the rank of A
(r ≤ min{m, n}). For any k between 1 and r we can formalise the low rank
approximation problem as:

min
rank(X)=k

‖A − X‖ = ‖A − Ak‖ (1)

where Ak =
∑k

i=1 σiuiv�
i is the k−th truncated SVD of A and ‖ · ‖ denotes

the Euclidean or the Frobenius norm. Even if the SVD plays a relevant role in
solving (1), it requires to deal with a complete target matrix A. Unfortunately,
this scenario seldom occurs in the collaborative filtering context, where the ma-
jority of the elements in A are unobserved, since each user typically rates only a
reduced subset of the ensemble of items. In order to reduce the dimensionality
of the rating matrix A, by computing its best rank k approximation, we proceed
by reformulating the CF problem as a weighted low rank approximation task.
Particularly, we define the nonempty subset of indexes

∅ �= N ⊂ {(i, j) ∈ N × N|1 ≤ i ≤ m, 1 ≤ j ≤ n} ,

such that, for any (i, j) ∈ N , the corresponding element aij of the rating matrix
A is known. Additionally, we define the following pseudonorm:

‖A‖∗ =
∑

(i,j)∈N

a2
ij . (2)

The problem (1) is equivalent to finding a rank k matrix Xk, such that

‖A − Xk‖∗ = min
rank(X)=k

‖A − X‖∗. (3)

A weight matrix W ∈ R
m×n can be adopted to weight the matrix A by means of

the coefficient values 1 and 0, corresponding to the known and unknown elements
of A, respectively:

wij =

⎧⎨⎩
1 (i, j) ∈ N

0 (i, j) �∈ N
(4)
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Consequently, it can be easily proved that (2) is equivalent to: ‖A‖∗ = ‖W ◦A‖F

and (3) corresponds to:

‖A − Xk‖∗ = ‖W ◦ (A − Xk)‖F = min
rank(X)=k

‖W ◦ (A − X)‖F ,

where W ◦ B denotes the entrywise multiplication of W with B.
The weighted low rank approximation task associated to a CF problem can

be summarised as follows. Given the rating matrix A ∈ R
n×m (describing the

CF problem) and the non negative weight matrix W ∈ R
n×m
+ defined in (4), find

the rank k matrix Xk, that minimises the weighted Frobenius distance:

min
rank(X)=k

‖W ◦ (A − X)‖F = ‖W ◦ (A − Xk)‖F (5)

Therefore, we will refer to the matrix Xk as the weighted rank k approximation
of A.

3 The Gradient Flow Approach

Once the CF problem has been reformulated as a weighted low rank approxi-
mation task, we can compute the matrix Xk by adopting the projected gradient
flow approach, whose limiting solutions stand as an approximation of Xk. Here
we briefly summarise the main steps of the gradient flow technique, addressing
the reader to [5] for a complete description of the overall approach. By repre-
senting the matrix X in (5) via the parameters (U, S, V ) of its singular value
decomposition, we have to minimise the following functional:

F (U, S, V ) := 〈W ◦ (A − USV �), W ◦ (A − USV �)〉, (6)

subject to the conditions that U ∈ Stn,k, S ∈ R
k, and V ∈ Stm,k, where Stp,k

(for p = n, m) denotes the Stiefel manifold (the group of all real matrices of di-
mension p×k with orthonormal columns), and 〈·, ·〉 indicates the Frobenius inner
product on matrices1. The main steps of the projected gradient flow technique
are:

1. Compute the gradient of the objective function F in the space R
n×k ×R

k ×
R

m×k, that is ∇F (U, S, V ) = (∂F
∂U , ∂F

∂S , ∂F
∂V ), where

∂F
∂U = (W ◦ (A − USV �))V S, ∂F

∂V = (W� ◦ (A� − V SU�))US

∂F
∂S = diagk

(
U�(W ◦ (A − USV �))V

)
;

2. Evaluate the projections PStn,k
(∂F

∂U ) onto the tangent space of Stn,k and
PStm,k

( ∂F
∂V ) onto the tangent space of Stm,k;

1 We use the notation S ∈ R
k for the diagonal matrix in R

n×m whose first k diagonal
entries correspond to the values in S.
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3. Solve the dynamical system:

dU

dt
= −PSt(n,k)

(
∂F

∂U

)
,

dS

dt
= −∂F

∂S
,

dV

dt
= −PSt(m,k)

(
∂F

∂V

)
. (7)

At the end of the overall process, the approximation Xk is equal to the product
of the limiting solutions of (7), that is: Xk = U∞S∞V �

∞ .
When the limiting solution of (7) has been reached, the two resultant matrices

U∞S1/2
∞ S1/2

∞ V �
∞

can be used to compute the recommendation score for any user i and item j. It
should be pointed out that the dimension of U∞S

1/2
∞ is n× k and the dimension

of S
1/2
∞ V �

∞ is k×m. Hence, to compute the prediction we simply need to evaluate
the dot product of the i-th row of U∞S

1/2
∞ and the j-th column of S

1/2
∞ V �∞ .

4 Numerical Examples

The aim of this section is to present a twofold evaluation of the proposed contin-
uous weighted low rank approximation technique (CWLRA). On the one hand,
we are going to demonstrate the effectiveness of our approach by considering a
matrix reconstruction example. On the other hand, we will report the results
of the experimental evaluation of our technique when applied on a well known
collaborative filtering task.

Matrix reconstruction example. Assigned a matrix A ∈ R
n×m, with n =

100 and m = 25, we want to find its best weighted low rank-k approximation,
exploiting a weight matrix W , with growing number of entries equal to 0 (i.e.,
when the cardinality of N is increased).

We solved the dynamical system in (7) using the ode113 Matlab solver; the
projections on the Stiefel manifolds have been obtained by the modified Gram-
Schmidt algorithm. Figure 1 plots the errors on the data matrix. In the figure, the
solid line indicates the maximum error on the unknown entries of A, evaluated by
max(i,j)∈N |aij − xij |. The dashed line shows the error behaviour on the known
entries of A, computed by max(i,j)∈Nc |aij − xij |, being N c the complementary
set of N , with respect to the set K = {(i, j)|1 ≤ i ≤ n, 1 ≤ j ≤ k}). Finally, the
dash-dotted line points out the maximum modulus of a selected element of the
matrix A − W ◦ X .

It can be observed that, even if the error values appear to oscillate at the
beginning of the integration, when |N | ≥ 6 the error on known data converges
to zero. This peculiar behaviour demonstrates that the proposed approach is
able to predict known data with a good degree of accuracy. Moreover, the error
on unknown data tends to stabilise, while the global error reaches a limit point
independently from the number of missing data. This characteristic behaviour
occurred also in a number of additional experimental simulations we have carried
on. (which have not been reported here, due to limited space).
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Fig. 1. Error values obtained by employing the computed weighted low rank approxi-
mation Xk

Collaborative filtering task. We illustrate the behaviour of the proposed ap-
proach to deal with a well known benchmark dataset for CF: the Jester dataset
[6]. The Jester dataset collects the ratings (continuous values in the interval
[-10,10]) that users assigned at some jokes of a set of one hundred jokes (the
average number of ratings per user is equals to 46). We analysed a subset of
1000 Jester data, randomly selected, containing the core set of 10 jokes (rated
by all users) and extended with other 10 jokes.

We compared the results obtained using the continuous weighted low rank
approximation (CWLRA) technique with those obtained using a SVD factoriza-
tion of the data matrix, where unobserved values were replaced with zeros [12].
We use the Normalized Mean Absolute Error (NMAE) for comparing the nu-
merical recommendation scores against the actual user ratings for the user-rate
pairs in the dataset. Denoting by xij the prediction for how the user i will rate
the item j, the MAE for the user i is

MAEi =
1

N c

Nc∑
j=1

|aij − xij |.

The MAE for the entire set of users is the mean MAE on the total number
of users (i.e., MAE = 1/n

∑n
i=1 MAEi) and the Normalized Mean Absolute

Error is
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Fig. 2. NMAE as a function of the rank of the approximation

NMAE =
MAE

maxij aij − minij aij
.

Figure 2 shows the behaviour of the NMAE when the rank of the approxima-
tion matrix increases for both the SVD technique (dotted line) and the CWLRA
method (solid line). It should be noted that the results indicate that the CWLRA
method performs better than the computation of the truncated SVD on a mod-
ified (filled with zeros) data matrix. Figure 3 illustrates the behaviour of the
objective function (6) during the numerical solution of Jester CF problem for
fixed rank K = 8; a similar behaviour occurred all values of rank of the approx-
imation matrix.

5 Conclusive Remarks

In this paper we have proposed a continuous method to compute a weighted low
rank approximation of a rating matrix, in the context of a collaborative filtering
problem. Actually, the employed technique significantly differs from other kinds
of approaches present in literature. In fact, the majority of the suggested mech-
anisms commonly deal with missing data by replacing them with zero values
[1] or average values [6,10]. Successively, the computation of the truncated SVD
is performed with a priori fixed rank, in order to reduce the problem dimen-
sionality. Our approach, instead of modifying the matrix dataset, introduces a
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Fig. 3. Behaviour of the objective function for the approximation with rank = 8

weight matrix to deal with missing values. Moreover, bearing in mind that we
adopted a continuous technique, based on the solution of a dynamical system,
additional feature information can be obtained for the approximation matrix:
this represents a clear advantage when comparing our approach with other stan-
dard methods.

The obtained results are encouraging for further investigations; the applica-
tion of the developed technique over real-world datasets represents one of the
topics for our ongoing research activity. Furthermore, future work could be ad-
dressed to extend the proposed approach in order to obtain weighted low rank
approximation of a data matrix possessing normalised data (namely, with rows
or columns possessing unitary 2-norm).
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Abstract. In this paper an intrusion detection algorithm based on GP
ensembles is proposed. The algorithm runs on a distributed hybrid multi-
island model-based environment to monitor security-related activity
within a network. Each island contains a cellular genetic program whose
aim is to generate a decision-tree predictor, trained on the local data
stored in the node. Every genetic program operates cooperatively, yet in-
dependently by the others, by taking advantage of the cellular model to
exchange the outmost individuals of the population. After the classifiers
are computed, they are collected to form the GP ensemble. Experiments
on the KDD Cup 1999 Data show the validity of the approach.

1 Introduction

The extensive use of Internet and computer networks, besides the known advan-
tages of information exchange, has provided also an augmented risk of disruption
of data contained in information systems. In the recent past, several cyber at-
tacks have corrupted data of many organizations creating them serious problems.
The availability of Intrusion Detection Systems(IDS), able to automatically scan
network activity and to recognize intrusion attacks, is very important to protect
computers against such unauthorized uses and make them secure and resistant
to intruders. The task of an IDS is, in fact, to identify computing or network
activity that is malicious or unauthorized. Most current Intrusion Detection Sys-
tems collect data from distributed nodes in the network and then analyze them
centrally. The first problem of this approach is a security and privacy prob-
lem due to the necessity of transferring data. Moreover, if the central server
becomes the objective of an attack, the whole network security is quickly com-
promised.

In this paper an intrusion detection algorithm (GEdIDS, Genetic program-
ming Ensemble for Distributed Intrusion Detection Systems ), based on the en-
semble paradigm, that employs a Genetic Programming-based classifier as com-
ponent learner for a distributed Intrusion Detection System (dIDS), is proposed.

To run genetic programs a distributed environment, based on a hybrid multi-
island model [2] that combines the island model with the cellular model, is used.
Each node of the network is considered as an island that contains a learning
component, based on cellular genetic programming, whose aim is to generate a
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decision-tree predictor trained on the local data stored in the node. Every genetic
program, however, though isolated, cooperates with the neighboring nodes by
collaborating with the other learning components located on the network and
by taking advantage of the cellular model to exchange the outmost individuals
of the population.

A learning component employs the ensemble method AdaBoost.M2 [7] thus
it evolves a population of individuals for a number of rounds, where a round
is a fixed number of generations. Every round the islands import the remote
classifiers from the other islands and combine them with their own local clas-
sifier. Finally, once the classifiers are computed, they are collected to form the
GP ensemble. In the distributed architecture proposed, each island thus oper-
ates cooperatively yet independently by the others, providing for efficiency and
distribution of resources. This architecture gives significant advantages in scala-
bility, flexibility, and extensibility. To evaluate the system proposed, experiments
using the network records of the KDD Cup 1999 Data [1] have been performed.
Experiments on this data set point out the capability of genetic programming
in successfully dealing with the problem of distributed intrusion detection.

Genetic Programming for intrusion detection has not been explored very
much. Some proposals can be found in [11,9,8].

The paper is organized as follows. The next section introduces the genetic
programming based ensemble paradigm for distributed IDS and describes the
distributed programming environment proposed. Section 3 presents the results
of experiments.

2 GP Ensembles for dIDS

Ensemble is a learning paradigm where multiple component learners, also called
classifiers or predictors, are trained for a same task by a learning algorithm,
and then combined together for dealing with new unseen instances. Ensemble
techniques have been shown to be more accurate than component learners con-
stituting the ensemble [4,10], thus such a paradigm has become a hot topic in
recent years and has already been successfully applied in many application fields.

In this paper such a paradigm has been adopted for modelling distributed
intrusion detection systems and the suitability of genetic programming (GP) as
component learner has been investigated. The approach is based on the use of co-
operative GP-based learning programs that compute intrusion detection models
over data stored locally at a site, and then integrate them by applying a majority
voting algorithm. The models are built by using the local audit data generated on
each node by, for example, operating systems, applications, or network devices
so that each ensemble member is trained on a different training set.

The GP classifiers cooperate using a multi-island model to produce the en-
semble members. Each node is an island and contains a GP-based learning com-
ponent extended with the boosting algorithm AdaBoost.M2 [7] whose task is to
build a decision tree classifier by collaborating with the other learning compo-
nents located on the network. Each learning component evolves its population for
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Given a network constituted by P nodes, each having a data set Sj

For j = 1, 2, . . ., P (for each island in parallel)
Initialize the weights associated with each tuple
Initialize the population Qj with random individuals

end parallel for
For t = 1,2,3, . . ., T (boosting rounds)

For j = 1, 2, . . ., P (for each island in parallel)
Train cGP on Sj using a weighted fitness
according to the weight distribution
Compute a weak hypothesis

end parallel for
Exchange the hypotheses among the P islands
Update the weights

end for t

Output the hypothesis

Fig. 1. The GEdIDS algorithm using AdaBoost.M2

a fixed number of iterations and computes its classifier by operating on the local
data. Each island may then import (remote) classifiers from the other islands
and combine them with its own local classifiers to form the GP ensemble.

In order to run GP ensembles a distributed computing environment is re-
quired. We use dCAGE (distributed Cellular Genetic Programming System) a
distributed environment to run genetic programs by a multi-island model, which
is an extension of [6]. An hybrid variation of the classic multi-island model, that
combines the island model with the cellular model, has been implemented.

The Island model is based on subpopulations, that are created by dividing the
original population into disjunctive subsets of individuals, usually of the same
size. Each subpopulation can be assigned to one processor and a standard (pan-
mictic) GP algorithm is executed on it. Occasionally, migration process between
subpopulations is carried out after a fixed number of generations. The hybrid
model modifies the island model by substituting the standard GP algorithm with
a cellular GP (cGP) algorithm [6]. In the cellular model each individual has a spa-
tial location, a small neighborhood and interacts only within its neighborhood.
The main difference in a cellular GP, with respect to a panmictic algorithm,
is its decentralized selection mechanism and the genetic operators (crossover,
mutation) adopted.

In dCAGE, to take advantage of the cellular model of GP, the cellular islands
are evolved independently, and the outmost individuals are asynchronously ex-
changed so that all islands can be thought as portions of a single population.
dCAGE distributes the evolutionary processes (islands) that implement the de-
tection models over the network nodes using a configuration file that contains the
configuration of the distributed system. dCAGE implements the hybrid model
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as a collection of cooperative autonomous islands running on the various hosts
within an heterogeneous network that works as a peer-to-peer system. Each
island, employed as a peer IDS, is identical to each other except one that is
supposed to be the collector island. The collector island is in charge of collecting
the GP classifiers from the other nodes, handling the fusion of results on behalf
of the other peer IDS, and to redistribute the GP ensemble for future predictions
to all network nodes. Respect to the other islands, it has some more duties for
administration. The configuration of the structure of the processors is based on
a ring topology.

The pseudo-code of the algorithm is shown in figure 1. Each island is furnished
with a cGP algorithm enhanced with the boosting technique AdaBoost.M2, a
population initialized with random individuals, and operates on the local au-
dit data weighted according to a uniform distribution. The selection rule, the
replacement rule and the asynchronous migration strategy are specified in the
cGP algorithm. Each peer island generates the GP classifier iterating for a cer-
tain number of iterations necessary to compute the number of boosting rounds.
During the boosting rounds, each classifier maintains the local vector of the
weights that directly reflect the prediction accuracy on that site. At each boost-
ing round the hypotheses generated by each classifier are stored and combined
in the collector island to produce the ensemble of predictors. Then the ensemble
is broadcasted to each island to locally recalculate the new vector of the weights.
After the execution of the fixed number of boosting rounds, the classifiers are
used to evaluate the accuracy of the classification algorithm for intrusion detec-
tion on the test set.

Genetic programming is used to inductively generate a GP classifier as a de-
cision trees for the task of data classification. Decision trees, in fact, can be inter-
preted as composition of functions where the function set is the set of attribute
tests and the terminal set are the classes. The function set can be obtained by
converting each attribute into an attribute-test function. For each attribute A, if
A1, . . . An are the possible values A can assume, the corresponding attribute-test
function fA has arity n and if the value of A is Ai then fA(A1, . . . An) = Ai.
When a tuple has to be evaluated, the function at the root of the tree tests the
corresponding attribute and then executes the argument that outcomes from
the test. If the argument is a terminal, then the class name for that tuple is
returned, otherwise the new function is executed. The fitness is the number of
training examples classified in the correct class. The Cellular genetic program-
ming algorithm (cGP ) for data classification has been proposed in [5] and it is
described in figure 2. At the beginning, for each cell, the fitness of each indi-
vidual is evaluated. Then, at each generation, every tree undergoes one of the
genetic operators (reproduction, crossover, mutation) depending on the proba-
bility test. If crossover is applied, the mate of the current individual is selected as
the neighbor having the best fitness, and the offspring is generated. The current
tree is then replaced by the best of the two offspring if the fitness of the latter
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Let pc, pm be crossover and mutation probability
for each point i in the population do in parallel

evaluate the fitness of ti

end parallel for
while not MaxNumberOfGeneration do

for each point i in the population do in parallel
generate a random probability p
if (p < pc)

select the cell j, in the neighborhood of i,
such that tj has the best fitness
produce the offspring by crossing ti and tj

evaluate the fitness of the offspring
replace ti with the best of the two offspring
if its fitness is better than that of ti

else
if ( p < pm + pc) then

mutate the individual
evaluate the fitness of the new ti

else
copy the current individual in the population

end if
end if

end parallel for
end while

Fig. 2. The algorithm cGP

is better than that of the former. The evaluation of the fitness of each classifier
is calculated on the entire training data. After the execution of the number of
generations defined by the user, the individual with the best fitness represents
the classifier.

3 System Evaluation and Results

3.1 Data Sets Description

Experiments over the KDD Cup 1999 Data set [1] have been performed. This
data set comes from the 1998 DARPA Intrusion Detection Evaluation Data and
contains a training data consisting of 7 weeks of network-based intrusions in-
serted in the normal data, and 2 weeks of network-based intrusions and normal
data for a total of 4,999,000 connection records described by 41 characteristics.
The main categories of intrusions are four: Dos (Denial Of Service), R2L (unau-
thorized access from a remote machine), U2R (unauthorized access to a local
superuser privileges by a local unprivileged user), PROBING (surveillance and
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Table 1. Class distribution for training and test data for KDDCUP 99 dataset

Normal Probe DoS U2R R2L Total

Train 97277 4107 391458 52 1126 494020
Test 60593 4166 229853 228 16189 311029

probing). However a smaller data set consisting of the 10% the overall data set
is generally used to evaluate algorithm performance. In this case the training set
consists of 494,020 records among which 97,277 are normal connection records,
while the test set contains 311,029 records among which 60,593 are normal con-
nection records. Table 1 shows the distribution of each intrusion type in the
training and the test set.

3.2 Performance Measures

To evaluate our system, besides the classical accuracy measure, the two standard
metrics of detection rate and false positive rate developed for network intrusions,
have been used. Table 2 shows these standard metrics. Detection rate is com-
puted as the ratio between the number of correctly detected intrusions and the
total number of intrusions, that is DR = #TruePositive

#FalseNegative+#TruePositive . False
positive ( also said false alarm) rate is computed as the ratio between the num-
ber of normal connections that are incorrectly classifies as intrusions and the
total number of normal connections, that is FP = #FalsePositive

#TrueNegative+#FalsePositive .
These metrics are important because they measure the percentage of intrusions
the system is able to detect and how many misclassifications it makes. To visu-
alize the trade-off between the false positive and the detection rates, the ROC
(Receiving Operating Characteristic) curves are also depicted. Furthermore, to
compare classifiers it is common to compute the area under the ROC curve,
denoted as AUC [3]. The higher the area, the better is the average performance
of the classifier.

Table 2. Standard metrics to evaluate intrusions

Predicted label
Normal Intrusions

Actual Normal True Negative False Positive
Class Intrusions False Negative True Positive

3.3 Experimental Setup

The experiments were performed by assuming a network composed by 10 dual-
processor 1,133 Ghz Pentium III nodes having 2 Gbytes of memory. Both the
training set of 499,467 tuples and the test set of 311029 tuples have been equally
partitioned among the 10 nodes by picking them at random. Each node thus
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Table 3. Main parameters used in the experiments

Name Value

max depth for new trees 6
max depth after crossover 17

max mutant depth 2
grow method RAMPED

selection method GROW
crossover func pt fraction 0.7
crossover any pt fraction 0.1
fitness prop repro fraction 0.1

parsimony factor 0

contains 1/10 of the instances for each class. On each node we run AdaBoost.M2
as base GP classifier with a population of 100 elements for 10 rounds, each round
consisting of 100 generations. The GP parameters used where the same for each
node and they are shown in table 3. All the experiments have been obtained by
running the algorithm 10 times and by averaging the results. Each ensemble has
been trained on the train set and then evaluated on the test set.

3.4 Results and Comparison with Other Approaches

The results of our experiments are summarized in table 4, where the confusion
matrix obtained on the test set by averaging the 10 confusion matrices coming
from 10 different executions of GEdIDS is showed. The table points out that
the prediction is worse on the two classes U2R and R2L. For this two classes,
however, there is a discrepancy between the number of instances used to train
each classifier on every node and the number of instances to classify in the test
set. Table 5 compares our approach with the first and second winner of the KDD-
99 CUP competition and the linear genetic programming approach proposed by
Song et al. [11]. The table shows the values of the standard metrics described

Fig. 3. ROC curves
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Table 4. Confusion matrix (averaged over all tries) for dCage. Rows show the true
class, columns the predicted ones.

Normal Probe DoS U2R R2L

Normal 60250.8 200.2 110.8 15.4 15.8
Probe 832.8 2998.4 263.6 26.4 44.8
DoS 7464.2 465.0 221874.8 19.2 29.8
U2R 139.6 45.2 17.2 11.8 14.2
R2L 15151.4 48.6 232.4 173.8 582.8

Table 5. Comparison with kdd-99 cup winners and other approaches

Algorithm Detection Rate FP Rate ROC Area

Winning Entry 0.919445 0.005462 0,956991
Second Place 0.915252 0.005760 0,954746

Best Linear GP - FP Rate 0.894096 0.006818 0,943639
Avg GEdIDS 0.905812 0.005648 0.950082

Best GEdIDS - FP Rate 0.910165 0.004340 0.952912

above. In particular we show the detection rate, the false positive rate, and the
ROC area of these three approaches and those obtained by GEdIDS. For the
latter we show both the average values of the 10 executions and the best value
with respect to the false positive rate. From the table we can observe that the
performance of GEdIDS is comparable with that of the two winning entries and
better than Linear GP. In fact, the average and best GEdIDS detection rates
are 0.905812 and 0.910165, respectively, while those of the first two winners are
0.919445 and 0.915252. As regard the false positive rate the average value of
GEdIDS 0.005648 is lower than the second entry, while the best value obtained
0.004340 is lower than both the first and second entries. Thus the solutions found
by GEdIDS are very near to the winning entries, and, in any case, overcome
those obtained with linear GP. These experiments emphasizes the capability of
genetic programming to deal with this kind of problem. Finally figure 3 shows
an enlargement of the ROC curves of the methods listed in table 5 and better
highlights the results of our approach.

4 Conclusions

A distributed intrusion detection algorithm based on the ensemble paradigm
has been proposed and the suitability of genetic programming as a component
learner of the ensemble has been investigated. Experimental results show the
applicability of the approach for this kind of problems. Future research aims at
extending the method when considering not batch data sets but data streams
that change online on each node of the network.
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Abstract. Rapid developments in science and engineering are producing a pro-
found effect on the way information is represented. A new problem in pattern
recognition has emerged: new data forms such as trees representing XML docu-
ments and images cannot been treated efficiently by classical storing and search-
ing methods. In this paper we improve trie-based data structures by adding data
mining techniques to speed up range search process. Improvements over the
search process are expressed in terms of a lower number of distance calcula-
tions. Experiments on real sets of hierarchically represented images and XML
documents show the good behavior of our patter recognition method.

1 Introduction

Many applications dealing with XML documents and images describe each object by
the hierarchy of its features and the relations among its components [16]. For example,
in [9,6] in order to answer queries such as ”find all the pages containing the title adjacent
to an image”, trees describing the geometrical features of document pages are used (fig-
ure 1). Trees are also used in connection with applications on images archives [11,1,12],
XML documents [18] and natural language processing problems such as information re-
trieval in digital libraries [9]. An high level tree data model is less sensitive to distortion

Fig. 1. A MXY-tree [6] describing a document page. Notice that at root level the trie describes
the whole page whereas at node level the trie represents the different page paragraphs.
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and noise problems. Consequently, the continuously emerging searching techniques on
trees [2,16] can efficiently treat advanced pattern matching queries on such collections.
More precisely, searching in such structures may require finding exact or ”approximate”
tree and subtree matchings. One way to be precise on approximate searching between
trees is by defining distance functions [15,18,16] which assign costs to the operations
used to change one tree into the other. Depending on the tree structure, keytree search-
ing problems have complexity ranging from linear (P) to exponential (NP-complete)
on the tree size. In order to improve the query processing time, considerable research
efforts [10,3,4,7,8,13,16] have arisen to combine several sophisticated data structures
with approximate tree matching algorithms that work over generic metric spaces (FQ-
tree [3], VP-tree [7], MVP-tree [4], M-tree [8]). Another interesting technique is due
to Oflazer [13]. In such model, to retrieve trees whose distance from a given query is
below a given threshold, each tree is, in turn, coded as a sequence of paths from its
root to every leaf. The sequences of paths describing all the trees are compactly stored
in a trie. The trie data structure naturally provides a way to interrogate the database
with error tolerant and approximate queries. A strategy is to traverse the trie from the
root to the leaves. In this search it is possible to do an early pruning of a branch as
soon as it is seen that it leads to trees whose distance from the query exceeds the given
threshold. In [10] authors showed that the Oflazer distance is a metric and they speeded
up the above searching method using the triangular property of the distance function
in connection with a saturation technique. This unfortunately required a quadratic pre-
processing time in order to compute all pairwise distances. In this paper we improve
the trie-based data structures in [13] by adding a clustering information to speed up
the approximate search process. This approach avoids the computation of all pairwise
distances and thus it is suitable for applications in which such preprocessing time is not
admissible. We compare our proposed method with the method in [13]. Experiments on
real data sets of hierarchically represented images and XML documents show the good
behavior of our data structure.

The paper is organized as follows. In section 2 we review the Trie data structure
construction together with the searching process. In section 3 we describe our new
advanced Clusterd Trie structure with its advanced searching strategy. In section 4 we
present experimental results and comparisons. Section 5 ends the paper.

2 Trie Structure Construction and Searching

We use a Vertex List Sequence [13] as a data structure to represent each tree in the
collection. This structure is a sequence of lists. There are as many lists in this sequence
as leaves in the tree. Each list contains the ordered sequence of vertices in the unique
path from the root to the corresponding leaf (see figure 2 for an example of two tries
from DB Stamps [10] with their relative vertex list sequences). The set of vertex list
sequences representing the whole database of objects is converted into a trie structure
[13,10]. Such a data structure will compress redundancies in the prefixes of the vertex
list sequences to achieve a compact data structure.

Following [13,10], the distance between two trees is defined, taking into account
structural differences and label differences. Let C be the cost for every different label
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Fig. 2. An example of two tries from DB Stamps [10] with the associate Vertex List Sequences

and S the cost for a structural difference. The distance between two trees is the mini-
mum cost of leaves or branches insertions, deletions, or leaf labels changes necessary
to change one tree into the other. The two trees of figure 2, with C=1 and S=2 have a
distance of 3 because they differ for a label name ((V, 2) in the first trie and (V, 1) in the
second) plus the structural difference of the leaf node labelled (V, S, T, S). The setting
for an appropriate value for C and S depends on the given application. Then, given an
input trie T, a query object Q and a similarity threshold t we want to retrieve from T all
the trees that match Q according to the parameters C and S. Standard searching within
a trie corresponds to traversing a path starting from the root node, to one of the leaves,
so that the concatenation of the labels on the arcs along this path matches the input
query tree. To efficiently perform the search, paths in the trie that lead to no solutions
have to be pruned early so that the search is bound to a very small portion of the data
structure. The search proceeds, depth first, down the trie, computing the similarity dis-
tance between subsequences of the query and the partial sequences obtained chaining
together the labels of the nodes of the trie that have been visited so far. Such a distance
is formalized in the concept of cutoff distance (see [13,10] for details).

3 Clustered Trie Structure

In our newly proposed method, before constructing the trie, we perform a preliminary
clustering of the input objects. We use the metric distance between trees given in [13,10]
and the cluster method given in [5]. The information concerning the distribution of the
elements in clusters are added in the trie. We call Clustered Trie Structure the trie data
structure merged with the cluster information. This allows us to slightly modify the trie
search process and to improve the performance during the searching. More precisely,
in order to cluster, we use the Antipole Clustering of bounded radius σ [5,14] which
is an indexing scheme designed to support range search queries and nearest neighbor
search queries in general metric spaces. The Antipole clustering performs by a recursive
top down procedure starting from a given finite set of points S (in our case a set of
trees) and checking at each step if a given splitting condition Φ is satisfied. If this
is not the case then splitting is not performed and the given subset is a cluster and
a centroid having distance approximatively less than σ from every other node in the
cluster is computed [14]. Otherwise if Φ is satisfied then a pair of points {A, B} of
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Fig. 3. Advanced Search Method. Case 1 - During the visit of the trie, the paths starting at node
n are pruned because the distance between a given query and the partial object (ending at node
n) exceeds the threshold. Moreover, since C2 is a centroid, the triangle inequality is applied to
the query and elements in C2 cluster are pruned (elements with blank dashed nodes are those
pruned by this step). Case 2 - The visit reaches the node m, which is a leaf, and its distance
with the query is within the threshold. Then, the object C1 is part of the output set. The triangle
inequality is also applied to the centroid C1. Elements of cluster C1 satisfying such property are
inserted into the output set (elements with × nodes are those in the output set). Note that all the
dashed nodes are not visited by the method because either they are pruned or are inserted into the
output set.

S called Antipole pair is generated and it is used to split S into two subsets SA and
SB (A ∈ SA and B ∈ SB) obtained by assigning each point of S to the subset
containing its closest endpoint of the Antipole pair {A, B}. Once the collection of trees
is clustered, the centroids of such clusters are marked and the trie is constructed by
inserting first centroids of the clusters and next all the remains elements.

3.1 The Advanced Search Method

In this section we will show an optimization of the basic standard search algorithm
discussed previously. This search is applied to the Clustered Trie Structure seen in sub-
section 2. Such an optimization is obtained by applying the triangle inequality property
of the used metric distance [10] into each obtained cluster. The improved search algo-
rithm proceeds as follows: a depth first search of the trie is performed starting from the
root of the trie until one of the two following cases arises:

1. When the visit reaches a node n, the similarity threshold t is exceeded: the trie
is hence pruned at node n and the search backtracks along other paths. If the node
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refers to a centroid, the pruning may be also performed on the branches of the trie
that refer to its cluster by using the triangle inequality.

2. A leaf m is reached within the similarity threshold: then, the corresponding object
M is part of the output set. In this case, if the object M is a centroid, a pruning of its
cluster is performed by applying the triangle inequality to all the unvisited portions
of the trie which corresponds to the cluster elements. Those elements which satisfy
the triangle inequality are inserted into the output set.

An example of both situations is shown in figure 3.
By using such an algorithm we are able to prune, with respect to the standard ba-

sic search, some branches of the trie earlier, avoiding distances computation and then
speeding up the running time.

4 Experiments

In this section we compare our method with a technique proposed in [13]. We report
the results of several comparisons performed on real databases of different sizes up to
5000 elements. We implemented both methods in standard ANSI C (GNU gcc compiler
V3.3.1) and we run all experiments on a PC Pentium III 900 Mhz with Linux Operating
System. We refer to [10] for comparison of the method in [13] with other distance
based index structures [3,4,7,8]. Concerning such a comparison, in [10] the authors
report good results.

4.1 Databases

We used the following three databases:

– The database DB Stamps [10] is a collection of 300 stamps. It has been obtained
with the help of a human expert. The expert’s intervention provided two actions:
first to help in choosing a suitable tree structure to store relevant features of each
stamp in the collection; second to obtain the actual trees describing the items. Ob-
serve that this step could be, in principle, completely automated provided that good
heuristic feature extraction techniques are available.

– The database DB Docs is provided by a research group of the University of Flo-
rence, Italy [9]. It contains 363 elements. Each element which is represented
by a MXY tree [6], describes structural and semantic properties of scanned old
documents.

– The third database DB XML [17] obtained by taking a relational biological database
(such as ensembl, biosql and chado databases) and converting the results of the
queries into XML format, performing the decomposition of the results into normal-
ized entities. We used the Swissprot database generating 5000 XML trees where
each tree contains on average eight leaves.
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4.2 Preprocessing and Results

The proposed approach requires a preprocessing phase to build the clustered-trie data
structure. The preprocessing may be done off line only once. This implies that the pro-
posed approach is best suited when many queries have to be performed on a database
where no upgrades are needed. In both cases, the time to construct the data structures
is linear on the average to size of the databases. We notice that in our approach the
amount of computation resources required by any query is mainly due to distance com-
putations. In figure 4 we report the performance of proposed method compared with
the one in [13] by measuring average number of distances computation per query using
various threshold values. We set the cost S of removing a branch of a tree equal to two
and the cost C of changing the label of a leaf equal to one. We also tried different values
for S and C and in all the cases the results were similar to the ones here showed. Table 1
reports the number of clusters discarded during a search and the number of elements
returned. Searching with success requires an average time of 0.20 seconds for the first
two databases and 20 seconds for the XML databases. We note that, in all the exper-
iments, searching with the largest threshold allows a number of branch substitutions
equal at most to half of the average size of the trees in the databases. Classical methods

Table 1. Results of the performed tests. PC is the number of pruned clusters. Results is the
number of elements returned form the range search query. Rc is the radius of the clusters in the
clustered-trie data structure.

NameDB Threshold PC Results Rc

DB Stamps 1 88% 1,27 3
14 50% 59,83 13

DB Docs 1 98% 0,53 3
14 87% 60,27 6

DB XML 1 96% 0,53 2
4 64% 2563 2

and strategies of clustering analysis can be applied to tuned the method in order to use
the best cluster radius according to the specific input set (these analysis is out of the
purpose of the paper). Experiments show that the improvement becomes relevant when
the threshold grows. For small thresholds the two methods have almost the same behav-
ior, this is due to the pruning step based on the cutoff distance. We recall that during a
partial visit of a branch we discard its subtree if the partial distance between the query
and the portion of visited branch exceeds the threshold value. For larger thresholds the
impact of the pruning step based on the cutoff distance is low effective.

On the other hand our proposed method first visits the centroid of a cluster and
applies the triangle inequality in order to prune earlier all the elements of the cluster.
We can notice that a cluster may be spread in several subtrees of the trie. This aspect
makes the technique more effective with respect to the one proposed by [13]. We can
also notice that the worst case running time to process a query in both approaches is
linear in the dimension of the database.
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Fig. 4. Comparison between the proposed method (named CTS) and the method (TS) in [13]. Fig-
ure reports the average computed distances per queries for DB Docs, Stamps and XML database,
for different threshold values.

5 Conclusions and Future Work

In this paper we showed how a preliminary clustering of the data in a collection of
structured objects such as images and documents speeds up the performance of a trie-
based searching technique. In order to use the best clustering radius for the given input
set, methods of clustering analysis are under study. Future research directions will also
investigate on secondary memory management of the clustered trie data structure, its
parallel implementation and its exention to k-nearest searching.
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Abstract. When combining classifiers in order to improve the classi-
fication accuracy, precise estimation of the reliability of each member
classifier can be very beneficial. One approach for estimating how con-
fident we can be in the member classifiers’ results being correct is to
use specialized critics to evaluate the classifiers’ performances. We intro-
duce an adaptive, critic-based confidence evaluation scheme, where each
critic can not only learn from the behavior of its respective classifier,
but also strives to be robust with respect to changes in its classifier.
This is accomplished via creating distribution models constructed from
the classifier’s stored output decisions, and weighting them in a manner
that attempts to bring robustness toward changes in the classifier’s be-
havior. Experiments with handwritten character classification showing
promising results are presented to support the proposed approach.

1 Introduction

In an attempt to improve pattern recognition performance, several approaches
can be taken. One approach often found beneficial is to combine the results of
several classifiers in the hope that the combination will outperform its members.
The basic operation of a committee classifier is to take the outputs of a set of
member classifiers and attempt to combine them in a way that improves ac-
curacy. As a committee merely combines the results produced by its members,
the member classifiers have a significant effect on the performance. The member
classifiers’ two most important features that affect the committee’s performance
are (i) their individual error rates, and (ii) the correlatedness of the errors be-
tween the members. The more different the mistakes made by the classifiers are,
the more beneficial the combination of the classifiers can be [1].

In order to combine the results as effectively as possible, one approach is to
obtain some measure of how confident we can be that a classifier is making a
correct prediction. Therefore, for combining classifiers in an intelligent way, it
would obviously be beneficial to be able to estimate the reliability of each clas-
sifier in an accurate fashion. One way of accomplishing this is to use a separate
classification unit to decide whether the classifier is correct or not. Schemes with
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separate experts for evaluating the classifiers’ reliability are often called critic-
driven models, as each classifier can be assigned a critic that provides a measure
of confidence in the classifier’s decisions. Critics themselves are specialized clas-
sifiers providing an estimate of how likely it is expected that the classifier in
question is correct. This prediction can be made based either only on the output
of the classifier or also on its inputs.

In pattern recognition the problem is basically to estimate the posterior prob-
abilities of the classes for a given input sample and to choose the class most
probably correct. However, estimating the true posterior probabilities is far from
simple in many cases, for example when using prototype-based classifiers. The
critic-driven approach is one method of attempting to produce accurate esti-
mates on how likely the classifiers are to be correct and thus which label should
be chosen. Also, it may be necessary to combine different types of classifiers, and
thus it is advantageous to pose as few requirements for the classifiers as possible.

Critic-driven approaches to classifier combining have been investigated pre-
viously, e.g. in a situation where the critic makes its decision based on the same
input data as the classifier [2] and in a case where scaling schemes and activa-
tion functions for critics were examined [3]. Most critic-driven schemes are static
in the sense that they have no memory of previous input samples. In general,
however, a classifier’s performance tends to be similar in similar situations, for
example for samples belonging to the same class. It could thus be beneficial to
take advantage of this by incorporating also information on the classifier’s prior
performance into the critic.

Conversely, also the classifier’s performance may change in time – for example
in the case of handwriting recognition the writer’s style may change due to a
different situation or we may encounter an entirely new writer. Therefore the
critic scheme should be capable of robustness also under changing conditions,
a trait somewhat suppressed by the desire to use all collected information for
the predictions. Thus it should be advantageous to find a balance between the
impact of the older and the more recent samples. In this paper, we propose an
approach where information on the classifier’s prior performance is used for the
critic’s decisions while incorporating a weighting scheme to focus on the most
recent samples in order to improve the robustness.

2 Adaptive Class-Wise Confidences

In most critic-driven schemes the critic bases its decisions on only the cur-
rent sample and the member classifiers’ outputs. However, the approach pre-
sented in this paper is based on our Class-Confidence Critic Combining (CCCC)
scheme [4], a model that attempts to learn continuously from the behavior of
the critic’s associated classifier. Each critic gives its estimate on the classifier’s
accuracy based not only on the classifier’s output to the sample at hand, but also
the classifier’s prior performance in similar situations. This enables the critic to
adapt to the performance of the particular classifier it has been assigned to.
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Learning the classifier’s performance will inevitably also make the critic less
robust to changes in the classifier’s behavior, as its evaluations are now by defini-
tion based also on the collected knowledge on the classifier’s prior performance.
To counter this, we in this paper expand the CCCC model further by introducing
weighting schemes to make the critics emphasize the most recent inputs. The
original model is also modified to produce confidence estimates for all classes
from each classifier for each input sample. The output of the combiner is then
selected from this array of confidences using one of the standard methods to be
presented in Section 2.5.

2.1 The Proposed Approach

In this paper we use prototype-based classifiers that calculate the input’s dis-
tance from the nearest prototype of each class. Each member classifier produces
a vector of distances, with one distance for each class, where a smaller distance
indicates a better match. These distances are stored in the critics which attempt
to model the distances’ distributions. Based on the current and modeled prior
distances for the same class, a confidence value is calculated by the critic. These
values are then used in deciding the committee’s final output. If the classifier is
not based on distances, any measure that decreases as similarity increases can be
used, or a native confidence-measure may be transformed into a distance for the
distribution estimates. For example, if we have a confidence measure t ∈ [0, 1],
we may simply use 1 − t as the distance.

Each time a new input sample is processed, it is classified by all member clas-
sifiers who calculate the smallest distance to each class. Each classifier’s critic
then produces an estimate on that classifier’s correctness based on the classi-
fier’s prior behavior for the same class and that particular input’s normalized
distances. The final output of the committee is decided from the classifier out-
puts and confidences obtained from the critics by using one of the combination
rules discussed below. After the correctness of the classification has been estab-
lished, the input is incorporated into the respective critic’s distribution model
to refine the estimate of the input data distribution. Additionally, weights are
used for the distance values stored in the distribution models and adjusted in
order to strive for more robust behavior with respect to changes in the classifier’s
performance.

2.2 Normalizing Distance Values Obtained from Classifiers

As such the distances produced by the member classifiers can be over a wide
range of numerical values and have no confidence interpretation on their own.
The distances computed in the classifiers may be normalized as follows.

Let there be K classifiers each calculating some type of distances and deciding
its output based on minimizing that distance measure. Let there be C pattern
classes. Each classifier may have p ≥ C prototypes to which the distance is
calculated, but at least one prototype for each class. Now let x be the input
sample, k the classifier index, k ∈ [1, . . . , K], and c the class index, c ∈ [1, . . . , C].
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From each classifier for each input we may find the shortest distance to the
nearest prototype of each class, dk

c (x) ∈ [0,∞].
In practice the classifiers should not produce an infinite distance if matching

to any prototype of that class is possible. But for example in the stroke-based
handwritten character classifiers used in the experiments presented in this paper,
the distance is defined to be infinite if the number of strokes is different in the
input and the prototype. Thus also the case of infinite distance should be taken
into account. We can now define normalized distances to be used in the critics’
distributions as

qk
c (x) =

{
dk

c (x)∑
C
i=1 d̂k

i (x)
, if dk

c (x) is finite

1 , otherwise
. (1)

d̂k
c (x) used in the summation equals dk

c (x) if dk
c (x) is finite and is otherwise

zero. However, if the distance to only one class is finite, the normalized distance
for that class is defined to be zero. If the distances are close to another, qk

c (x)
becomes relatively large, but if the distance to the nearest prototype is much
smaller than the others, the normalized value is notably smaller for that class.
If the prototype matches the input sample exactly, also the normalized distance
equals zero.

2.3 Distribution Types

In order to obtain confidences for decisions on previously unseen x, the values
qk
c (x) must be modeled somehow. The approach of gathering previous values into

distribution models from which the value for the confidence can be obtained as
a function of qk

c (x) has been chosen for this task.
One key point in the effectiveness of a scheme based on confidence values

calculated from distribution models is in the ease of creating and modifying
the models. The amount of data that is obtained from each distribution is quite
limited, and in a real situation may vary greatly between distributions due to the
fact that some classes occur more frequently than others. The methods should
therefore be capable of producing reliable estimates even with small amounts of
data. Kernel-based distribution estimates fulfill these requirements and two such
schemes have been experimented with and are explained below.

Let us first shorten the notation by using z ≡ qk
c (x). The confidence obtained

from the distribution i then stands as pi(qk
c (x)) = pi

c(z). The distribution model
i contains Ni previously collected values zi

j, j = 1, . . . , Ni. The weight assigned
to each sample of the critic is denoted with wi(zi

j). The distribution index i runs
over the distributions for each class c in each member classifier k.

Triangular kernel distribution model estimate: This distribution estimate
uses a triangular kernel function,

pi
Tri(z) =

1∑Ni

j=1 wi(zi
j)

Ni∑
j=1

wi(zi
j)max {0, (b − |z − zi

j |)} (2)

defined by the kernel bandwidth b, which is given as a parameter.
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Gaussian kernel distribution model estimate: The distribution is esti-
mated with a Gaussian function as the kernel. The kernel bandwidth b is used
as the variance for the Gaussian.

pi
Gauss(z) =

1∑Ni

j=1 wi(zi
j)

Ni∑
j=1

wi(zi
j)e

− (z−zi
j)2

2b . (3)

Both distribution models are initialized so that while no data points have been
collected, the confidence is evaluated as if one value of zero distance had been
obtained. The kernel bandwidth b is optimized from the training data.

2.4 Adapting the Critics

It is assumed that information on the correctness of earlier decisions can be
obtained and is available for adapting the critics. The first phase of adaptation
is the modification of the distribution models. The qk

c (x) values received from the
member classifiers are incorporated into the corresponding critic’s distribution
model if the classifier was correct. In practice this is done by appending the new
qk
c (x) value to the list of values for that distribution model.

Additionally, a weight is assigned with each distance value stored in the
critic’s distribution model to facilitate emphasizing newer inputs. For the sec-
ond phase of adaptation, the weights will be modified to obtain more robust
behavior. Three approaches to adjusting the weights of the sample points have
been experimented with, and a constant weighting scheme is used for reference.

Constant weights: The weight for each sample is constant, wi(zi
j) = 1 for all

zi
j. Weighting the samples equally is used as a reference to examine the benefits

of the proposed true weighting schemes.

Class-independent weights: The weights are initially set in an increasing
order by using an increasing counter (sample index) n(zi

j) scaled with a suitable
constant. If known beforehand, the total number of test samples N can be used
for the scaling factor to obtain the weights

wi(zi
j) =

n(zi
j)

N
. (4)

These weights do not depend on the distribution model the sample is inserted
into, so within each distribution there can be large differences in the weights.

Class-dependent weights: For each distribution, the weights are scaled lin-
early every time a new sample is inserted. As a result, each sample has weight
equal to the ratio of its index ni(z

j
i ) in that particular distribution model and

the total number of samples in that model, Ni,

wi(zi
j) =

ni(zi
j)

Ni
. (5)

This results in the first sample having the smallest weight of 1/Ni and the most
recent sample having the weight Ni/Ni = 1.
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Decaying weights: When a new sample is inserted to the distribution model,
the weights are recalculated to decrease in accordance with a decay constant λ
so that

wi(z
j
i ) = max{0, 1 − λ(Ni − ni(zi

j))}. (6)

Effectively the inverse of the decay constant λ states how many previous samples
the distribution “remembers” at any given time point, with the newest samples
being given the most weight.

2.5 Final Confidence and Decision Mechanisms

As the committee now has label information from the member classifiers and
the corresponding confidence values from the critics to work with, a scheme is
needed for combining them into the final result. The output of the committee is
the label of the class that it decides the input most likely belongs to. This label
should be deduced from the available information in an optimal manner.

The overall confidence uk
c (x) given by the critic k for the input x belonging

to class c is obtained from the corresponding distribution model by weighting
the confidence estimate with a running evaluation of the classifiers’ overall cor-
rectness rate. This rate p(classifier k correct) is obtained by tracking how many
times classifier k has been correct so far and dividing that by the total number
of samples classified. Hence the overall confidence is

uk
c (x) = pk

c (qk
c (x)) · p(classifier k correct). (7)

For the input sample x the decision schemes take the confidences in each label
uk

c (x) from the critics and attempt to form the best possible decision. As the
decision mechanisms, especially in the beginning, do not have very much infor-
mation to work on, a default rule is needed. The default rule here is to use the
result of the classifier ranked to be the best on the member validation database.
This default rule is applied if no critic suggests a result or several results have
exactly the same confidence value.

The effectiveness of the decision scheme is naturally a very important factor
in the overall performance of a classifier combination method. It has been often
found that in a setting where confidences for all labels can be obtained and
the most likely one should be chosen, four basic ways of combining confidences,
the sum, product, min and max rules, can be very effective in spite of their
simplicity [5]. Also in this work these decision schemes are used.

Product rule: For each label, the confidences of the critics are multiplied to-
gether, and then the label with the greatest total confidence is chosen,

c(x) = arg
C

max
j=1

K∏
k=1

uk
j (x). (8)

Sum rule: For each label, the confidences of the critics are summed together,
and then the label with the largest resulting confidence is selected,
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c(x) = arg
C

max
j=1

K∑
k=1

uk
j (x). (9)

Min rule: For each label, the smallest confidence from a critic is discovered,
and then the label with the largest minimum confidence is chosen,

c(x) = arg
C

max
j=1

K
min
k=1

uk
j (x). (10)

Max rule: For each label, the largest confidence from a critic is discovered, and
then the label with the largest maximum confidence is selected,

c(x) = arg
C

max
j=1

K
max
k=1

uk
j (x). (11)

2.6 An Example of the Committee’s Operation

In order to illustrate the operation of the combination scheme, let us review an
example. In this example we shall use the triangular kernel distribution model
estimate and the sum rule for determining the final output, and modify the
weights according to the decaying weights scheme. Now let there be K classifiers
and C classes.

For the input sample x each classifier k outputs C values dk
c (x), with each

value corresponding to the distance to the nearest prototype of class c in classifier
k. Then this batch of distances is normalized as in equation (1) to obtain again
C values qk

c (x) for each classifier k = 1, . . . , K.
Now the normalized distances are examined by the respective critics, who

calculate their confidence values from their distribution models of existing data
points as in equation (2). This results in a set of C confidence values pk

c (qk
c (x))

for every classifier. These confidence values are further adjusted in the critic
by weighting them with the respective classifier’s correct classification rate in
accordance with equation (7). The final output is then selected using the sum
rule of equation (9) from the final confidences uk

c (x) obtained from the critics.
For updating the distributions it is assumed that information on the correct-

ness of the result can be obtained after the classification. Now for each of the K
classifiers and their respective critics, if that particular classifier was correct, the
normalized distance for the correct class is stored into that classifier’s critic’s
distribution model. Furthermore, the weight corresponding to each collected
normalized distance value in the distribution model is updated in accordance
to equation (6). After the distributions of all the classifiers that were correct
have been updated, the next input sample can be processed.

3 Experiments

The committee experiments were performed using a total of six different classi-
fiers. The used data was online handwritten characters written one-by-one. The
collection and preprocessing is covered in detail in [6]. All letters, upper and
lower case, and digits were used in the experiments.
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Table 1. Recognition error rates of the member classifiers

Classifier Distance measure Accuracy

1 DTW-PP-MC 79.98%
2 DTW-PL-MC 79.22%
3 DTW-PP-BBC 78.82%
4 DTW-PL-BBC 77.72%
5 DTW-NPP-MC 79.17%
6 DTW-NPP-BBC 77.68%

The member classifiers were based on stroke-by-stroke distances between the
given character and prototypes. Dynamic Time Warping (DTW) was used to
compute one of three distances, the point-to-point (PP), the normalized point-to-
point (NPP), or point-to-line (PL) [6]. The PP distance simply uses the squared
Euclidean distance between two data points as the cost function. In the NPP
distance the distances are normalized by the number of matchings performed. In
the PL distance the points of a stroke are matched to lines interpolated between
the successive points of the opposite stroke.

All character samples were scaled so that the length of the longer side of
their bounding box was normalized and the aspect ratio kept unchanged. The
centers of the characters were moved to the origin. For this we used two different
approaches: the center of a character was defined either by its ’Mass Center’
(MC) or by its ’Bounding Box Center’ (BBC) [6].

The data formed three independent databases consisting of different writers.
Database 1 consists of 9961 characters from 22 different writers, which were writ-
ten without any visual feedback. The pressure level thresholding of the measured
data into pen up and pen down movements was set afterwards individually for
each writer. The a priori probabilities of the classes were somewhat similar to
that of the Finnish language. Databases 2 and 3 were collected with a program
that showed the pen trace on the screen and recognized the characters online.
They both contain data from eight different writers and a total of 8077 and
8047 characters, respectively. The minimum writing pressure for detecting and
displaying pen down movements was the same for all writers. The distribution
of the character classes was approximately even.

Database 1 was used for forming the initial user-independent prototype set
for the DTW-based member classifiers. The prototype set for the DTW-based
classifiers consisted of seven prototypes per class. Database 2 was used for eval-
uating the values for the necessary numeric parameters for the committee and
determining the performance rankings of the classifiers. Database 3 was used
as a test set. The configurations and corresponding error rates of the member
classifiers are shown in Table 1. For experiments with the triangular kernel, the
decay parameter was set to λ = 0.26 for the product, sum and max rules and
λ = 0.08 for the min rule. Similarly, for the Gaussian kernel the decay parameter
was set to λ = 0.27 and λ = 0.10, respectively. The kernel bandwidth for both
kernel types was in all cases set to b = 0.4.
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The data is ordered so that all samples from one writer are processed before
moving on to the next writer. The adaptive critics are not reinitialized in between
writers, so the committee works in a writer-independent fashion.

4 Results

This preliminary set of experiments examines the two applied distribution types
used in conjunction with the four weighting schemes presented. The results ob-
tained with all the four combination rules are shown in Table 2. As can be seen,
the triangular kernel performs slightly better than the Gaussian kernel for all
the combinations. The results using the constant weighting scheme of both the
triangular and Gaussian kernel functions seem somewhat disappointing, as they
are outperformed by the respective member classifiers. This was however to be
expected, as the distribution models strive to model all input data, and with
several different subjects providing the data, the distribution estimate collected
from the previous writers may well be suboptimal for the new writer.

Robustness with respect to the changing environment is clearly much bet-
ter obtained by including the use of the weighting schemes. With the product
and sum rules, the accuracies obtained with the most effective decaying scheme
clearly outperform those of the member classifiers. The class-independent and
class-dependent schemes perform on roughly the same level. In all cases they
provide improvement over the situation where no weighting scheme is used, but
less than the decaying weights scheme. The decaying approach is clearly the
most effective one, suggesting that using only a subset consisting of 1/λ most
recent samples is more effective in modeling the classifier’s performance than
using all available data for the distribution estimates. In these experiments 1/λ
corresponded to between five and ten most recent samples.

It can also be noted that the two most effective combination methods are the
product and sum rules. This may be due to the fact that the confidences, while
not always satisfying the properties of being a valid probability, share many of
the characteristics of probability values and are modeled in a similar fashion.
Although the classifiers are hardly independent, the product rule seems to be
effective. Furthermore the product and sum rules take the results from all the
classifiers and their confidences from the critics into account when making the
decision. The min rule can also be seen as trusting the most doubtful critic,
which, although risk minimization in a way, clearly is not the optimal scheme.
Also the max rule trusts a single critic, the most confident one, for the decision
making process. In its greediness this appears to be the least beneficial strategy.

5 Conclusions

This paper has presented a scheme for calculating adaptive confidence values
from member classifiers’ distance values. A distribution model that estimates
the member classifiers’ performance based not only on their performance for the
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Table 2. Experiment results with different weighting schemes and decision methods

Distribution model Weight scheme Product rule Sum rule Min rule Max rule

Triangular kernel Constant 75.07% 74.36% 73.89% 72.28%
Triangular kernel Class-independent 76.07% 75.22% 74.70% 72.40%
Triangular kernel Class-dependent 76.06% 75.85% 74.65% 72.98%
Triangular kernel Decay 81.48% 80.78% 78.65% 73.48%
Gaussian kernel Constant 70.61% 69.91% 71.88% 71.69%
Gaussian kernel Class-independent 71.13% 70.21% 72.01% 71.34%
Gaussian kernel Class-dependent 71.50% 70.86% 71.90% 72.06%
Gaussian kernel Decay 80.60% 79.92% 78.38% 73.31%

sample being processed, but also learning from prior samples was suggested. In
the presented approach a weighting scheme forcing the distributions to empha-
size most recent samples is used to enhance robustness. This two-staged adaptive
confidence evaluation scheme should provide an effective balance between learn-
ing from prior samples and being robust with respect to changes in the member
classifiers’ performances.

Some preliminary results were presented using two types of kernel functions
for constructing the distance distribution models and three weighting schemes
to provide robustness. These were applied in an experiment where handwrit-
ten character data was recognized. The results clearly showed that the applied
scheme can improve upon the results of the member classifiers and that the
weighting greatly enhances performance. Especially the decaying weights scheme,
where the weight of the samples in the distribution model decays linearly to zero,
was found to be effective. This suggests that estimating the confidence of a clas-
sifier based on a subset consisting of the newest prior results may be a very
effective strategy.
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Abstract. The RW algorithm has been proposed recently to solve the
exact graph matching problem. This algorithm exploits Random Walk
theory to compute a topological signature which can be used to match
the nodes in two isomorphic graphs. However, the algorithm may suffer
from the presence of colliding signatures in the same graph, which may
prevent the procedure from finding the complete mapping between the
matching nodes. In this paper we propose an improved version of the
original algorithm, the RW2 algorithm, which progressively expands the
node signatures by a recursive visit of the node descendants and ances-
tors to disambiguate the colliding signatures. The experimental results,
performed on a benchmark dataset, show that the new algorithm attains
a better matching rate with almost the same computational cost as the
original one.

1 Introduction

Graph–based techniques have emerged as a powerful tool for data representation
in pattern recognition. Due to the growing interest in graphical structures, many
efforts have been spent for devising algorithms which are able to process graphs
with low computational costs. Among the problems related to structural pattern
recognition, graph matching, both exact and approximate, plays a crucial role.
While approximate graph matching tries to determine the degree of similarity of
two labelled input graphs finding the optimal match between the nodes in the
two graphs, the exact graph matching requires the mapping between the nodes of
the two input graphs to be structure preserving, in the sense that if two nodes in
the first graph are linked by an edge, then they should be mapped to two nodes in
the second graph which are also linked by an edge. Even if exact graph matching
seems to be less interesting in pattern recognition applications with respect to
approximate matching, however it represents an important problem, also from a
theoretical point of view. Graph isomorphism is a more stringent version of exact
matching, since it requires to determine a bijective exact matching. The method
proposed in this paper is designed to solve this particular problem. Actually, from
the computational complexity point of view, the graph isomorphism problem lies
in the limbo between the P and NP classes. In fact, so far, neither a polynomial
algorithm was devised nor proof has been given that the problem belongs to the
class of NP problems.

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3686, pp. 81–88, 2005.
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As recently reported in [1], the exact matching methods proposed in the
literature can be classified into two main categories, tree search algorithms and
other techniques. Most of the exact matching algorithms are based on a tree
search with backtracking (see e.g. [2,3]). The basic idea is that a match (initially
empty) is iteratively expanded by adding to it new pairs of matching nodes,
which satisfy some conditions that ensure the compatibility with the constraints
imposed by the particular matching in which we are interested. In particular, a
very efficient algorithm, known as VF, was proposed in [4].

Among the other techniques, the most interesting one is Nauty [5], that is
based on group theory. Nauty guarantees, in the average case, impressive per-
formances, although it has been verified that on a benchmark dataset provided
by the IAPR-TC–15 [6], Nauty is outperformed by the above mentioned VF
algorithm and by RW algorithm [7]. Other interesting approaches are based on
spectral theory applied to the graph adjacency matrix. The pioneering method
based on spectral analysis was proposed by Umeyama [8], while in [9,10] an
hybrid approach for approximate graph matching, based both on spectral tech-
niques and random walks, was proposed.

In this paper we present an improvement of the polynomial RW algorithm
presented in [7,11]. The RW algorithm exploits Markovian Random Walks in
order to compute a sort of topological signature for each node of an input graph.
Isomorphic graphs share the same node signatures, except for a permutation. De-
termining the permutation of the topological signatures is equivalent to compute
the mapping between the nodes of the pair of isomorphic graphs. Unfortunately,
if sets of nodes in a graph share the same signatures, the RW algorithm is not able
to determine entirely the mapping between a pair of isomorphic structures. The
aim of this paper is to present an extended version of the RW algorithm, which
performs a recursive visit of the input graph, starting each visit from the nodes
with colliding signatures, if any, in order to enrich the topological signatures of
these nodes and to obtain not colliding representations. Some experiments on
the IAPR–TC–15 benchmark dataset were carried out in order to evaluate if the
new version of the RW algorithm is able to reconstruct the mapping on a larger
subset of the dataset, and to compare the computational cost of the extended
algorithm with respect to the original one.

The paper is organized as follows. In the next section the Markovian Random
Walk used to compute the node signatures is defined. In Section 3 the new
algorithm is described, and in Section 4 the experimental results are reported.
Finally, in Section 5, the conclusions are drawn.

2 Graph Isomorphism Using Random Walks

A Random Walk (RW) model can be exploited to determine a set of topological
signatures for each node belonging to a given graph. A Random Walk is described
by a probabilistic model which computes a sequence of probability distributions
over the set of vertices of a graph G, such that xp(t) represents the probability
of being in vertex p at time t. This probability distribution is described by the
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real vector x(t) = [x1(t), ..., xN (t)], where N is the number of vertices in G. The
probabilities are updated at each time step by considering a set of actions that
can be performed. In particular, we assume that the RW can move from node q
to node p following the arc (q, p), if it exists, or jumping directly to p. Thus, the
probability distribution is updated using the following equation:

xp(t + 1) =
∑
q∈G

x(p|q, j) · x(j|q) · xq(t) +
∑

q∈pa(p)

x(p|q, l) · x(l|q) · xq(t) , (1)

where x(p|q, j) and x(p|q, l) are the probabilities of moving from the node q to the
node p by performing a jump or by traversing the arc (q, p) respectively, x(l|q)
and x(j|q) represent the bias between the two possible actions, i.e. jump and fol-
low an arc, and pa(p) represents the set of the parents of node p. These parame-
ters affect the RW behavior and can be chosen in order to compute different topo-
logical signatures. Moreover, since they represent probabilities, their values must
be normalized such that ∀q ∈ G:

∑
p∈G x(p|q, j) = 1,

∑
p∈ch(q) x(p|q, l) = 1, be-

ing ch(q) the set of the children of node q, and x(j|q) = 1 − x(l|q).
Considering the update equations for each node in the graph, the RW model

can be described in matrix form as

x(t + 1) = (Σ · Dj)
′x(t) + (Δ · Dl)

′x(t) = T · x(t) , (2)

where Σ,Δ ∈ IRN,N collect the probabilities x(p|q, j) and x(p|q, l) respectively;
Dj , Dl ∈ IRN,N are diagonal matrices, whose diagonal values are the prob-
abilities x(j|q) and x(l|q). The entry (p, q) of matrix Δ is not null only if the
corresponding entry of the graph adjacency matrix A is equal to 1, i.e. if the ver-
tices p and q are linked by an arc. Finally, the transition matrix is T = (Σ · Dj

+Δ · Dl)
′.

The signatures of the graph are obtained considering the steady state x∗ of
the Markov chain defined in equation (2). In fact, since the matrix T is obtained
by adding non–negative matrices, then also the transition matrix T is strictly
positive. Thus, the resulting Markov chain is irreducible and, consequently, it
has a unique stationary distribution (see e.g. [12]) given by the solution of the
equation x∗ = Tx∗, where x∗ satisfies x�′1I = 1, being 1I the N–dimensional
vector whose entries are all 1s.

We consider a RW for which the action bias probabilities x(j|q) and x(l|q)
are independent of the node q. Thus, we define a parameter d ∈ (0, 1), called
damping factor, such that x(l|q) = d and x(j|q) = 1 − d. This parameter can
be varied in order to compute different topological signatures x(d). Moreover,
we choose the other parameters considering uniform probability distributions.
The target for a jump is selected using a uniform probability distribution over
all the N nodes of the graph, i.e. x(p|q, j) = 1/N, ∀p ∈ G. Finally, we assume
that all the arcs from node q have the same probability to be traversed, i.e.
x(p|q, l) = 1/|ch(q)|. The probability of reaching p following a link cannot be
computed for vertices without outgoing arcs (sink nodes). For these nodes, the
RW behavior is set such that x(j|psink) = 1 and x(l|psink) = 0.
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Considering these choices, equation (2) can be rewritten as

x(t + 1) =
(1 − d)

N
· 1I + d · W · x(t), (3)

where W = (ΘA)′ being A the adjacency matrix of the graph and Θ the diago-
nal matrix whose (p, p) element is equal to 1/|ch(p)|. The topological signatures
computed using equation (3) can be used to determine the map between two
isomorphic graphs. In particular, the following proposition holds (see [7,11]).

Proposition 1. If two graphs G1 and G2 are isomorphic then x�
1 = Px�

2, where
P is the permutation matrix such that A1 = P A2P

′, being A1, A2 the adjacency
matrices of G1 and G2, respectively.

Unfortunately, the vice–versa is not always true. In fact, there exists a class of
not isomorphic graphs which, for any value of the damping factor, share the same
RW steady state except for a permutation of the entries. The graphs belonging
to this class have a common isomorphic and regular subgraph [7].

3 The RW2 Algorithm

The RW algorithm proposed in [7] is based on the RW signatures described in
the previous section, and its behavior can be summarized as follows:

1. Given two graphs G1 and G2, the algorithm computes two topological sig-
natures for each graph using a randomly chosen damping factor d; the first
one is obtained considering the steady state of the RW, while the second
one is computed taking as input the reverse graph obtained changing the
direction of each arc in the original graph.

2. If the two graphs share the same signatures, except for a permutation of the
entries, and the signatures are all distinct, then the permutation matrix P
which represents the map between the two graphs is univocally determined.
The matrix P is the only candidate for matching the pair of graphs, be-
cause of Proposition 2.1. If the steady state vectors do not share the same
signatures, then the graphs are not isomorphic.

3. If the two graphs share the same signatures, except for a permutation of the
entries, but the signatures are not all distinct, then an additional signature
is computed by using another value of d and this signature is appended to
the previous one. The enriched signatures are used to repeat the checks of
points 2 and 3.

4. The algorithm is halted if the two graphs are not isomorphic or if the iso-
morphism is determined, or, finally, if N distinct values for d are chosen (see
[7] for a theoretical motivation of this choice).

The RW algorithm is not always able to determine the matrix P when the
two graphs are isomorphic, but, as shown by the experimental results reported
in [7,11], this situation is very rare. This limitation is due to the presence of
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colliding signatures. In fact, if two or more nodes in a graph share the same
topological signatures, those nodes cannot be matched directly and all their
permutations are to be checked. This situation can be due to the particular
choice of the parameter d or to symmetries in the graphs.

The new version of the RW algorithm (RW2) tries to overcome this lim-
itation. In fact, the computation of the RW steady state determines a set of
equivalence classes C = {cs1 , ..., csM }, where the equivalence class i collects all
the nodes sharing the same value si for the signature, i.e. the nodes having
colliding signatures such that csi = {v ∈ V |x∗

v = si}. In order to discriminate
between the nodes in the same equivalence class, their topological signatures
can be incrementally expanded by considering recursively the signatures of their
neighbors. For each node in the class csi , a breadth–first visit of the input graph
is performed and the minimum spanning tree which has the selected node as root
is progressively built. Anytime a level of the spanning tree is added (level l of the
spanning tree collects the nodes l “steps” away from the starting node), the sig-
natures of the nodes belonging to the new level are appended to the signature of
the root node. At each step only the nodes which continue to have colliding sig-
natures are furtherly considered for the signature expansion. The breadth–first
visit is halted when the minimum spanning tree is completely built or when all
the nodes have distinct signatures. In this last situation, we are able to determine
the permutation matrix P , applying the same procedure to the second graph,
and matching the pairs of nodes which share the same (expanded) signatures in
the two graphs.

The experimentation showed that in the RW2 algorithm only one value for
the damping factor is sufficient to remove the collisions among the signatures,
in the cases when this is actually possible. The use of at most N distinct values
for d was introduced in the original RW algorithm to overcome the generation of
ambiguous signatures due to the particular choice of this parameter. In fact the
use of different values for d allows us to give different weight to the contribution
of the layers at a given distance from the current node. The signature enrichment
procedure introduced in RW2 seems to play the same role, avoiding the need to
compute the steady state of the RW model for more values of d. This effect was
observed in the experiments but we have not found any theoretical result to
explain it, yet.

The RW2 algorithm is polynomial since the computation of the topological
signatures [13], the enrichment of the signatures (if it is needed), and the re-
construction of P can be performed in polynomial time. However, also the RW2
algorithm is not always able to determine entirely the matrix P , but as shown in
the results reported in the next section, its “matching rate” is better than that
of the original RW algorithm.

4 Experimental Results

The RW2 algorithm was evaluated on a subset of the TC-15 graph dataset [6].
The TC-15 dataset contains 18200 pairs of isomorphic graphs divided in five
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classes: randomly connected graphs, bounded valence graphs, irregular bounded
valence graphs, regular meshes, and irregular meshes. The subset we chose to
perform the experiments contains random graphs. The RW2 algorithm has been
evaluated in order to determine how the topological regularity and the dimension
of the graphs affect the isomorphism determination. The results are evaluated
using a “Matching Rate” that is equal to |C|/N . Since in [14] the performance
of five different exact matching algorithms are compared with respect to their
execution time, showing that the VF algorithm outperforms all other methods
on the TC-15 dataset, we have also compared the execution time of the RW
and RW2 algorithms with respect to the VF algorithm1. Notice that the VF
algorithm is always able to determine entirely the matching between a pair of
input graphs, while the RW and RW2 algorithms are not. However, this compar-
ison seems to be significant, since the time performances of the RW and RW2
algorithms are significantly better that those of the VF algorithm.

In the randomly connected graphs belonging to the dataset, the arcs connect
vertices without any structural regularity. These graphs are generated by choos-
ing a value r which represents the probability that an arc is present between
two distinct vertices. The arcs are added until the desired arc density is reached.
If the resulting graph is not connected, appropriate arcs are added to gener-
ate a connected graph. The class collects 3000 pairs of graphs generated using
r ∈ {0.01, 0.05, 0.1}. The size of the graphs ranges from 20 to 1000 vertices.

The results are reported in Table 1, and show that the matching rate increases
both with the number of vertices and with the arc density. The results show that
the enrichment procedure introduced in the RW2 algorithm allows us to increase
the matching rate w.r.t. the original RW algorithm.

Table 1. Matching rate on randomly connected graphs from the TC-15 dataset: com-
parison between RW and RW2 algorithms. For the datasets containing graphs with 400
or more nodes, both RW and RW2 show an average matching rate equal to 100%.

Number of Arc presence
Nodes probability

0.01 0.05 0.1
RW RW2 RW RW2 RW RW2

20 88.9% 94.85% 98.15% 99.325% 99.925% 100%
40 90.105% 95.885% 99.94% 99.97% 100% 100%
60 92.9% 97.29% 100% 100% 100% 100%
80 95.18% 98.12% 100% 100% 100% 100%
100 97.765% 99.27% 100% 100% 100% 100%
200 99.805% 99.945% 100% 100% 100% 100%

1 We have implemented the VF algorithm using the VFLIB (available at
http://amalfi.dis.unina.it/graph/).
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Fig. 1. Execution times on randomly connected graphs from the TC-15 dataset: com-
parison between the RW, RW2, and VF algorithms for different arc densities

The comparisons of the execution times2 reported in the plot of figure 1 show
that both the RW and RW2 algorithms outperform the VF algorithm. Moreover,
the enrichment of the signatures in the RW2 algorithm does not influence sig-
nificantly the performance of the proposed technique. Thus, even if the RW and
RW2 algorithms are not always able to determine the complete matching, the
very efficient way in which the computation and the enrichment of the signatures
are implemented, allows us to find the eventual matching very fast. Moreover,
the performance difference between the algorithms of the RW family and the VF
algorithm increases with the size of the graph.

5 Conclusions

In this paper we presented an improved version of the RW algorithm to reduce
the problem of colliding signatures. The collisions are disambiguated by enrich-
ing the node signatures using a recursive visit of the node neighborhood. The
experiments show that the enriched signatures are almost always able to deter-
mine the complete mapping between nodes. Moreover, in all successful cases just
one value of the dumping parameter is actually needed, whereas all failures are
likely due to symmetries in the graph causing collisions that cannot be elimi-
nated by using more values of the dumping factor. Finally the computational
cost of the new algorithm is not significantly different from that of the original
one.
2 The experiments were run on a PC–IBM with a Pentium 4 2GHZ CPU and 512MB

of RAM.
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Abstract. Reinforcement Learning (RL) is thought to be an appropri-
ate paradigm for acquiring control policies in mobile robotics. However,
in its standard formulation (tabula rasa) RL must explore and learn ev-
erything from scratch, which is neither realistic nor effective in real-world
tasks. In this article we use a new strategy, called Supervised Reinforce-
ment Learning (SRL), that allows the inclusion of external knowledge
within this type of learning. We validate it by learning a wall-following
behaviour and testing it on a Nomad 200 robot. We show that SRL is
able to take advantage of multiple sources of knowledge and even from
partially erroneous advice, features that allow a SRL agent to make use
of a wide range of prior knowledge without the need for a complex or
time-consuming elaboration.

1 Introduction

Reinforcement Learning (RL) is an interesting strategy for the automatic resolu-
tion of tasks in different domains, among them is robotics [1]. RL only requires a
measurement of the system’s level of behaviour, so-called reinforcement. Never-
theless, tabula rasa RL has strong limitations. RL assumes that the environment
as perceived by the system is a Markov Decision Process (MDP), there must not
be any perceptual aliasing; i.e, the agent cannot consider two situations to which
it has to respond with different actions as being equal. Another limitation is the
exploitation/exploration dilemma; i.e., deciding between attempting new actions
or using previously acquired knowledge. These problems become even more evi-
dent in real applications, especially in mobile robotics [2].

However, there usually exists prior knowledge on the task that can be used
to improve the learning process, as the RL agent does not start from scratch.
In this paper, we show how the Supervised Reinforcement Learning (SRL) [3]
� This work was supported by Xunta de Galicia’s project PGIDIT04TIC206011PR.
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Fig. 1. SRL block diagram

strategy is robust against prior knowledge that is not totally correct (or even
completely wrong) and how it is able to use more than one source of knowledge
at the same time. These features allow the SRL model to take advantage of prior
knowledge without the need for a complex or time-consuming elaboration.

2 Embedding Prior Knowledge: SRL

The objective of the SRL model is to establish a working framework for the
development of systems that integrate prior knowledge into RL processes through
focusing the exploration of an RL algorithm. SRL comprises several basic blocks
(Figure 1): the Reinforcement Learning Module, the Prior Knowledge Sources
(PKSs), and the Control Module, which regulates the knowledge transfer between
them.

The RL module houses the RL algorithm. For this application we use the
Q-Learning algorithm [4]. The PKSs supply their advice (recommended actions)
for the current state of the RL Module, s(t), in the form of a vector of utilities u
which contains a value u(s(t), ai) ∈ [0, 1] for each action ai. These u-values rep-
resent an easy way to project knowledge about what actions should be explored
first: the more the execution of action ai is recommended for the current state,
the higher u(s(t), ai) is.

2.1 Control Module

The Control Module has the task of amalgamating the utilities that the PKSs
supply for each action with the information learnt to date (Figure 1). This mod-
ule gives priority to the knowledge transfer over exploration of new actions and
its design is divided in two blocks: the Credit Assignment Block and the Deci-
sion Block. In general, the operation of the Control Module can be divided in
the consecutive execution of three different stages.
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First, all the advice coming from the PKSs is joined together in the exploita-
tion policy (which is thus called as following it implies exploiting the knowledge
that is stored in the PKSs). On the other hand, an exploration policy is also
obtained, that recommends executing any of the actions that are not advised by
the PKSs.

In a second stage, the policy which seems to be the best one to follow (ex-
ploration or knowledge-exploitation) has to be selected. Finally, a decision has
to be taken about which action, of those suggested by the previously selected
policy, has to be executed.

The first two stages are carried out in the Credit Assignment Block, while
the third one takes place in the Decision block.

Exploitation and Exploration Policies. If s(t) represents the current state
of the system, the exploitation policy, w(s(t)), represents a normalised sum of
all the pieces of advice coming from the PKSs:

w(s(t), ai) =

∑m
j=1 uj(ai)

maxk{
∑m

j=1 uj(ak)} , ∀i = 1, . . . , n , (1)

where n is the number of actions and m is the number of PKSs. The higher
the value of w(s(t), ai), the more the execution of action ai is recommended
according to the PKSs.

On the other hand, the exploration policy, e(s(t)), recommends the execution
of those actions not being advisable by the PKSs:

e(s(t), ai) = 1 − w(s(t), ai), i = 1, . . . , n . (2)

Selection of the Suitable Policy. The next step of the credit assignment block
is to decide which of the two policies (knowledge-exploitation or exploration)
must be followed. The selected policy, g(s(t)), is determined according to the
following criterion:

g(s(t)) =

{
e(s(t)) if Ω(e(s(t))) − δ > Ω(uj(s(t))) ∀ j = 1, . . . , m ,
w(s(t)) otherwise ,

(3)

the function Ω(x(s(t))), where x(s(t)) is e(s(t)), or one of the utility vectors
uj(s(t)), ∀j = 1, . . . , m, represents the compatibility of the exploration policy or
the utility vectors with those Q-values learned for the current state:

Ω(x(s(t))) = max
i

{
x(s(t), ai) ·

[
Q(s(t), ai) − min

a
Q(s(t), a)

]}
. (4)

According to equations 3 and 4, it is important to notice that the exploration
policy, e(s(t)), is chosen whenever its compatibility Ω(e(s(t))) is higher, with a
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margin δ, to that of all the suggestions uj(s(t)) in the current state. In this situa-
tion, the suggestions either have no information to supply, or are recommending
actions that are poorly evaluated by the experience that has been accumulated
in the RL module. In this case the advice is considered as not trustworthy and
the system must search for new alternatives: it must explore. The parameter δ,
the exploration threshold, is a positive value that makes possible to regulate the
tolerance that the system will have with bad advisors.

Final Action Selection. One of the most classical and popular strategies in RL
algorithms to select the final action to be executed is the Softmax algorithm [5].
This strategy, based on the Boltzman distribution, selects an action a� with
probability:

Pr(s(t), a�) =
eQ(s(t),a�)/T∑n
i=1 eQ(s(t),ai)/T

, (5)

where the temperature T > 0 controls the amount of randomness.
In our case, we want to adapt equation 5, in order that not just the Q-values

are taken into account, but also the strategy, g(s(t)), selected in the previous
stage. According to g(s(t)) there is a subset of recommended actions which
execution has priority. This prioritization is combined with the learnt Q-values
through a last decision vector, h(s(t)):

h(s(t), ai) =
g(s(t), ai) · [Q(s(t), ai) − mina Q(s(t), a)]

Ω(g(s(t)))
, ∀i = 1, . . . , n . (6)

As this vector reinforces the execution of those actions with a high Q-value and
which are also recommended by g(s(t)), its inclusion on expression 5 seems to
be suitable in our case. In this way, an action a� is selected with a new value of
probability:

Pr(s, a�) =
eh(s(t),a�)/T (s(t))∑n

j=1 eh(s(t),aj)/T (s(t))
. (7)

It is important to notice that in order to compensate the difference in the proba-
bility of every state s(t), each one of them has its own temperature, T (s), which
is exponentially decreased every time the state is visited.

3 Application

We have chosen the wall-following behaviour as the task to be learnt, as it is
one of the most used in mobile robotics [6]. For our experiments we have used
a simple state representation [7] that uses only information from the robot’s
ultrasonic sensors, which are divided into four groups and their measures are
discretized according to the values shown in Figure 2. The fifth state variable is
the relative orientation between the robot and the wall that is discretized into
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Fig. 2. State representation (except orientation), see text for details

4 values. There are 188 possible states, although not all are met during task
development in a normal environment.

A crucial element of the RL system is the reward function. Figure 2 shows
the values of the state variables (shaded) that give rise to a negative reward. The
actions constitute the final component of the system. In order to simplify the
learning process we set a constant linear velocity for the robot (20 cm/s) so that
it is only necessary to learn to control the angular velocity. As the maximum
angular velocity of the robot is 45◦/s we have discretized the space of actions as
follows:

A = {-40, -20, -10, -0.3, 0, 0.3, 10, 20, 40} (◦/s) . (8)

The values used for the parameters of RL and SRL were: 0.2 for the Learning
Rate (α), 0.99 for the Discount Factor (γ) and 0.1 for the Exploration Threshold
(δ), which is only used on SRL. In our system we have used one PKS, to build it
we have used a human expert to decide on the action to be carried out in repre-
sentative positions within the environment. This PKS (called Ad-Hoc) supplies
reasonably good advice in 15 states. For each state with advice only an action
with maximum utility is recommended. On its own, the advisor is not capable
of completely resolving the task.

4 Experimental Results

Our experimental procedure comprises two phases: learning and testing. In the
former, the action to be carried out in each control cycle (which last about 1/3 of
a second) is selected and performed. Learning occurs whenever the state changes
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Fig. 3. a) Trajectory of simulated robot performing RL-learnt behaviour. b) Number
of failure-free control cycles during test phase, comparison of the SRL (PKS Ad-Hoc)
and RL tabula rasa results. Ten tests were performed for each Q-value set.

(learning step). The test phase is used to measure the performance of each Q-
value set and to determine when the learning process has converged. During this
phase, the best valued action is always selected and the prior knowledge is never
used. Ten tests are performed for each Q-value set stored.

As the measurement of the quality of the learnt behaviour we have selected
the time before committing an error, as the accumulated reward value does not
allow us to discriminate between an error (hitting the wall or travelling away
from the wall) and a low performance (e.g. travelling too close to the wall). We
consider the task to have been learnt when the system is able to implement it
over 75,000 control cycles (about ten laps on the environment) without making
an error. Our convergence criterion is that the task should be accurately learnt
over five consecutive tests.

4.1 Convergence Time and Erroneous Advice

Both the RL and SRL agents learned on the Nomad 200 simulator and performed
on the same environment. Figure 3(a) shows the simulation environment and
the trajectory of the simulated robot performing the RL-learnt wall-following
behaviour. A comparison of the RL and SRL agents’ convergence times can be
seen in Figure 3(b). The trajectory of the real robot performing the SRL-learnt
behaviour is shown in Figure 4.

One of the most interesting characteristics of SRL is its ability to extract
beneficial advice from PKSs, and to ignore bad suggestions. In order to verify this
we carried out three experiments with increasing amounts of erroneous advice
being supplied by the PKSs. In order to construct the erroneous advice we took
the advisor Ad-Hoc and altered the recommended action to a given percentage
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Glass Doors

1 m

Fig. 4. Trajectory of real robot performing the SRL-learnt wall-following behaviour

of those states with advice. We changed the sign of the advised action and
increased its values to the maximum (e.g., if in a state the advised action was
-0.3, the action 40 would be suggested). The states whose recommended actions
were modified were chosen at random.

We carried out three experiments with increasing percentages of erroneous
advice: 25, 50 and 100 per cent. In all cases SRL is capable of overcoming er-
roneous advice and of making use of correct advice to accelerate the learning
process. Convergence times were of 9,000, 15,000 and 32,000 learning steps, re-
spectively. A small amount of erroneous advice slows down system convergence;
nevertheless, the system still learns faster than tabula rasa RL. Figure 5(c)
shows the worst situation of all, that in which the advisor supplies no good ad-
vice. The system ends up rejecting it, but its convergence time is greater than
for tabula rasa RL, as SRL initially gives greater priority to the advice than to
that which is learnt. The most relevant point of this experiment is that, in spite
of the advised action being contrary to the correct one, SRL ends up learning
the task.

4.2 Multiple Advice

SRL admits the presence of several PKSs in the support module. Taking Ad-Hoc,
we randomly make 50 per cent of its advice erroneous, using the methodology
described above to obtain a new advisor, Ad-Hoc’1. We then construct a second
advisor, Ad-Hoc’2, converting all correct advice in Ad-Hoc’1 into incorrect advice,
and vice versa. In this way, both PKSs supply advice in the same states: one
recommends the right action, and the other a wrong one. Figure 5(d) shows
how SRL is capable of combining both sources of knowledge and overcoming
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Fig. 5. Number of failure-free control cycles during the test phase: a) SRL with an
Ad-Hoc advisor with 25% of erroneous advice as opposed to tabula rasa RL, b) with
50%, and c) with 100%; d) SRL with an Ad-Hoc advisor as opposed to SRL with two
complementary Ad-Hoc advisors

the erroneous advice that is shared out between the two advisors. SRL succeeds
in extracting the good advice for each state, independently of which advisor
supplies it, rejecting at the same time the erroneous knowledge.

5 Related Work

Efforts aimed at including prior knowledge into RL in the field of mobile robotics
have been based on three techniques. The first is the design of complex reinforce-
ments [8], which has the problem of the specificity of the functions that supply
the variable reinforcement, which will probably not be made use of in any other
task. Dynamic knowledge-orientated creation of the state space [9] is the sec-
ond technique. Its main drawbacks are that the stability of the system during
learning is not taken into account, and that there is a great dependency on the
quality of knowledge: if this is incorrect, the agent cannot learn.

The third and most important approach is the focalization of exploration.
There are various approaches, one being to focalize exploration only at the
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The latest focalization technique, the one used in SRL, is to employ a control
module to regulate the transfer of information between the knowledge sources
and the RL algorithm, which is located in the same level. Dixon [13] presents a
system of this type, which is similar to SRL. However, his work lacks the general-
ity of SRL, which is designed to allow a broader range of prior knowledge sources
and to deal with partial or even erroneous advice. In SRL, the balancing of prior
knowledge and learnt information, which is carried out in the Credit Assignment
Block, allows the designer to use several PKSs without the need for a complex
elaboration or any testing of their correctness. Dixon’s control modules are far
simpler. SRL also contemplates the possibility of the Control Module imposing
its decisions or assigning overall control to a knowledge source, transforming it
into a teacher. Thus, SRL includes the aforementioned approaches at the same
time as it permits the use of a much broader set of knowledge sources.

6 Conclusion and Future Work

In this paper we have used a new strategy, called Supervised Reinforcement
Learning (SRL), to take advantage of external knowledge within reinforcement
learning and we have validated it by learning a wall-following behaviour. Thanks
to SRL a significant reduction in learning convergence times has been achieved,
even using an intuitive prior knowledge source. Thus, just by advising on the
best action in 15 of the 188 possible states, there is a 81% reduction in the SLR
convergence time with respect to RL (from 16,000 to 3,000 learning steps). We
have confirmed the soundness of the proposed mechanism by running the learnt
behaviour on a real robot.

We have proved that SRL is capable of overcoming erroneous advice and
of making use of any correct advice it may found on the PKSs to accelerate
the learning process. A small amount of erroneous advice slows down system
convergence and a completely wrong PKS delays it further, but the system
always ends up rejecting bad advice. SRL is robust against non-elaborated prior
knowledge. Furthermore, we have shown how SRL is capable of combining several
sources of prior knowledge, overcoming the erroneous advice that is shared out
among them. SRL succeeds in extracting the good advice and rejecting erroneous
knowledge. These two features, the ability to overcome erroneous advice and
the possibility of using several PKSs, allow the SRL agent to make use of a
wide range of PKSs (human knowledge, existing controllers or previously learned
information) without the need for a complex or time-consuming elaboration.

onset of learning [10]. The statistical nature of RL results in there being
fluctuations in the learning process, which may lead to the devaluation of an
initially-recommended good action. In these cases, the initial focalization of the
exploration does not help to stabilize the convergence of the RL algorithm. An-
other approach is that of Lin [11] and Clouse [12], who propose systems that
use external knowledge expressed in the form of sequences of states and actions
that are supplied by a teacher. In general, example- or teacher-based systems do
not allow the use of knowledge that is not drawn up specifically for the system,
incorrect knowledge or various simultaneous teachers.
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Abstract. In real world problems solved with machine learning techniques, 
achieving small error rates is important, but there are situations where an 
explanation is compulsory. In these situations the stability of the given 
explanation is crucial. We have presented a methodology for building 
classification trees, Consolidated Trees Construction Algorithm (CTC). CTC is 
based on subsampling techniques, therefore it is suitable to face class imbalance 
problems, and it improves the error rate of standard classification trees and has 
larger structural stability. The built trees are more steady as the number of 
subsamples used for induction increases, and therefore also the explanation 
related to the classification is more steady and wider. In this paper a model is 
presented for estimating the number of subsamples that would be needed to 
achieve the desired structural convergence level. The values estimated using the 
model and the real values are very similar, and there are not statistically 
significant differences. 

1   Introduction 

When real world problems are solved using machine learning, the main focus is done 
in the error (or guess) made by the built model. This aspect is probably the most 
important, but there are situations where, added to the error rate, the classification 
made needs to be enclosed with an explanation, so that the decision made by the 
system in an automatic way can be well-grounded. In real domains such as illness 
diagnosis, fraud detection in different fields, marketing, etc., the comprehensibility of 
the classifier is necessary [3], it is not enough to obtain small error rates in the 
classification. Related to the previous requirements, classifiers can be divided in two 
groups: without explaining capacity and with explaining capacity. Artificial neural 
networks, support vector machines, multiple classifiers that due to their complexity do 
not provide an explanation to the classification, etc. belong to the first group. Among 
the classifiers with explaining capacity we can mention decision or classification trees 
(we have selected them for the study presented in this paper), induction rules, etc. 

The stability of the given explanation is important when the classifier gives an 
explanation to the classification made. As Turney found working on industrial 
applications of decision tree learning, not only to give an explanation but the stability 
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of that explanation is of capital importance: “the engineers are disturbed when 
different batches of data from the same process result in radically different decision 
trees. The engineers lose confidence in the decision trees even when we can 
demonstrate that the trees have high predictive accuracy” [9].  Unfortunately, 
classification trees are unsteady or unstable: trees induced from slightly different 
subsamples of the same data set are very different in accuracy and structure [4]. The 
stability of a classifier has been measured by some authors observing if different 
instances agree in the prediction made for each case of the test set (logical stability or 
variance) [3], [9]. Nevertheless, since in a decision tree the explanation is given by its 
structure we need a way to build structurally steady classifiers in order to obtain a 
convincing explanation (physical stability or structural stability). In paradigms such as 
bagging and boosting this problem is not solved: some simple classifiers (weak 
classifiers, mainly classification trees) are combined to make a decision on the whole 
in order to reduce the error rate, but the solution is based on multiple trees which 
impedes to give an explanation to the classification. Domingos explained it very 
clearly in [3]: “while a single decision tree can easily be understood by a human as 
long as it is not too large, fifty such trees, even if individually simple, exceed the 
capacity of even the most patient”. 

We have developed a methodology for building classification trees (Consolidated 
Trees’ Construction Algorithm, CTC) that improves the error rate of standard 
classification trees and has larger physical or structural stability, see [6]. The 
algorithm starts extracting several subsamples obtained from the training sample and 
uses them to build a single classification tree. CTC algorithm is less sensible to the 
use of subsampling techniques from a structural point of view. Therefore the 
classification is contributed with a more steady explanation. On the other hand, CTC 
algorithm is suitable to face class imbalance problems where subsampling techniques 
(oversampling or undersampling) are used to get through the differences in class 
distributions. 

Consolidated Trees (CT) tend to converge to a common structure as the number of 
subsamples used to induce the tree increases. The convergence can be modelled so 
that  we can know the number of subsamples we need to use in order to build a CT 
tree with a certain structural stability. The convergence and the model will be shown 
in this paper. 

The paper proceeds describing CTC algorithm, tat is to say, how a single tree can 
be built from several subsamples, in Section 2. Details about the experimental 
methodology and structural measure are described in Section 3. In Section 4 an 
analysis of the structural stability of CTC algorithm is presented. The model obtained 
to relate the desired structural stability and the number of subsamples required is 
presented in Section 5. Finally Section 6 is devoted to show the conclusions and 
further work. 

2   Consolidated Trees’ Construction Algorithm 

CTC Algorithm uses several subsamples to build a single tree [6] The consensus is 
achieved at each step of the tree’s building process and only one tree is built. The 
different subsamples are used to make proposals about the feature that should be used 
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to split in the current node. The split function used in each subsample is the gain ratio 
criterion (the same used by Quinlan in C4.5 [8]). The decision about which feature 
will be used to make the split in a node of the Consolidated Tree (CT) is accorded 
among the different proposals by a voting process (not weighted) node by node. 
Based on this decision, all the subsamples are divided using the same feature. The 
iterative process is described in Algorithm 1. 

Algorithm 1. Consolidated Trees’ Construction Algorithm (CTC) 

    Generate Number_Samples subsamples (Si) from S with Resampling_Mode method. 
CurrentNode := RootNode 
for  i := 1 to Number_Samples 
    LSi := {Si}  
end for  
repeat 
    for  i := 1 to Number_Samples 

CurrentSi := First(LSi) 
  LSi  := LSi - CurrentSi  
          Induce the best split (X,B)i for CurrentSi 
    end for  
    Obtain  the consolidated pair (Xc,Bc), based on (X,B)i, 1  i  Number_Samples 
    if (Xc,Bc)  Not_Split 
       Split CurrentNode based on (Xc,Bc) 
       for i := 1 to Number_Samples 
            Divide CurrentSi based on (Xc,Bc) to obtain n subsamples {S1

i, … Sn
i} 

            LSi  := {S1
i, … Sn

i} ∪ LSi  
        end for 
    else consolidate CurrentNode as a leaf  
     end if 
CurrentNode := NextNode 
 until ∀i, LSi is empty 
 

The algorithm starts extracting a set of subsamples (Number_Samples) from the 
original training set. The subsamples are obtained based on the desired resampling 
technique (Resampling_Mode). For example, the class distribution of the original 
training set can be changed or not, examples can be extracted with or without 
replacement, different subsample sizes can be chosen, etc. 

Decision tree’s construction algorithms divide the initial sample in several data 
partitions. In our algorithm, LSi contains all the data partitions created from each 
subsample Si. When the process starts, the only existing partitions are the initial 
subsamples. 

The pair (X,B)i is the split proposal for the first data partition in LSi. X is the feature 
selected to split and B indicates the proposed branches or criteria to divide the data in 
the current node. In the consolidation step, Xc and Bc are the feature and branches 
obtained by a voting process among all the proposals. In the different steps of the 
algorithm, the default parameters of C4.5 have been used as far as possible. 
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The process is repeated while LSi is not empty. The Consolidated Tree’s generation 
process finishes when in the last subsample in all the partitions in LSi, most of the 
proposals are not to split it, so, to become a leaf node. When a node is consolidated as 
a leaf node, the a posteriori probabilities associated to it are calculated averaging the a 
posteriori obtained from the data partitions related to that node in all the subsamples. 
Once the consolidated tree has been built, it works the same way a decision tree does. 

Previous works [6], [7] show that CT trees have larger discriminating capacity and 
structural stability than C4.5. Based on these results and due to the lack of space we 
will present results just for stratified samples without replacement and of 75% of the 
training set (a single instance of Resampling_Mode parameter). For the rest of the 
parameters, even if more options exist, we have described the ones we are using in 
this experimentation. 

3   Experimental Methodology and Structural Measure 

11 databases of real applications from the well known UCI Repository benchmark [1] 
will be used in order to analyse the structural stability and convergence of 
Consolidated Trees: breast-w, hypo, lymph, breast-y, heart-c, soybean large, heart-h, 
credit-g, glass, liver and credit-a. As validation methodology for the experimentation, 
we have executed 5 times a 10-fold cross validation [5] with the 11 databases. 1,000 
subsamples, that will be used in 20 groups of 50, have been extracted from the 
training sample in each of the folds of the cross-validation. In each domain the 
behaviour of CT trees for 5, 10, 20, 30, 40 and 50 subsamples has been analysed in 
order to evaluate the effect of Number_Samples parameter. For each of the folds and 
value of Number_Samples parameter, a CT tree has been built from each group of 50 
subsamples. As a consequence, for each value of Number_Samples, 1,000 CT trees (5 
times, 10 folds, 20 trees) have been built, all of them based on different subsamples 
(6,000 CT trees for each one of the databases used in the experimentation). 

Common, the structural diversity metric, defined in previous works [7], will be 
used to analyse the physical stability of the induced trees, that is to say, the 
homogeneity existing in a set of trees. A pair to pair comparison among each possible 
pair of trees in the group is done. The common nodes among two trees are counted. 
Common is calculated starting from the root and covering the tree, level by level. Two 
nodes will be considered common nodes, if they coincide in the feature used to make 
the split, the proposed branches (or stratification) and the position in the tree. When a 
different node is found the subtree below is not taken into account. The Common 
value of a set of trees is calculated as the average value of all the possible pair to pair 
comparisons. Somehow, Common represents the amount of independent variables that 
are used in a stable way in the classification, taking into account the significance 
order. So, this measure quantifies the degree of stable explanation the algorithm is 
able to contribute with in the classification made. If the complexity of the trees is 
taken into account and Common is normalised in respect to it, %Common, the amount 
of stable explanation relative to all the predicting variables used is captured. 
%Common also indirectly represents the parsimony of the built models (Occam’s 
razor), and besides it allows the comparison of the structural stability of trees induced 
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from different domains, that is, trees that have different complexities ( they are 
situated in different zones of the learning curve). 

4   Analysis of the Structural Stability of Consolidated Trees 

The aim of the preliminary analysis will be to quantify the stable part of the physical 
structure in CT trees, that is to say, the average values of Common obtained for the 11 
databases (5 runs and 10 folds) studied in this paper. These values are shown in Fig. 
1. For each database, fold, and value of Number_Samples (N_S) parameter, 20 CT 
trees have been used. Trees built with a certain value of N_S have been compared to 
all the trees with the same N_S or greater. This comparison is presented in each of the 
slices in Fig. 1. The comparison among the trees with the same value of N_S appears 
in the left side of each slice and it shows that as the number of samples used to build 
the CT trees increases, the common part of the trees also grows: the average value of 
Common is 4.08 when N_S = 5 and it reaches 7.76 when N_S = 50. All the slices have 
similar shape which shows that, as N_S increases, the similarity of trees built used 
different numbers of subsamples is even larger than the similarity of trees built with 
identical number of subsamples. Let’s analyse the first slice. Comparing trees built 
with 5 subamples and trees built with 10 subsamples an average value of Common of 
4.61 is obtained, which is larger than the value achieved when comparing trees built 
with 5 subsamples: 4.08. This tendency is maintained in the whole slice: Common is 
4.83 when the comparison is done among trees built with 5 and 50 subsamples. 

It can be observed in Fig. 1 that the same tendency is maintained in all the slices. This 
means that, from the physical structure point of view, even if the trees are built based on 
different subsamples, they are more steady as the number of subsamples increases, and 
they tend to a common structure in each domain. As a consequence we can state that the 
explanation related to the classification is more steady and wider as the parameter N_S is 
increased and it seems that an approximation model could be found. 

 

Fig. 1. Average results (11 domains) for Common (5x10-fold CVx20CT trees) 
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Although the increasing tendency is maintained in all the range of values analysed 
for N_S parameter, there might be a point where it is not worth to increase the number 
of samples, due to the computational cost of the tree’s building process and the error 
rates achieved. For example, in the experimentation presented in this paper, the 
average error rate is of 19.72 with a standard deviation σ = 0.15 and, even if the 
tendency is to diminish the error rate as N_S parameter increases, there are many 
databases where the smaller error has been found with 40 subsamples, so it might not 
be worth increasing N_S. In any case, the error is always smaller than the one 
achieved with C4.5 trees built based on the same data [6]. If we look to values 
obtained for %Common, we can observe that, in average, more than half (53.75%) of 
the structure of CT trees is maintained stable for the range analysed for N_S 
parameter. This means that at least half of the predictor variables taking part in the 
classification are maintained steady, providing this way robustness to the given 
explanation. 

5   Estimation of the Number of Subsamples Required to Achieve a  
     Certain Degree of Structural Convergence 

In this section we will try to find the number of subsamples required to induce a CT 
tree so that a fixed structural stability (%Common) is achieved; obtaining solutions 
with a fixed %Common can be interesting for different uses of classification trees. 
Therefore, we will try to estimate the value of N_S parameter that needs to be used in 
each domain in order to achieve the desired %Common. 

We want the model that relates %Common to N_S parameter to be robust and with 
this aim the experimentation (5X10 CV) has been extended to 20 domains: 19 from 
the UCI repository benchmark [1] (the 11 databases used in previous experimentation 
and iris, voting, hepatitis, segment210 (conserving the training/test division of the 
original data set), segment2310 (taking into account the whole set of data), sick-
euthyroid, vehicle, spam) and one from our environment, Faithful, which is a real data 
application from the electrical appliance’s sector. 

Based on the results in previous section (%Common is larger when N_S increases 
and, as a consequence, all the built trees tend to be similar) it seems reasonable to 
reduce the number of CT trees built in each fold as the number of subsamples 
increases. We have reduced the computational cost of the experimentation in this 
section by reducing the number of subsamples generated in each fold to 100 and using 
them disjointedly to build CT trees. Different number of instances of CTs have been 
built when varying the parameter N_S: N_S = 5 (20 trees), N_S = 10 (10), N_S = 20 
(5), N_S = 30 (3), N_S = 40 (2) and N_S = 50 (2). Even if the computational cost is 
reduced, the kind of conclusions we can draw, do not vary. 

Analysing the evolution of %Common for each one of the 20 databases when the 
number of samples used to build CT trees (N_S) goes from 5 to 50, we conclude that 
the values obtained in the experimentation can be approximated with logarithmic 
regressions with average value for R2: 0.85. 

Equation 1 shows the general expression for the regressions. 

DomainDomainDomain bSamplesNumberLnaCommon +⋅= )_(%  (1) 
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The values for coefficients aDomain and bDomain need to be set in order to make this 
expression practical. We have analysed the characteristics of the domains: size, 
dimensionality, number of categories of the dependent variable, variable types –
discrete, continuous, etc.–- number of missing values, etc., but no correlation has been 
found with the values of coefficients a and b. 

Analysing the values of coefficients a and b for the 20 databases, we find that, for 
a, the average value is 8.8294 with a standard deviation of σ=4.6629, whereas, for b, 
the average value is 25.2345 and the standard deviation σ=25.7777. Based on these 
values it seems more critical to find a way of approximating b, whereas for a the 
average value can be used. 

To find a relation among the %Common obtained for CT trees and the %Common 
of trees induced based on C4.5 algorithm [8] (even if they are worse in error rate and 
structural stability they are easier to generate: they have smaller computational cost 
than CTC algorithm) can probably help in our objective. The analysis made shows 
that a linear correlation among %Common for C4.5 and %Common for CT trees exists 
with an average value of 0.8834 for R2. So, the relation exists, and as a consequence, 
it seems that the value of %Common of C4.5 trees might be related to coefficients a 
and b in Equation 1. To try to find this relation we have plotted in Fig. 2 the values of 
%Common of C4.5 trees (axe X) with the values of a and b coefficients (axe Y) for 
each domain. 

Fig. 2. Relation among %Common of C4.5 trees and coefficients a and b in Equation 1 

Based on Fig. 2 no relation can be found among the %Common of C4.5 trees and 
coefficient a and, besides, the values of a are similar for every database. Therefore, in 
any specific domain, the average value obtained for it with the 20 databases, â = 
8.8294, can be used. On the contrary, in the case of coefficient b, the one with greater 
standard deviation, a relation exists: the points can be approximated with a linear 
regression. The expression appears in Equation 2 and the values of the coefficients are 
C1 = 0.8863 and C2 = -10.741. 

21 5.4%ˆ CCommonCCb DomainDomain +⋅=  (2) 

Estimating the value of b based on Equation 2, and using it in Equation 1 together 
with the value we have fixed for a, in each domain, the %Common value achieved for 
a fixed value of N_S can be predicted. In the experimentation made we have obtained 
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-10

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100
%Common C4.5

a

b



106 J.M. Pérez et al. 

the real values, and, if real and estimated values for each value of N_S parameter are 
compared, results show that independently of the domain, no significant differences 
exist (paired t-test with 90% confidence level [2]). The average correlation index 
among the estimations made and the real values is 0.893. 

Based on these results and working out N_S Equation 3 is obtained. As a 
consequence, we have proposed a model that is able to estimate the number of 
subsamples that would be needed to achieve the desired structural convergence level 
(%CommonCTDesired in Equation 3), with a reasonable computational cost. 

a

bCommonCT DomainDesired

eSamplesNumber ˆ

ˆ%

_

−

=  

(3) 

As an example, the estimation made with this model for breast-w database, is that 
trees built from 34 subsamples or more have to be built if we want to achieve a 
convergence level (%Common) of 90%. This is an acceptable approximation to reality 
where with 30 subsamples %Common is 97.7. 

6   Conclusions, Limitations and Further Work 

An analysis of the structural stability of classification trees induced using the CTC 
algorithm (Consolidated Tree Construction Algorithm) is presented in this paper. 
CTC algorithm is based on subsampling techniques but builds a single tree and 
achieves smaller error rates and larger structural stability (physical) than C4.5 
algorithm. As a consequence the explanation provided by the classifier is steadier. 

The structural stability of CT trees increases toogether with the number of 
subsamples used to build them. In fact, using the adequate number of subsamples the 
physical structure of the induced CT trees tends to converge. There is a model, 
presented in this paper, that can be used to estimate the number of subsamples that 
need to be used to obtain a fixed degree of structural stability. The estimation can be 
done with a reasonable computational cost because it is based on the study of the 
common structure of C4.5 trees which are computationally cheaper. 

The obtained estimation is not 100% precise, it is an approximation but it is simple 
and it gives an idea of the number of samples needed to achieve a certain level of 
convergence which will be enough in most of the applications. On the other hand, the 
model has not been tried yet with a database that has not been used to obtain it. This 
could be an experiment to do in the future. The estimation of coefficient a could also 
be improved in the future, so that the model fits better to reality. On the other hand, 
more strategies to measure the similarity of trees can be developed. 
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Abstract. A non-dominated sorting genetic algorithm is used to evolve
models of learning from different theories for multiple tasks. Correlation
analysis is performed to identify parameters which affect performance on
specific tasks; these are the predictive variables. Mutation is biased so
that changes to parameter values tend to preserve values within the pop-
ulation’s current range. Experimental results show that optimal models
are evolved, and also that uncovering predictive variables is beneficial in
improving the rate of convergence.

1 Introduction

Cognitive science aims to devise explanations for the observed behaviour of hu-
man or animal participants in different experimental settings. An important
component of this science is the construction of computational models which
can simulate the observed behaviour. Different classes of models, or theories,
may be defined based on the underlying representation or learning mechanisms
employed. Optimisation with single models on specific tasks has been shown to
produce better results than hand optimisation [1,2].

In previous work, we have formalised the process of developing robust com-
putational models, applicable to multiple domains [3,4]. This framework enables
us to treat the problem of finding optimal models as one of multi-criteria opti-
misation, and so apply an evolutionary technique to develop cognitive models.
We use a non-dominated sorting genetic algorithm (NDSGA) [5,6] to locate the
set of models which are not outperformed on all tasks (taken from categorisation
experiments) by any other.

We continue this paper by introducing the psychological data on categorisa-
tion in Section 2, describing the classes of models which we explore in Section 3,
and then introducing our evolutionary system in Section 4. Section 5 describes
our technique of attempting to locate important variables through correlation
analysis. Section 6 discusses some experimental results in developing a model of
categorisation. The paper is completed with a discussion section and conclusions.
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c© Springer-Verlag Berlin Heidelberg 2005



Discovering Predictive Variables When Evolving Cognitive Models 109

Table 1. Target behaviours of the 5-4 structure. The first column labels the examples,
the second major column gives the probability of responding with category A given that
example, and the final column gives the average response time in one experiment. (We
show data from two specific experiments, labelled ‘1ST’ and ‘2ND’, and the average
data (‘AVG’) for P (RA|Ei); classification time was not collected for items E10 to E16.)

P(RA|Ei)
EXAMPLE Value 1ST 2ND AVG TIME (S)

E1 1 1 1 0 0.78 0.97 0.83 1.11
E2 1 0 1 0 0.88 0.97 0.82 1.34
E3 1 0 1 1 0.81 0.92 0.89 1.08
E4 1 1 0 1 0.88 0.81 0.89 1.27
E5 0 1 1 1 0.81 0.72 0.74 1.07
E6 1 1 0 0 0.16 0.33 0.30 1.30
E7 0 1 1 0 0.16 0.28 0.28 1.08
E8 0 0 0 1 0.12 0.03 0.15 1.13
E9 0 0 0 0 0.03 0.05 0.11 1.19
E10 1 0 0 1 0.59 0.72 0.62
E11 1 0 0 0 0.31 0.56 0.40
E12 1 1 1 1 0.94 0.98 0.88
E13 0 0 1 0 0.34 0.23 0.34
E14 0 1 0 1 0.50 0.27 0.40
E15 0 0 1 1 0.62 0.39 0.55
E16 0 1 0 0 0.16 0.09 0.17

2 Psychological Data

The problem of categorisation is one of assigning categories to items, and has been
widely studied by psychologists and computer scientists for several decades. From
a machine learning perspective, the problem is to minimise the error when cate-
gorising new examples. However, from a psychological perspective, the problem is
much more subtle. Firstly, the aim of a model is to produce a similar pattern of data
to that obtained by human participants in the experiment. Secondly, the data to be
obtained may be of various kinds: for example, the proportion of correct responses,
the time to make a response, or the number of errors during training.

We use data from an experiment called the 5-4 structure, and specifically the
experimental data collected by Smith and Minda [7] from thirty earlier studies
for proportion of correct responses, and timing data gathered by Gobet et al. [8].
Table 1 summarises some of the psychological data used within this paper. Each
example is represented by selecting the binary values for four attributes. The
examples are arranged into three groups: the first group (E1-E5) are examples
of category A, the second group (E6-E9) examples of category B, and the third
group (E10-E16) are known as the ‘transfer’ examples. During training, the ex-
amples of the first two groups are seen and learnt. Finally, all examples, includ-
ing the training and unseen transfer examples, are presented, and the responses
recorded.
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Based on the notion of behavioural tests, introduced in [3], we consider the
data and how it is compared with the model’s performance in each experiment
as forming a specific experimental criterion or task. The aim of the modeller
is to find a model which matches the task as best as possible. For example, a
connectionist model may be trained on the examples from the first two groups,
and then tested on all the training examples: the output of the model will assign
each example into one or other of the categories. By training a collection of
models, we can obtain the probability of any given model responding with a
category label for each example.

We have described two kinds of experiment against which to judge the be-
haviour of a computational model: the probability of the model making an error
on any given item, and the time to produce a response. Each of these exper-
iments produces, from the model, a behavioural measurement when presented
with the examples. There are many ways of quantifying the degree to which a
model’s performance matches that of the human experimental participants: the
degree of match is known as the fitness of the model in that experiment. We use
two standard techniques: the sum-squared error (SSE) and the average absolute
deviation (AAD) of the model’s responses from the observed data. SSE is com-
puted by taking the sum of the squared difference between the model’s response
and the target response across the examples. AAD is the average of the absolute
difference between the model’s response and the target response.

An individual behavioural test is used to compute the fitness of a model to
some behaviour, and thus requires the behavioural data and the fitness compari-
son method to be specified. Later in the paper, we shall refer to behavioural tests
as, for example, ‘SSE Time’. This means that we are measuring the deviation
of the model’s timing responses using the sum-squared error fitness function.
Similarly, ‘AAD 1st’ refers to the average absolute deviation on the first set of
data from Table 1 on the probability of responding with category A, etc.

3 Computational Models

We use three different classes of model, all of which are capable of performing
the categorisation experiment, and all typical of the kinds of model used within
computational modelling. We briefly introduce each class of model below, but
first we describe how the models are used within our optimisation technique.

The critical factor behind our technique is that examples of each class can be
created by selecting values for the parameters which determine how the model
performs. For example, the mathematical models have weights, which signify
the relative importance of each observed attribute, and connectionist networks
have a parameter for the learning rate. The aim of modelling is to find those
parameter settings which enable the model to reproduce the observed behaviour
(the figures in Table 1) as closely as possible. The novel challenge which we
address is to attempt to model multiple kinds of task with each model, and
also to locate those models which perform best when compared with the other
models.
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Fig. 1. An example discrimination network, classifying the 5-4 structure

3.1 Mathematical Models

For the class of mathematical models, we use two of the eight models considered
by Smith and Minda [7], specifically the context model, which uses all previously
seen examples to determine its response to a novel example, and the prototype
model, which forms an overall template for examples of each category, deter-
mining its response by how close a novel example fits each template. All of the
mathematical models use a formula to provide the probability of responding with
category A given certain sets of training data.

The mathematical models are determined by seven parameters:

weights four weights determine the relative significance of each of the attributes
defining the examples.
sensitivity is a factor used to scale the response to the observed attribute values.
guessing is a parameter used to capture the fact that people sometimes simply
guess a category, without doing any reasoning.
time is used to capture the time required to make a classification.

3.2 Discrimination-Network Models

Discrimination-network models, such as EPAM [8], or CHREST [9], have had a
long history within cognitive science. Their strength is in modelling the incre-
mental processes of learning and classification which underpin human behaviour
in the categorisation experiments. Fig. 1 illustrates a sample discrimination net-
work, learnt by CHREST when trained on data from the 5-4 experiment. Infor-
mation is stored as chunks within individual nodes. Tests on the links between
nodes are used when sorting a pattern from the root node (the black disc). The
dashed links represent naming links, which are used by CHREST to associate
categories with perceived information. The discrimination network is built up
incrementally as the model is given each training example.
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There are three parameters used within the model:

learning probability determines the likelihood that CHREST will learn a given
training pattern.
reaction time determines how long it takes CHREST to perceive and react to
a new example.
sorting time determines the time to match and pass along a test link.

3.3 Connectionist Models

The typical connectionist network [10] comprises a set of nodes interconnected
by weighted links. The links pass activation between the nodes, and each node
uses an activation function to determine its own output based on the input.
We use a single-unit perceptron to model the categorisation experiment, with
four input links to capture the four attribute values, and the activation of the
perceptron used as the model’s output category.

There are four parameters for the perceptron model:

theta is the output threshold value for the perceptron.
eta is the learning rate.
learning probability determines the likelihood that the network will learn a
given training pattern.
time is used to capture the time required to make a classification.

4 Multi-criteria Optimisation with a Non-dominated
Sorting Genetic Algorithm

We define a space M of cognitive models by collecting together the abstract
space of models of the four theories. Thus, a model, m ∈ M, will be a specific
set of parameter values for one of the classes of theories. Each task described in
Section 2 is defined as a function, fi(m), which produces the fitness of a model
for that task. We also assume that we aim to minimise fi(m) ≥ 0.

The presence of multiple constraints, fi, makes the problem a multi-criteria
optimisation problem. One of the key challenges is to define ‘optimal’, because
two models may outperform each other on different constraints. Our aim is
instead to obtain the set of models which are not worse in all constraints than
any other model. Formally, we say that model m1 dominates model m2 if:

∀i • fi(m1) ≤ fi(m2) ∧ ∃j • fj(m1) < fj(m2)

In other words, m1 does at least as well as m2 everywhere, but there is at least
one constraint in which m1 does better.

NDSGA is a standard genetic algorithm using the property of non-dominance
as a fitness function. Essentially, cross-over is performed across the entire pop-
ulation, but the selection of parents is biased towards those individuals which
are not dominated in the current population. We also require the algorithm to
maintain populations of each theory type, for the purposes of comparison. Our
adapted NDSGA is described in Fig. 2.
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1. Four separate, equal-sized populations, are created, each population representing
a random collection of models from one of the four theory types.

2. The four populations are pooled, into a set P , and the following four sets are
extracted:
set 1 the non-dominated members of P
set 2 the non-dominated members of P \ (set 1)
set 3 the non-dominated members of P \ (set 1 ∪ set 2)
set 4 the remaining elements, P \ (set 1 ∪ set 2 ∪ set 3)

3. Four new populations are created, each population consisting of models from a
single theory, and each of equal size. The populations are constructed by cross-
over, using relevant individuals from each of the four sets as parents: items in set 1
are twice as likely to be selected as from set 2, etc. Members of set 1 are retained.

4. Mutation is performed with probability mutate on the whole population.
5. The process begins again at step 2, until the maximum number of cycles has been

reached.

Fig. 2. Modified non-dominated sorting genetic algorithm

5 Discovering Predictive Variables

Each class of model is defined by a set of parameters, or variables, with vary-
ing parameter values defining different models. Each model applied to a different
task generates a different performance against that task, however it is likely that
the importance of each parameter will vary with the task. For instance, timing
parameters will clearly be important in tasks measuring response time, but they
may also be critical in determining accuracy where training examples are only
presented for fixed amounts of time. The question we ask here is whether our ge-
netic algorithm for evolving cognitive models can also identify those parameters
which are ‘predictive’, in the sense of being strongly correlated with performance
on specific tasks.

Fig. 3 illustrates the performance of the time parameter for 10,000 instances
of the connectionist type of model in two different tasks. As is readily apparent,
the performance of the model has a clear global minimum for task ‘AAD Time’
(on the right), but no such optimum value is apparent for task ‘SSE 1st’ (on
the left). We use a statistical measure, Pearson’s product moment correlation,
to locate those parameters which take on optimal values in individual tasks. By
storing every model tested by the genetic algorithm, along with its fitness on all
of the tasks, we test the degree to which any parameter’s value correlates with
task performance. Specifically, we locate the value of the parameter, p, in the
stored models which corresponds to the lowest fitness value for each test. The
degree of correlation is then computed between the value of the fitness and the
absolute difference of each parameter value from p. A high degree of correlation
(> 0.8) means that the parameter acts like the right-hand side of Fig. 3.

The correlated values are used in two ways. Firstly, reporting the correlations
is useful in providing additional explanation as to where and why a particular
model does well in any given task. Secondly, the stored best values are used to
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Fig. 3. Graph of performance against parameter value on two tasks

Table 2. Best performance, and model class, on selected individual tasks

Task Performance Class
SSE Avg 0.082 Connectionist
AAD Avg 0.057 Connectionist
SSE Time 63814 CHREST
AAD Time 0.069 CHREST

bias mutation of an individual in the population. During mutation of a given
parameter, if there is a best value stored, then mutation will pick a new random
value near to the best value, in half the cases. In the other half, a new random
value is chosen near the current one.

6 Experiments

There were two aims to these experiments: firstly, to confirm that good models
were found by the evolutionary process, and secondly, to explore whether the
discovery of predictive variables had an impact on the convergence rate. The
experiments were run using a population of 200 models, 50 of each type, and
allowing training to progress for 500 cycles. The probability of mutation was set
at 1.0. Two sets of experiments were run, one with the transfer of bias turned
off, and one with it turned on.

Table 2 summarises, for selected tasks, which model type achieved the best
performance on that task. Interestingly, different model types do the best on
different tasks. The performance measures found here are comparable with the
best models in the literature, and, in some cases, exceed the fits obtained. For ex-
ample, Gobet et al. [8] achieved a fit around 0.300 for the ‘AAD Time’ criterion,
whereas our system produced a fit of 0.069. These data confirm that our system
discovers useful cognitive models in line with those obtained by practitioners.

Table 3 lists selected correlations detected by the system. The correlations
mostly agree with what might be expected. There are strong, and readily appar-
ent, correlations between the different models’ timing parameters and the task
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Table 3. (Selected) reported parameter values and tasks with high (> 0.8) correlation

Class Parameter Value Task Correlation
Context response time 1174.74 SSE Time 0.97

Prototype response time 1129.73 AAD Time 0.99
Connectionist response time 1130.62 AAD Time 0.98

CHREST reaction time 242.52 AAD Time 0.82
CHREST sorting time 512.60 AAD Time 0.86
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Fig. 4. Convergence rate, with and without transfer of bias, for first 30 learning cycles,
of average population performance

involving a timed response. No behavioural effects were apparent for most of the
other parameters. Partly, this is a limitation in the current approach, which only
seeks a correlation between one parameter’s value and the fitness against a task.
Most parameters, such as the weights within the mathematical models, work
together to produce a behaviour, and more sophisticated analysis techniques are
required to locate such dependencies; individually, their correlation with task
performance is of the order of 0.3. However, it may also be the case that for
many of the parameters, e.g. the learning rate for a connectionist network, there
simply is no correlation of the parameter value with the model’s performance.
This would make the parameter a ‘free’ variable in the theory; one needed to
make the implementation work but which has no explanatory power.

We explored the effect of using the predictive variables discovered by corre-
lation analysis by comparing the rate of convergence of the average performance
of the evolving population both with and without the transfer of bias to mu-
tation. Fig. 4 plots the average performance of the entire population of models
against training time for a single task, both with and without the transfer of bias.
There is a clear improvement in the rate of convergence of the non-dominated
set of models when transfer is included. This is readily explained, as the effect
of transfer is to reduce the chance that a model will vary from its optimal value.
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7 Discussion

Computational modelling is a complex application, to which evolutionary tech-
niques may be profitably applied, as was first proposed by Ritter [1,2]. We have
formalised this application as one of multi-criteria optimisation, in which models
are drawn from classes of theories, and are optimised against separate experi-
mental criteria. Genetic algorithms are an important technique for solving such
multi-criteria problems, and Coello [11] provides a useful summary. Unique to
our application is the selection of models from multiple classes of theories, where
most approaches to multi-criteria optimisation restrict themselves to individuals
drawn from a single class. We have tailored our genetic algorithm to support the
evolution of models from multiple theories; some of the difficulties in maintaining
useful competing models are discussed in [12].

We have focused on the development of optimal models within established
theories. A more complex approach is to evolve new theories. For example, Lan-
gley et al. [13] have developed a technique for inducing process models from con-
tinuous data. Our approach, based on well-defined behavioural tests for specific
model types, is readily expanded to include the development of novel theories,
although this will increase the complexity of the search space.

Our suggestion in this paper of using correlation techniques to uncover pre-
dictive variables improves the convergence rate of the genetic algorithm. Michal-
ski [14] uses stronger machine learning techniques within evolutionary algo-
rithms, suggesting that inductive hypotheses about the performance of specific
individuals may be developed. In later work, we intend to extend the range of
model types and experiments, and such stronger machine learning techniques
may prove beneficial in place of our direct computation of correlations.

8 Conclusions and Further Work

We have described an evolutionary system for developing optimal sets of cogni-
tive models which satisfy multiple experimental criteria. Analysing the evolution
of specific model parameters against individual tasks enables the system to pick
out optimal values for individual variables. An evolutionary bias in mutation is
then employed to guide the system towards these optimal values. Experiments
support the value of the technique in locating optimal models across multiple
experimental tasks, and also that the identification of predictive variables speeds
up the rate of convergence to optimal values.

Further work will focus on widening the range of model types and tasks
being explored. As we have argued elsewhere [4], the evolutionary techniques
described here are suitable for developing complex models of human behaviour.
The selection of predictive variables from the system’s own training history will
be extended to seek more complex correlations between multiple variables.
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Abstract. A new method for obtaining the optimal path to robot navigation in 
2-D environments is presented in this paper. To obtain the optimal path we use 
mathematical morphology in binary worlds and the geodesic distance. The 
navigation algorithm is based on the search for a path of minimum cost by 
using the wave-front of the geodesic distance of the mathematical morphology. 
The optimal path will be the one that minimize the direction changes of the 
robot. The algorithm of optimal path will be applied in several and complex     
2-D environments. 

1   Introduction 

In path planning for robot navigation it is necessary to know information about the 
environment in order to efficiently execute the navigation tasks. The information can 
be represented with different abstraction levels, considering geometric and/or 
topological information of the environment [1]. In this paper, the approach used 
considers geometric information of the environment for generating a map and then, 
using it, the planner computes the optimal navigation path between two points of the 
environment. 

The techniques for path generation in the environment can be divided into three 
categories: global, local or mixed [2]. These techniques can be used with geometric or 
topological information. 

Global techniques need a global representation of the environment to search for a 
global solution to the problem, considering the full representation of the environment. 

Local techniques only consider some part of the environment for planning the path, 
i.e., the vicinity of the search point. These techniques are less time-consuming than 
the global ones, but they can achieve a local minimum instead of the global one. 

Mixed techniques combine the ideas of global and local techniques, obtaining good 
results by using the best characteristics of each technique. 

Once the environment representation is made and the search technique is selected, 
the relevant literature offers different approaches for seeking the best navigation path 
for going from one point to another. Taking these techniques into consideration, we 
can emphasize the following ones: fuzzy logic [3], discrete artificial potential fields 
[4], Voronoi graphs, genetic algorithms [5], graph search optimization paths [6]. 

Our approach supposes a known world, represented in a 2-D geometric map. This 
map is transformed into a discrete world representation, using a global approach of 
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the world. By using the geodesic transformations of the mathematical morphology, all 
the possible paths have been computed. Once these paths are obtained, we propose a 
method for choosing the best of these, using a branch-and-bound algorithm, taking 
several rules for choosing the optimal one into consideration. 

In other hand, mathematical morphology is a non-linear image-processing 
approach, which is based on the application of the lattice theory to spatial structures. 
Mathematical morphology is a powerful image-analysis technique with applications 
in filtering, enhancement, feature extraction, etc [7,8,9].  

In binary morphology, image objects are considered as sets. All the morphological 
operations are based on the interaction between the original image and another set of 
a known shape, called the structuring element. In geodesic transformations, the 
morphological operators applied to an original image involve a second image, known 
as the mask, which conditions the final results.  

This paper is divided into the following sections: In Section 2 geodesic 
transformations of the mathematical morphology are presented. In Section 3, the rules 
used for the branch-and-bound algorithm are explained. In Section 4, several 
examples of the algorithm are shown, computing the best path in the same world and 
using different starting and finishing points of the trajectory. Finally, our conclusions 
are presented Section 5. 

2   Geodesy and Connectivity in Mathematical Morphology 

Geodesic distance was introduced in the framework of image analysis, in 1980, by 
Lantuéjoul and Beucher [10] and is the base for several morphological operators [11]. 
The definition of the geodesic distance is as follows: 

Let A be a connected set. The geodesic distance dA(i,j) between two pixels i and j is 
defined as the length of the shortest path from i to j. C being = (c1, c2,…, cn) the co-
ordinates of the path joining i and j, all of which are included in A: 

           1( , ) min{ ( ) | , }A nd i j length C c i c j and C A= = = ⊆  (1) 

The set A is referred to as the geodesic mask. If A is not connected, the two pixels i 
and j may belong to two different connected components of A. In this case, the 
geodesic distance is infinite. The geodesic distance is always greater than or equal to 
the euclidean distance. In Figure 1, the geodesic distance in a 2-D environment can be 
seen. 

 

Fig. 1. Geodesic distance in a 2-D environment 
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If we consider the grouping of pixels, we can calculate the geodesic distance 
between a point i and any sub-set of pixels X in A. In such a case, dA(i,X) is the 
shortest distance between i and any point j in X: 

    { }( , ) min ( , )A A
j X

d i X d i j
∀ ∈

=  (2) 

Given that the geodesic distance satisfies the axioms of a metric, the distance between 
any sub-set X in A from any pixel i in A, is dA(i,X). 

The geodesic distance can be calculated by geodesic dilation. Indeed, the 
successive thresholds of the geodesic distance function of X in A correspond to the 
successive geodesic dilations of X in A: 

     { }( ) ( ) | ( , )n
A AX i A d i X nδ = ∈ ≤  (3) 

Where the geodesic dilation of size n of a marker set X with respect to a mask A is 
obtained by performing n successive geodesic dilations of X with respect to A: 

       ( ) ( ) ( 1)( ) ( ) ( )n n n
A A AX X Xδ δ δ −=  (4) 

The geodesic dilation of size 1 of the marker set X with respect to the mask A is the 
intersection of the dilation of the marker set X with the geodesic mask: 

       (1) (1)( ) ( )A X X Aδ δ=  (5) 

2.1   Distance and Connectivity 
 
Connectivity is classically studied in a topological or a graph-theoric setting [12,13]. 
With different types of connectivity between pixels, the results of the geodesic 
distance will be different. In flat settings, the connectivity will be either 4 or 8. 
Connectivity 8 allows diagonal movements, while connectivity 4 does not. In Figure 2 
we can see the different connectivity [14]. 

             

(a)                   (b) 

Fig. 2. Connectivity graph. 4-connectivity (a) and 8-connectivity (b) 

In Figure 3, we show an example of the function of the geodesic distance in a mask 
from a marker set, using 4-connectivity and 8-connectivity. The grey shades of the mask 
represent obstacles in which the marker can not be propagated. The marker is a 3x3 set. 

The main application of the geodesic distance transformation was described by 
Verbeek et al in [15] and Lengyel et al in [16]. By back-tracking the distance 
propagation, one can find the shortest path between any two points. In this article, we 
employ the geodesic distance for this very objective. We will move the robot from i to 
j in a 2-D environment A, by means the wave-front of the geodesic distance dA(i,j). 
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(a)          (b)     (c)      (d) 
 

Fig. 3. Geodesic distance function in a mask (a) from a marker (b), using 4-connectivity and  
8-connectivity 

In this new application the marker will be a mobile robot and the mask will be 
the environment of movement. More than one path linking i and j in the 
environment may have the same minimal length dA(i,j), so that we will have to use 
algorithms that reduce the number of paths, based on a given movement cost in 
following the path. 

3   Selecting Reference Points for the Trajectory 

To accomplish a trajectory by a robot, the geodesic morphology gives us several 
possible solutions according to the connectivity of the discrete world used for its 
computation. Taking that into consideration, one of these trajectories has to be 
selected to be followed by the robot arm. A branch-and-bound algorithm has been 
used to select the best path. The characteristics used for determining the optimal path 
are the followings: 

• Minimizing the number of changes of direction. If there are two paths with the 
same distance but with different amounts of changes in direction, the one with 
the least changes is selected as a good one (Figure 4.a). 

• Selecting the shortest euclidean path, taking into account that two paths with 
the same number of directional changes can arrive at the same point by 
different ways. To resolve this problem, a linear movement, either horizontal or 
vertical, is associated with a weight of 5 and a diagonal movement with a 
weight of 7. This is because the diagonal distance between two points is √2 and 
the linear distance, either horizontal or vertical, is 1. The computation of the 
square-root is more time-consuming than the use of integral numbers. The 
values 5 and 7 have been selected to minimize the error that arises in that 
approach. The best path of the two will be the one with the lower weight 
(Figure 4.b) 

The information used for selecting the optimal path with these rules, can give us 
several paths with the same geodesic and euclidean costs. This happens because we 
are using a discrete representation of the world. The real world is not discrete, so that 
continuous movements can be followed, and the directions of these movements are 
not restricted to eight values.  
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The fact of considering a continuous world is taken into consideration in the 
following step of the algorithm. When we have obtained a set of paths with the 
minimum cost, according to the previous criteria, these paths are reduced, taking into 
consideration that if there are several different paths to arrive at the same point, and 
the straight line in the continuous world between them is free of obstacles, then we 
can use this straight line instead of the way defined by these paths (Fig. 5). 

Finally, to define the path, instead of using all the points in the discrete world, 
which will be impossible if we define straight lines in the continuous world, only the 
ones in the corners where the trajectory changes direction are stored for controlling 
the path. Between each pair of points the path has to be a straight line. In Figure 6 we 
can see a flowchart to the algorithm presented here. 

 

 

(a)                           (b) 

Fig. 4. (a) Several paths with the same geodesic distance (8-connectivity) and with different 
amounts of changes. The best one is the one in the left image. (b) Several paths with the same 
number of directional changes but with different euclidean costs. The best one is the one in the 
left image. (8-connectivity). 

 

(a)                    (b) 

Fig. 5. (a) We can see several paths with the same cost for arriving from one point to another. 
(b) The best continuous path is shown, the straight line. To know whether it is possible to 
follow this line, the discrete positions marked in the image have to be free of obstacles. 
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Fig. 6. Flowchart of the algorithm for robot navigation planning 

4   Geodesic Paths for Robot Navigation 

The examples for testing the algorithm use a 2-D environment, which has been 
converted to a discrete world. The robot (marker) is represented by a nxm set (n∈ 2, 
m∈ 2). To reduce calculations, we dilate the obstacles and edges of the environment  
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(mask) with a structuring element of size nxm. This way, we only compute the 
geodesic distance from the centre of the marker. If we use 8-connectivity, the dilation 
is made with a (n+1)x(m+1) to avoid collisions. 

To compute the path to be followed, the geodesic approximation and the branch-
and-bound algorithm are used for selecting the best path. 

In Figure 7.a, we show the resulting path for going from Point (25,25) to Point 
(163,17), using an object marker (robot) of 3x3 in size. As we can see, the path 
followed is composed of the straight lines that join the points of reference obtained 
from the algorithm. In Figure 7.b, we show the resulting path for going from Point 
(134,109) to Point (119,109) using a marker of 3x3 in size. In this example, there are 
two possible solutions with the same cost. Both solutions are given by the algorithm. 

      

  (a)      (b) 
  

Fig. 7. (a) Path followed for going from Point (25,25) to Point (163,17). (b) Path followed for 
going from Point (134,109) to Point (119,109). The dotted line represents one path and the 
continuous line the other one. 

       

(a)       (b) 
 

Fig. 8. (a) Path followed for going from Point (5,118) to Point (161,2). (b) Path followed for 
going from Point (154,102) to Point (21,14). 
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In Figure 8.a, we show the resulting path for going from Point (5,118) to Point 
(161,2) using an object of 3x3 in size. In this example, there is only one possible path 
to be followed by the object. In Figure 8.b, we show the resulting path for going from 
Point (154,102) to Point (21,14), using an object of 3x3 in size. In this example, the 
environment used for computing the path is different from the one used in the 
previous examples, but of the same size. There are several paths for going between 
desired points. The first route is indicated by the continuous line, and another route is 
represented by the dotted line. These two routes can be combined to gives us the 8 
possible routes with the minimum cost. These 8 paths have the same directional 
changes and the same euclidean cost. 
 All the examples of the new algorithm for robot navigation has been tested in a 
Intel Pentium 4 processor 2GHz, and the CPU time (in seconds) has been similar to 
current algorithms for navigation planning: 0.5-1 seconds in above discrete worlds.  

5   Conclusions 

In this paper, we have presented a new approach for obtaining the optimal path for 
robot navigation in 2-D environments. The originality of this algorithm is that it is 
based on the geodesic distance of the mathematical morphology. We seek the paths 
with minimum cost. This cost is the number of directional changes in the movement. 
Taking that into consideration, for paths with the same cost, the one with the 
minimum euclidean distance in the continuous world is selected.  

Several examples of the application of this algorithm have been presented. In these 
examples, the path obtained for going from the starting to the finishing points have 
been shown. It can be appreciated that the selected path uses a straight line in the 
continuous world, between pairs of points, and these lines do not exist in the discrete 
world. This is an important optimization of the algorithm proposed, which computes 
the path in the discrete world and gives the solution in the continuous one. 

At present, we are working in the adaptation of our algorithm for a fast calculation 
in discrete and non discrete worlds and in a 3-D navigation. This approach in 3-D can 
be used for air and submarine navigation, and for computing a robot arm trajectory in 
a known environment. 
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Abstract. We propose a new cost function for neural network classifi-
cation: the error density at the origin. This method provides a simple
objective function that can be easily plugged in the usual backpropa-
gation algorithm, giving a simple and efficient learning scheme. Exper-
imental work shows the effectiveness and superiority of the proposed
method when compared to the usual mean square error criteria in four
well known datasets.

1 Introduction

The work by Pŕıncipe and co-workers [1,2], proposes the use of information mea-
sures such as entropy as cost functions for adaptive systems, which are expected
to deal better with high-order statistical behaviours than the usual mean square
error (MSE). In particular, they proposed the minimization of the error (dif-
ference between the output and the target of the system) entropy. The idea is
simple. Minimizing the error entropy is equivalent to minimizing the distance
between the probability distributions of the target and system outputs [1]. Thus,
the system is learning the target variable. The particular application to neural
network classification with Rényi’s entropy of order α = 2 [3,4] and Shannon’s
entropy [5] has been sucessful. We propose a different but related procedure.
The minimization of error entropy is basically inducing a Dirac distribution (the
minimum entropy distribution) on the errors. It has been shown that under mild
conditions, this Dirac can be centered at zero [3] and thus the error is made to
converge to zero. For this reason, we propose to update the weights of a clas-
sification neural network by maximizing the error density at the origin. As we
will see, this procedure provides a simple objective function and with no need
for integral estimation as in other approaches.
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2 The Zero-Error Density Maximization Procedure

Consider a multi-layer perceptron (MLP) with one hidden layer, a single output
y and a two-class target variable (class membership for each example in the
dataset), t. For each example we measure the (univariate) error e(n) = t(n) −
y(n), n = 1, . . . , N where N is the total number of examples. As discussed above,
the minimization of the error entropy induces a Dirac distribution on the errors.
It can also be seen that when encoding the classification problem such that
t ∈ {−a, a} and y ∈ [−a, a] for a > 0, the induced Dirac distribution must be
centered at the origin and thus the error is made to converge to zero [3]. Hence,
adapting the system to minimize the error entropy is equivalent to adjusting the
network weights in order to concentrate the errors, giving a distribution with
a higher peak at the origin. This reasoning leads us to the adaptive criteria of
maximizing the error density value at the origin. Formaly,

w = arg max
z

f(0; z) (1)

where w is the weight vector of the network and f is the error density. We
denote this principle as Zero-Error Density Maximization (Z-EDM). As the error
distribution is not known, we rely on nonparametric estimation using Parzen
windowing

f̂(e) =
1

Nh

N∑
n=1

K

(
e − e(n)

h

)
(2)

and the Gaussian kernel

K(x) =
1√
2π

exp
(
−1

2
x2

)
. (3)

This is a common and useful choice, because it is continuously differentiable, an
essential property when deriving the gradient of the cost function. Hence, our
new cost function for neural network classification becomes

f̂(0) =
1

Nh

N∑
n=1

1√
2π

exp
(
−1

2
e(n)2

h2

)
. (4)

3 Backpropagating the New Criterion

3.1 Determining the gradient

As we will see, the new criterion can easily substitute MSE in the backpropaga-
tion algorithm.

If w is some network weight then

∂f̂(0)
∂w

=
1

Nh

∑
n

1√
2π

∂
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−1

2
e(n)2

h2
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(
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)
e(n)

∂e(n)
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. (5)
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Basically one has
∂f̂(0)
∂w

=
∑

n

a(n)e(n)
∂e(n)
∂w

(6)

with

a(n) = − 1
Nh3

K

(
0 − e(n)

h

)
.

For the case of MSE a(n) = 1, ∀n. The computation of ∂e(n)
∂w is as usual for the

backpropagation algorithm. Note that the procedure is easily extended for multi-
ple output networks. Taking a target encoding for class Ck as [−1, . . . , 1, . . . ,−1]
where the 1 appears at the k-th component and using the multivariate Gaussian
kernel with identity covariance, the gradient is straightforward to compute

∂f̂(0)
∂w

= − 1
NhM+2

N∑
n=1

K

(
0− e(n)

h

) M∑
k=1

ek(n)
∂ek(n)

∂w
(7)

where M is the number of output units and e(n) = (e1(n), . . . , eM (n)). Having
determined (7) for all network weights, the weight update is given, for the m-th
iteration, by the gradient ascent (we are maximizing) rule

w(m) = w(m−1) + η
∂f̂(0)
∂w

.

3.2 Choice of η and h

The algorithm has two parameters that one should optimally set: the smoothing
parameter, h, of the kernel density estimator (3) and the learning rate, η. As
already seen in previous work [4,5] we can benefit from an adaptive learning
rate procedure. By monitoring the value of the cost function, f̂(0), the adaptive
procedure ensures a fast convergence and a stable training. The rule is given by

η(m) =
{

u η(m−1) f̂(0)(m) ≥ f̂(0)(m−1) , 0 < d < 1 ≤ u

d η(m−1) ∧ restart otherwise
.

If f̂(0) increases from one epoch to another, the algorithm is in the right direc-
tion, so η is increased by a factor u in order to speedup convergence. However, if
η is large enough to decrease f̂(0), then the algorithm makes a restart step and
decreases η by a factor d to ensure that f̂(0) is being maximized. This restart
step is just a return to the weights of the previous epoch.

Although an exhaustive study of the behaviour of the performance surface has
not been made yet (this is a topic for future work), we believe that the smoothing
parameter h has a particular importance in the convergence success. Just as in
the case of entropy, the “dilatation property” mentioned in [2] may also occur.
If h is increased to infinity, the local optima of the cost function disappears,
letting an unique but biased global maximum to be found. Also note that, as
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training evolves, it is expected that the errors e(n) get concentrated around 0.
Hence, we may benefit from an adaptive rule that starts with a high value of h
that is decreased as training evolves. Clearly, this rule should be based on some
measure of the local behaviour of the cost function or the gradient. However,
we have not yet been successful with this adaptation rule and we postpone this
objective as future work. The strategy was then to perform experiments with
some fixed h and choose the best ones.

4 Experimental Results

4.1 Convergence Capacity in a Vowel Discrimination Problem

In the first experiment we evaluated the convergence capacity of several MLP’s
(2, 6 and 10 hidden units) trained using Z-EDM and MSE cost functions, when
applied to a vowel discrimination problem. The data, designated Pb12, contains
608 examples produced by 76 speakers measuring the first and second formants
of the vowels i, I, a and A [6]. The MLP’s were trained 100 times with the whole
dataset and a convergence success was counted whenever the final training error
was below 9%. We varied the number of training epochs, initial learning rate η
and smoothing parameter (h = 2 and 5) in the case of Z-EDM. Table 1 shows the
convergence success rates for Z-EDM and MSE. Below these values, the mean
training errors and standard deviations (over the 100 repetitions) are presented.
In this Table and in the following, hid stands for the number of hidden units.

Table 1. Convergence success rates in 100 repetitions of different MLP’s trained with
Z-EDM and MSE. Below are the mean training errors and standard deviations.

hid 2 6 10
epochs Z-EDM MSE Z-EDM MSE Z-EDM MSE
200 71% 6% 100% 87% 100% 90%

9.54(4.38) 37.9(21.1) 7.31(0.19) 9.78(8.26) 7.22(0.08) 9.11(8.88)
500 96% 21% 100% 97% 100% 99%

7.61(2.05) 28.6(18.3) 6.62(0.28) 7.77(6.83) 6.58(0.22) 6.61(4.72)
1000 99% 38% 100% 96% 100% 100%

7.51(2.03) 20.7(14.8) 6.07(0.21) 7.80(7.21) 6.14(0.24) 5.83(0.29)

The results of Table 1 show that the proposed method is clearly more powerful
in classifying this dataset. In fact, we encounter already a very good performance
for the case of 2 hidden units, while MSE has a global poor performance. By
inspecting the training errors and standard deviations, we also find a higher
stability of Z-EDM. We’ve also noted that Z-EDM was not influenced by the
initial value of the learning rate, while MSE became very unstable for very high
values of η. For 2 hidden units and 200 training epochs, Z-EDM preferred h = 5
while for higher training epochs h = 2 worked better. This can be related to the
smoothness of the performance surface and the dilatation property mentioned
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(d) hid = 10, epochs = 500

Fig. 1. Decision boundaries for Pb12. Solid dark line was obtained with Z-EDM and
dashed light line with MSE.

earlier. With a small h and consequently a less smoother surface, the number of
training epochs (200) may not be sufficient in most cases. This can be surpassed
by increasing h at a cost of biasing the optimal solution. Thus the results of
Table 1 were obtained with an initial η = 0.5 and h = 2 except for epochs = 200
where h = 5.

Figure 1 shows decision boundaries obtained with Z-EDM and MSE in differ-
ent situations. The top figures were obtained with hid = 2 and the bottom with
hid = 10; the left figures used epochs = 200 and the right ones epochs = 500.
The figures show evidence of the stability of Z-EDM and the poor performance of
MSE for hid = 2. Also, we encounter a higher adaptation of MSE decision lines
to the data for hid = 10, which can be a drawback in terms of generalization.
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Fig. 2. Projection of wdbc (left) and iris (right) onto the first two principal compo-
nents

Table 2. Description of the four datasets used in the experiments. The last column
reports the number of training epochs used for each dataset.

Datasets #Instances #Features #Classes #Train epochs
Pb12 608 2 4 500
wdbc 569 30 2 40
pima 768 8 2 45
iris 150 4 3 90

4.2 Evaluating the Generalization Ability

To evaluate the generalization ability of MLP’s trained with Z-EDM, we con-
ducted a train and test procedure with Pb12 and three other datasets taken
from the UCI repository [7]. Two of these datasets are from medical applications.
wdbc is concerned with the diagnosis problem between benign and malignant
breast cancer and Pima deals with the diagnostic of diabetes according to the
World Health Organization. The fourth dataset is the well known Iris created
by R. A. Fisher. Table 2 gives a brief description of the four datasets.

Figure 2 shows wdbc (left) and iris (right) projected onto the first two
principal components. As we can see, wdbc has a simple structure and low
complexity MLP’s should be sufficient to achieve good results. The projection
of iris shows that one of the classes is linearly separable from the other two,
while the latter are not. Note that this is a class structure very similar to the
one encountered for Pb12 (see Fig. 1).

The following procedure was performed 50 times: divide the data in two
subsets, half for training and half for testing; train the network and compute the
test set error; interchange the roles of the training and test sets; perform training
and test again. The number of training epochs used is reported in Table 2 for
each dataset. This procedure was applied to several MLP’s varying the number
of hidden units from 2 to 20.
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Table 3 shows the mean test errors and standard deviations (in brackets).
The results of Pb12 confirm the previous experiments. For a low number of hid-

Table 3. Test error rates (%), standard deviations (in brackets) and p-values for the
Mann-Whitney test of the train and test procedure for several MLP’s, trained with
Z-EDM and MSE. The right column presents the best results.

pb12 2 5 6 11 20 Best
Z-EDM 8.79(2.64) 7.53(0.56) 7.44(0.58) 7.51(0.58) 7.42(0.47) 7.32(0.53)→ hid = 9
MSE 31.2(13.2) 10.1(5.68) 11.0(7.18) 7.34(0.62) 7.14(0.67) 7.10(0.48)→ hid = 15

p-value 0.000 0.052 0.020 0.227 0.012 0.054

wdbc 2 3 4 5 6 Best
Z-EDM 2.55(0.50) 2.55(0.46) 2.50(0.55) 2.58(0.50) 2.40(0.37) 2.38(0.37)→ hid = 18
MSE 3.11(0.53) 3.18(0.70) 3.25(0.70) 3.08(0.48) 3.17(0.65) 2.99(0.88)→ hid = 20

p-value 0.00 0.00 0.00 0.00 0.00 0.00

pima 2 4 6 8 10 Best
Z-EDM 23.5(0.80) 23.2(0.67) 23.4(0.87) 23.3(0.66) 23.5(0.91) 23.2(0.67)→ hid = 4
MSE 24.0(0.91) 23.5(0.78) 23.4(0.95) 23.5(0.86) 23.3(0.88) 23.3(0.88)→ hid = 10

p-value 0.002 0.027 0.761 0.346 0.191 0.569

iris 2 6 9 13 19 Best
Z-EDM 4.02(1.32) 4.12(1.26) 3.80(1.04) 4.23(1.26) 4.15(1.13) 3.80(1.04)→ hid = 9
MSE 20.9(15.2) 5.67(4.54) 6.02(6.04) 5.12(3.53) 5.15(3.26) 4.96(2.72)→ hid = 18

p-value 0.000 0.091 0.003 0.265 0.094 0.001

den units, MSE fails to converge in most cases, giving higher mean test errors
and standard deviations. From Fig. 3(a), where a more complete set of results is
presented, we can see that only for hid = 11, 19 and 20, MSE performs equally
to Z-EDM. Thus, Z-EDM reveals more stability contrasting with the high de-
pendency of MSE on the number of hidden units. In wdbc, Z-EDM clearly
outperforms MSE. All the tested MLP’s for this dataset achieved better results
than the ones trained with MSE. This behaviour is evident from Fig. 3(b). In
what concerns pima, Fig. 3(c) shows that the mean test error line for Z-EDM is
mostly below the one from MSE, although the differences are not as high as in
the previous datasets. For example, with hid = 6 both methods achieve the same
test error. It was also interesting to evaluate the behaviour of the train and test
procedure in the iris dataset. As expected, we found similar results as in Pb12
(see Fig. 3(d)). For all tested MLP’s, MSE had difficulties in finding consistently
the best solutions. This was not encountered for Z-EDM, which gave stable re-
sults along the various values of hid. e significance of the differences encountered
in the results, we performed statistical tests of two types. The parametric t test
for two independent samples and the corresponding nonparametric test of Mann-
Whitney. The second one, which is a test for the equality in locations of the two
samples, is preferable because it does not rely on distributional assumptions and
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Fig. 3. Errorbar plot for the test results of the four datasets. Dark solid line was
obtained by Z-EDM and light dashed line by MSE. The dark line is slightly shifted
to the right for better viewing. Vertical bars from the mean represent one standard
deviation.

is more robust to outliers. Nevertheless, the results found for both tests were
quite similar. Hence, we opted to show the results for the Mann-Whitney test
where p-values below 0.05 show evidence of different locations for the test error
distributions coming from MSE and Z-EDM. Except for wdbc, where all the
results of Z-EDM are significantly better, we found that when the number of
hidden units increases, the differences tend to be not significant. However, we
have to take some care while evaluating the p-values, because the existence of
(many) strong outliers may lead to wrong conclusions (see for example in Pb12
with hid = 5). For low complexity MLP’s, MSE is clearly outperformed by
Z-EDM. This can also be seen on the right column of Table 3, where the best
results are presented for each method.
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5 Conclusion

We propose a neural network classification method using the error density at the
origin as the adaptive criterion. This leads to a simple objective function that
can be easily used with the usual backpropagation algorithm. It can be seen as
a kind of weighted mean square error, but where information about the error
distribution at the origin is taken into account when updating the network’s
weight vector. The method was evaluated in four datasets and compared to
the usual mean square error. We found that Z-EDM was more stable and less
dependent on the number of hidden units. The capacity of consistently finding
the best solutions was higher for Z-EDM, mainly for small complexity MLP’s. It
also had a better performance in predicting unseen patterns. Several questions
have to be further studied, in particular the relation between the behaviour of the
performance surface and the kernel smoothing parameter. This study may also
provide insights for an adaptive rule for h. These experiments will be extended
to a more general set of benchmark datasets to evaluate generalization ability
and to make comparisons with other methods.
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Taxonomy of Classifiers Based on Dissimilarity Features 
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Abstract. A great number of linear and nonlinear classification algorithms can 
follow from a general representation of discriminant function written as a 
weighted sum of kernel functions of dissimilarity features. Unified look at the 
algorithms allows obtaining intermediate classifiers which after tuning of the 
weights and other model’s parameters can outperform popular dissimilarity 
based methods. Simulations with artificial and real world data sets revealed 
efficiency of single layer perceptron trained in a special way. 

Keywords::Classification, dissimilarity, neural networks, single layer percep-
tron, training. 

1   Introduction 

A number of research papers utilizing dissimilarity representations while solving 
classification tasks were increasing during last decades. These classification methods 
are based on compactness hypothesis [1-3], which claims that similar objects also 
should be close in their representation.  Similarity feature based approach in pattern 
classification actually goes back to 1951 to pioneering work of Fix and Hoghes [4], 
however, the similarity based decision making roots can be traced earlier (see. e.g. 
motivating paper of Attneave [5]).  

A great amount of different approaches and methods based on similarity or 
dissimilarity of objects has been proposed during these decades: kernel discriminant 
analysis [6, 7], potential functions [1], support vector machines (SVM) [8 - 10], case-
based reasoning (CBR) [11 - 13] and many others. Statistical methods such as nearest 
means (Euclidean distance), certain piecewise-linear classifiers, radial basic functions 
and learning vector quantization neural networks also could be considered as decision 
making algorithms working in dissimilarity feature space. For a general introduction 
into statistical pattern recognition methods see e.g. [3, 14, 15].  

Duin and his colleagues [16] made an attempt to segregate dissimilarity-based 
classification (DSC) algorithms into a separate group. Their attempt gave an impulse 
to share peculiarities of the algorithms and to take a general look at these groups of 
methods. The kernel and support vector based methods were reviewed and compared 
in [9, 10]. Perner [13] performed comparison of DSC and CBR approaches and 
demonstrated  that both approaches relies on the same ideas and concluded that DSC 
is a special variant of CBR that is influenced by the traditional ideas of pattern 
recognition. The CBR considers such vital for practitioners problems like the right 
case description, defining appropriate similarity measures, organization of a large 
number of cases for efficient retrieval where similar cases are grouped together, 
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acquisition and refinements of new cases for entry in the case bases, generalization of 
specific cases applicable to a wide range of situations. Many of these problems were 
ignored in statistical pattern recognition so far. Nevertheless, the pattern recognition 
community investigates important questions of common interest such as fast 
implementation of search of nearest neighbors [17] and determination of dissimilarity 
metrics. Mottl et al. [18] adopted dissimilarity measure from computational biology 
and treated the pair-wise similarity measure of two discrete valued vectors as inner 
product in an imaginary Hilbert space. The dissimilarity is evaluated as the likelihood 
that two vectors have the same evolutionary origin by way of calculating the so-called 
alignment score between two sequences. In case of two classes, they suggested to use 
maximal margin (support vector) classifier. Santini and Jain [19] performed deep 
analysis of a number of similarity measures. In particular, they investigated similarity 
measures that exhibit several features that match experimental findings in humans.  

It is worth mentioning that CBR systems deal with very large number of case 
classes, while most theoretical findings in statistical pattern recognition were done in 
two category case. As a result, learning in CBR systems utilizes narrow gamma of 
classifiers. Surely, further cooperation of different approaches could create a new 
quality. An objective of present paper to consider specific questions arising in final 
decision making performed either in CBS, DCS, SVM or in other pattern recognition 
methods utilizing the similarity concepts. To get more deep insight and in order to 
analyze a wider gamma of methods we restrict ourselves to two category situation. 

The first classification algorithm based on dissimilarities, the k-nearest neighbor 
(k-NN) method [3, 4, 12], became very popular. Some authors advocate that the k-NN 
method outperforms other classifiers if correct number of neighbors and suitable 
similarity measure are selected (see e.g. [17]). Main problems are: high number 
training vectors and long computation times. Pekalska and Duin [18] considered a 
distance matrix directly as new training data. They proposed to use normal density-
based linear and quadratic classifiers constructed on this data representation. Pekalska 
and coauthors [20 - 22] have demonstrated that the classifiers, based on weighted 
combination of dissimilarities, may be built on all training objects and thereby utilize 
global rather than local information which often leads to very good performance. 

Often dissimilarity based classifiers give good results especially if complex 
nonlinear decision boundary is required to discriminate pattern classes. Sometimes 
utilization of dissimilarity concept does not lead to desirable result. Moreover, a 
number of “dissimilarity methods” became high. So, often an end user meets 
difficulties in selection of a proper method. As a result, a necessity arises to take 
unified look at variety on dissimilarity concept based classification methods, elucidate 
their positive and negative sides, to find new ways of proper use and develop 
recommendations for end users. 

Unfortunately, up to now except recent PhD thesis of Pekalska [21], no systematic 
analysis of dissimilarity based classification algorithms was performed. In this paper 
we represented discriminant functions of many known pattern classifiers as weighted 
sums of kernels of new dissimilarity features. Depending on a way how the weights 
are calculated and on a kernel scaling, different supplementary linear and nonlinear 
classification algorithms follow from this representation. Simulation experiments 
performed with three real world data sets show that new algorithms can compete and 
often outperform many of known dissimilarity feature based classifiers. 
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2   Taxonomy of the Algorithms 

Consider a case where p-dimensional vectors, x = [x1, x2, ..., xp]
 T have to be allocated 

to one of two pattern classes. Above, superscript “T ” denotes transpose operation. Let 
vectors xj1, x j2, … x jNj represent  training set of the j-th pattern class. We will restrict 
our analysis with two category case and Euclidean distance based dissimilarity 
features (for reviews of a great variety of dissimilarity measures, see e.g. [13, 19 - 22] 
and references therein) 

                                                 yjs = (x - x js)
T(x - x js)

1/2,  (1) 

where s  is a current number of vector’s, x js, in j-th class representation set. 
In many classifiers, distances (1) are transformed by means of some kernel 

function. Often researcher use and speak well of the Gaussian density based kernel 

                                                    y*js = exp(-α 2

js
y ),  (2) 

where positive scalar α defines a width of the kernel.  
Exponential transformation of the distances makes forming nonlinear decision 

boundaries easier. If all training set vectors compose representation set, unified 
expression of discrimiant function is 

 g*(x) = 
2

0
11

,exp(- (  - ) (  - ))+
j

T
N

sj
js js jsw w

==
α x x x x           (3) 

where w0, wjs (j = 1, 2,   s  = 1, 2, …, Nj) are weights. The weights have to be found 
from training data. 

We will show that representation (3) can result in a number of different classifiers.
In the nearest neighbor classification, previously unseen examples are assigned to the 
classes of their most similar neighbors in the training set. In k-NN approach, 
allocation of unknown vector x is performed according to a majority of training 
vectors of one pattern class. In kernel based (Parzen window approach) methods, 
potential function classifiers, certain estimate of multivariate density (named also as a 
potential function in some papers) is calculated for each pattern class 

 pj(x) =  
1

1
exp(- (  - ) (  - )). 

j

j

N
T

js js
s

N
=

γ x x x x         (4) 

Allocation of unknown vector x is performed according to a sign of discriminant 
function g(x) = q1p1(x) - q2p2(x), where qj stands for prior probability of j-th pattern 

class (q1 +q2 =1). If scalar γ is very small, values of - (  - ) (  - )T

js jsα x x x x  are small 

too. Utilization of first term of Taylor expansion results that 

exp(- (  - ) (  - )T

js jsα x x x x ˜ - (  - ) (  - )T

js jsα x x x x .         (5) 

Let us consider two limit cases. Let α →0 at first. Inserting (5) into Eq. (3) with 
w1s=1, w2s= -1 after some simple algebra we obtain following discriminant function 
(DF), g (x),
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 g (x) 0

(E) (E)T w+ +x w ½ 2 1
ˆ ˆ(1 1/ ) tr ( )( )N− −Σ Σ ,          (6) 

where (E)w = 1μ̂ - 2μ̂ , ˆ jμ and ˆ
jΣ  are sample p-dimensional mean vector and p×p

covariance matrix of j-th class in original feature space (we assumed N2=N1=N), 
(E)
0w = - (E)

,ˆ T wμ ˆ =μ ½ 1 2ˆ ˆ( + ).μ μ

Note, that (E)
0w , (E)w  are weights of Euclidean distance classifier (EDC). Ignoring 

term ½ 2 1
ˆ ˆ(1 1/ ) tr ( )( )N− −Σ Σ  in the bias term, we see that in limit case when α →0, 

similarity representation of DF (3) gives linear classifier similar to EDC. Let now 
α→ . Then the exponent exp(-αc) in Eq. (3) approaches zero very fast. For that 
reason, we can use only first term of Taylor expansion. As a result, in this limit 
situation, we approach the nearest neighbor classifier, 1-NN. If  167  shaped 
kernels would be used, in each local sub-area, we could obtain classifiers similar to k-
NN ones where kernel width would be associated with number of nearest neighbors, k.

In dissimilarity features approach, the new features corresponding to similar 
training vectors are highly correlated. Consequently, covariance matrices could 
become singular. Due to large correlations, the EDC is not appropriate for practical 
use. On the other hand, the nearest neighbor classifiers suffer from other 
shortcomings [20]. So, we have to use intermediate α values in practice.  

If case of equal among themselves weights, i.e, w21 = , …, =w2N = -w11 = , ... , = -w1N,
we have the Parzen window classifier. In case of unequal weights, however, one can 
obtain more sophisticated classifiers. In Pekalska and Duin [20] approach, the weights 
were determined from a theory of standard and regularized discriminant analysis. 
Their approach originally proposed for similarity features (1) (actually, it is a situation 
when α →0) can be used for kernel based dissimilarity features (2) too. In support 
vector machine (SVM) based methods (for introduction see e.g., [9, 10]), one also 
often uses kernel based dissimilarity features (2). In the SVM approach, the 
representation set is reduced essentially: only vectors that are closest to discriminant 
hyperplane are determining the decision boundary. 

In addition to statistical and support vector classifiers utilized to find the weights 
w0, wjs, one can make use of the single layer perceptron (SLP). In principle, while 
training SLP one can obtain a number of linear classifiers of different complexity. If 
a) the data centre is moved to a centre of coordinates, μ̂ , before training the 

perceptron and b) one starts training of the perceptron from zero initial weights (w0=0,
w = 0), then after the first training iteration in the batch mode, one obtains the 
Euclidean distance classifier. In further training, one obtains linear regularized 
discriminant analysis (LRDA), standard linear Fisher classifier or the Fisher with the 
pseudo-inverse of covariance matrix if sample size is very small. In subsequent 
training, one can obtain robust classifier, a minimum empirical error classifier and 
approach the support vector machine [15, 23, 24]. Which classifier will be obtained 
practically depends on training conditions and most importantly on stopping moment. 
A variety of supplementary classifiers could be obtained if SLP would be trained in 
the dissimilarity feature space. 

If representation set is large, the covariance matrix could become singular. In 
principle, eigen-values of the covariance matrix could differ in billions of times. For 
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that reason, training of the perceptron becomes very slow (see Chapter 4 in [15]). To 
speed up training process and to reduce the generalization error it is worth to perform 
whitening transformation of the data 

     Z = T (y* − μ̂ ),        (7) 

where T= Λ-1/2 ΦT, Λ, ΦT are eigen-values and eigenvectors of Σ̂ =½
1

ˆ(Σ +
2
)Σ̂  and y*

is dissimilarity feature vector composed of components y*js  defined by Eq. (2).  
One can make use of a variety of statistical methods to improve sample estimate of 

covariance matrix, Σ̂ . Consequently, a great number of extra classifiers could be 
derived again.  

3   Analysis of 2D Example 

A main objective of present paper is to discuss a broad gamma of various nonlinear 
decision boundaries which could be obtained while using the dissimilarity features. 
In order to explain parallels and differences between distinct classification rules in 
Fig. 1abc we present specially constructed artificial two class data where decision 
boundary is nonlinear. We depict 100+100 2D two class vectors (pluses and circles) 
that compose both the training and the representation sets. The data vectors of each 
of two pattern classes are distributed uniformly between two “ellipses” composed of 
four straight lines and four segments of the circles. There is no margin and no 
intersection between vectors of opposite categories. Ideal decision boundary is the 
“ellipse” depicted as thin solid line. Decision boundary of the Parzen window 
classifier with optimal value of smoothing parameter (it was a small positive 
constant found from test set (5000+5000 vectors) estimates of classification error) 
is depicted as nonlinear weaved bold curve in dots in Fig. 1a. It correspond to Pgen =
0.0566.  

 Much better classification results were obtained if linear classifiers based on 
dissimilarity representation (2) were designed. The LRDA  with covariance matrix 
estimate SRDA=(1-λ)Ssample+λI (λ – regularization parameter, I – identity matrix) 
resulted in a smooth decision boundary similar to that depicted in figures 1b and 1c
(the closest to 200D hyperplane vectors are marked by large circles). To find optimal 
regularization constant the test set was used. The generalization error, Pgen = 0.0265 is 
twice smaller as that of Parzen window classifier and confirms conclusions obtained 
by Pekalska and Duin [20]. Standard SVM with soft margin (package LIBSVM, 
www.csie.ntu.edu.tw/~cjlin/libsvm/) gave smooth decision boundary where three 
training vectors were misclassified. The generalization error only insignificantly 
exceeded that of RDA:  Pgen = 0.0294. 

Training of the SLP classifier with gradually increasing learning step (see e.g. [15], 
Chapter 4) after 35000 batch iterations allowed obtaining “SVM” with positive 
margin. Performance of such SVM, Pgen = 0.0345 (bold dotted decision boundary in 
Fig. 1b). A histogram of distribution of distances to discriminant hyperplane in 
dissimilarity feature space (2) shows that rather wide margin was obtained in 
similarity feature space (Fig. 2). Decision boundary and support vectors marked by 
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Fig. 1. 100+100 2D two class training vectors (pluses and circles) and decision boundaries of 
Parzen window classifier (a), SVM (b), SLP trained in 200D dissimilarity feature space (c).
Learning curve: generalization error of SLP classifier as a function of a number of training 
epochs (d).
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Fig. 2. A histogram of distribution of distances of 200 training vectors to discriminant 
hyperplane in 200D dissimilarity feature space 

large circles around 2D training vectors in original feature space, show, however, that 
in original 2D feature space, a part of “support vectors” are far away from the 
nonlinear decision boundary (Fig. 1b).

The best classification performance, however, was achieved after early stopping of 
the SLP training procedure. After preliminary data transformation performed in order 

to equalize eigen-values of covariance matrix Σ̂ , Pgen = 0.0205. Due to good position 
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of initial weight vector only 120 batch iterations were necessary in order to obtain the 
best weight vector in 200D dissimilarity feature space (see learning curve in Fig. 1d;
for theoretical background of such transformation look at [15], Chapter 5, and  
[23, 24]). It is worth mentioning that in above 2D example, utilization of Gaussian 
kernel (2) allowed to reduce generalization error notably: the best result obtained with 
DF

                         g(x) = 0
)(  - ) (  - )) + T

j s js js jsw wx x x x

was: Pgen = 0.185, i.e. eight times worse. Parzen window and k-NN classification rules 
suffer from curse of dimensionality. Therefore, 2D data was favorable for the Parzen 
window classifier. In spite of this factor, PW classifier was outperformed by 
classifiers where contribution of each training vector was weighted by coefficients wjs

(s = 1, 2, …, N, j = 1, 2).  
 In all classification algorithms considered above, one needs to estimate one or 
two additional parameters (coefficient α, a regularization (smoothing) constant in 
RDA, a width of the margin in SVM approach, correct stopping moment in training 
the perceptron). For determining the optimal values of the parameters mentioned we 
had very large test set composed of 10000 vectors in our example. Thus, adaptation to 
test set is small. Moreover, in comparing of different algorithms in this and next 
sections, we used the same data for testing them. In real world recognition problems, 
we meet additional problems while evaluating these parameters from training data. 

4   Experiments with Three Real World Data Sets 

Dissimilarity feature transformation performed before the classifier design is an 
important step aimed to improve classification accuracy while solving real-world 
problems. The results obtained with the artificial data do not generalize. Above 
example was used to illustrate specific characteristics of similarity features based 
classification algorithms. Below we present comparative simulation experiments with 
real world data. The experiments were performed in the same way as described above. 
We formed dissimilarity features as yjs= (x - x js)

T (D+ I)-1 (x - x js) in order to avoid 
numerical problems. Here D stands for a diagonal matrix composed of variances of 
input variables, xjs, I stands for r×r identity matrix and ε=0.001. Afterwards, 
variances of all the dissimilarity features were normalized to 1. 

The Satellite data (S) consists of 15787 8-dimensional spectral feature vectors 
from 25 small crop fields that belong to two pattern classes; 4384+3555 vectors were 
allocated for classifiers design and 4242+3606 vectors were used for testing. The 
experiments were repeated many times with different randomly chosen training sets 
composed of design set vectors. In Table 1 we presented mean generalization errors 
when standard classifiers in original feature space were used. Notation “NormEDC” 
stands for nearest mean classifier (EDC) when for determining the prototypes of the 
classes and for decision making, the input features were normalized according to their 
standard deviations. SLP was trained according to suggestions presented in [15]. MLP 
was trained according to Levenberg-Marquardt optimization. For each number of 
hidden units, h, five random initializations and subsequent training sessions were  
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Table 1. Mean generalization errors of standard classifiers in original feature spaces (Satellite 
(S) and character recognition (Jch) tasks) 

    Training 
       set size 

   LRDA NormEDC Fisher DF    SLP MLP  
h=5 

  MLP 
h=20 

S1   4384+4242    0.159 (0.16) 0.215   0.160   0.137 0.045  0.029 
S10    219+177  0.162 (0.02) 0.215    0.162    0.139 0.083  0.068 
S10     87+71   0.163 (0.13) 0.215   0.163   0.143 0.111  0.098 
Jch100 100+100  0.053 (0.55) 0.124   0.057   0.056  0.081  0.069 

performed. In all experiments, optimal number of training epochs and the best 
initialization were selected according to test set estimates (4242+3606 vectors). Left 
column’s superscripts indicate a number of experiments; average values of optimal 
regularization parameter of LRDA, λ, are given between the brackets. 

In analysis of similarity concept based classifiers, we used geographic coordinates 
of each pixel to form representation set composed of r = 50 pixels which formed 50 
dissimilarity features. Three kernels: a) yjs defined by Eq. (1) – D1,    b) (yjs)

2 – D2 (no 
kernel), and c) yjs defined by Eq. (2) with α=5 and α=2 (near optimal value), were 
considered. Results presented in upper three rows of Table 2 show that classification 
accuracy depends crucially on selection of the kernel type. Utilization of SLP trained 
in whitened 50-dimensional feature space appeared useful and outperformed 
regularized discriminant analysis in case of utilization of all three kernels.  

Table 2.  Generalization errors of classifiers based on the similarity features 

       Training  
         set size 

 LRDA 
  (D2)        

LRDA 
(D1)

 LRDA 
 expα5

 LRDA 
 expα2

SLP 
(D2)

SLP 
(D1)

SLP 
expα5

SLP 
expα2

S1 4384+4242  .159 (.23) .052 (.001) .100 (.001) .074 (.001) .132 .041 .055 .048 
S10  219+177 .161 (.28) .060 (.001) .102 (.001) .082 (.001) .137 .055 .070 .064 
S10     87+71  .164 (.34) .069 (.002) .105 (.001) .088 (.001) .142 .067 .079 .075 

Jch100100+100 .040 (.95) .050 (.001) .070 (.001) .050 (.001) .050 .035 .040 .035 

Similar Japanese characters (Jch) recognition task was one of pairs of similar 
handwritten characters considered in [25] (see an example, ; 196 features). 

To test competing classifiers, LRDA, SLP and MLP, we have chosen 28 first principal 
components of the data. In dissimilarity feature analysis, we selected every 7th vector 
of the design set (28 new dissimilarity features). In each of 100 experiments, we 
randomly selected 100+100 vectors for training and the same amount for testing. Like 
in previous examples, we found that classification accuracy depends on kernel type. 
Consequently, specially trained SLP is a good choice in designing weighted sums of 
kernel representations of the dissimilarity features. 

Machine Vibration Data. In experiments with 200-dimensional spectral data (good 
and defected electro motors) we obtained similar conclusions: in series of 100 
experiments performed with random splits of the data into 100+100 vectors for 
training and 100+100 ones for test, the SLP classifier trained in 50D similarity feature 
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space (Eq. (2)) the SLP classifier resulted in Pgen= 0.048, while LRDA gave Pgen=
0.061. Again, the best result obtained in original feature space was much worse.  

In all cases except one (MLP with 20 hidden units and very large training set in the 
experiments with the Satellite data), specially trained SLP outperformed MLP, SLP 
and LRDA in original feature spaces (compare tables 1 and 2). 

5   Conclusions 

In this paper we represented discriminant functions of many known pattern classifiers 
as the weighted sums of kernels of new dissimilarity features. Depending on a way 
how the weights are calculated and on kernel scaling (parameter α in Eq. (3)), a great 
amount of linear and nonlinear classification algorithms follows from this 
representation. The unified look allows obtaining intermediate classifiers with good 
generalization properties. We found that selection of the kernel’s type while forming 
dissimilarity features is very important step in designing the classifiers. Selection of 
functional kernel is problem dependent. Utilization of data whitening and subsequent 
training of the single layer perceptron allows obtaining the classifiers that can compete 
and often outperform LRDA, MLP and many other dissimilarity feature based 
classifiers. 
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Abstract. A recently developed neural network model that is based on
bounded weights is used for the estimation of an optimal set of weights
for ensemble members provided by the AdaBoost algorithm. Bounded
neural network model is firstly modified for this purpose where ensemble
members are used to replace the kernel functions. The optimal set of
classifier weights are then obtained by the minimization of a least squares
error function. The proposed weight estimation approach is compared to
the AdaBoost algorithm with original weights. It is observed that better
accuracies can be obtained by using a subset of the ensemble members.

1 Introduction

Ensemble of weak classifiers is considered as alternative approach to develop
strong classifiers in pattern classification problems. Boosting is an iterative en-
semble design technique which takes into account the classification results of the
previous classifiers to construct additional ones. AdaBoost is the most popu-
lar boosting algorithm which can be considered as applying a steepest descent
search to minimize an exponential loss function [1,2]. The resultant classifiers
are combined using weighted majority voting to generate a joint decision.

Recently, a new neural network model is proposed for classification pur-
poses [3]. This approach is mainly inspired from the bounded weight nature
of the support vector machines (SVM) [4,5]. The main idea is to estimate the
weights in the links by minimizing the least squared error between the network
outputs and the target vectors, leading to a quadratic optimization problem.
However, similar to the SVM model, the magnitude of the weights are restricted
to 0 ≤ αi ≤ C. In fact, the bound constraint in SVM approach is one of the
sources of its strengths since the learning capability can be controlled and hence
overfitting can be avoided. Because of this, it is expected that putting bounds
on the link weights may also improve the performance of neural network clas-
sifiers. The main advantage of the bounded model is that the kernel function
used should not necessarily satisfy Mercer’s condition as in SVM. Experimen-
tal results have shown that bounding the link weights in neural networks could
provide better results compared to SVM [3].

Least squared error minimization with bound constraint on the solution
has several advantages from ensemble design point of view. Firstly, its convex
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quadratic objective function provides global optimal solution. Since arbitrary
kernels can be used, it can be used for the weighted combination of classifiers
where each classifier is considered as a different kernel function. Moreover, the
bounded weight nature reduces the risk of overfitting. The weights having zero
values may be expected to correspond to redundant classifiers and hence an
implicit classifier subset selection is performed.

In this study, the framework described above is modified for the estimation
of an optimal set of weights for ensemble members obtained using AdaBoost al-
gorithm. The ensemble members are defined to be the kernel functions where the
solution of least squares error provides the optimal set of classifier weights. The
proposed approach is compared to the original weights generated by AdaBoost
algorithm and it is observed that better combined accuracies can be obtained
by using a subset of the ensemble members.

2 Least Square Error Minimization with Bounded
Weights

Consider a two-class classification problem with the training set S = {(xn, yn)},
n = 1, . . . , N where xn ∈ �d denotes the nth input sample and yn ∈ {+1,−1}
is its label. Consider a three layer neural network where each hidden node rep-
resents the kernel function κ(xn, x) defined for the nth training sample. The
output is the weighted linear combination of the kernel function outputs where
the label of xn denoted by yn is either +1 or −1. αn is the weight of the nth
kernel and b is the decision threshold to be computed by solving the following
convex quadratic programming problem [6]:

min
α, b

1
2

N∑
i=1

∣∣∣∣∣∣∣∣yi −
( N∑

n=1

αnynκ(xn, xi) + b

)∣∣∣∣∣∣∣∣2
subject to 0 ≤ αn ≤ C, n = 1, 2, . . . , N

(1)

where C is a constant upper bound. The discriminant function is defined as,

g(x) =
N∑

n=1

αnynκ(xn, x) + b. (2)

During testing an unseen data xt, if g(xt) ≥ 0, xt is assigned to the first class.
Otherwise, the second class is selected.

The objective function of the optimization problem defined in Eq. (1) can be
formulated in matrix form as,

J =
1
2
||y − (KY α + be)||2 (3)

where y = [y1, y2, . . . , yN ]T , α = [α1, α2, . . . , αN ]T , X = [x1, x2, . . . , xN ], Y =
diag(y1, y2, . . . , yN), e is an N-dimensional column vector of ones and,
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K =

⎡⎢⎣κ(x1, x2) . . . κ(x1, xN )
...

. . .
...

κ(xN , x1) . . . κ(xN , xN )

⎤⎥⎦ (4)

The objective function is also equivalent to,

J =
1
2
α̂

T
K̂T K̂α̂ − qT α̂ (5)

where α̂ = [αT , b] which is an N + 1 dimensional vector, K̂ = [KY |e] and
qT = [yT KY, yT e]. This is a convex quadratic optimization problem since the
term K̂T K̂ is positive semi-definite. The main difference from SVM’s is that the
Mercer’s condition is not required in the kernel function selection. Hence, this
approach is more flexible.

Consider the discriminant function given in Eq. (2). The kernel function
located at the nth training sample together with its label, ynκ(xn, x) can be
considered as a primitive classifier. The classifier always provides support for the
class to which xn belongs. Then, the discriminant function can be considered as
a multiple classifier systems implemented as a weighted linear combination of
N classifiers. Since some of the weights may come out to be zero after training,
this approach can be considered to implicitly apply classifier subset selection.

Remembering that the Mercer’s condition is not required to be satisfied, this
framework can be considered for the weighted linear combination of classifiers.
In this study, a slightly modified formalism is proposed for this purpose. The
resultant system is used for the weighted linear combination of the classifiers
which are obtained using AdaBoost algorithm.

3 Linear Classifier Combination with Bounded Weights

Let fm(.) denote the mth classifier in an ensemble of M classifiers. Using
weighted linear combination rule, the combined discriminant function can be
defined as [7],

g(x) =
M∑

m=1

αmfm(x) + b. (6)

where αm are the classifier weights. Applying the least squares error mini-
mization technique with bounded weights, the optimization problem can be
defined as,

min
α, b

1
2

N∑
n=1

∣∣∣∣∣∣∣∣yn −
( M∑

m=1

αmfm(xn) + b

)∣∣∣∣∣∣∣∣2
subject to 0 ≤ αm ≤ C, m = 1, 2, . . . , M

(7)

In matrix form, the objective function can be written as,

J =
1
2
||y − (Kα + be)||2 (8)
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where y, α and e are defined as before and,

K =

⎡⎢⎢⎢⎣
f1(x1) f2(x1) . . . fM (x1)
f1(x2) f2(x2) . . . fM (x2)

...
. . .

...
f1(xN ) f2(xN ) . . . fM (xN )

⎤⎥⎥⎥⎦ (9)

We can expand J further as,

J =
1
2
(
y − (Kα + be)

)T (
y − (Kα + be)

)
=

1
2
αT KT Kα − yT (Kα + be) + beT Kα +

1
2
beT eb +

1
2
yT y

=
1
2
α̂

T
K̂T K̂α̂ − qT α̂ +

1
2
yT y

(10)

where, α is defined as before and K̂ = [K|e] and qT = [yT K, yT e]. Since yT y is
constant, it can omitted. The optimization problem becomes,

1
2
α̂

T
K̂T K̂α̂ − qT α̂

subject to 0 ≤ αm ≤ C, m = 1, 2, . . . , M
(11)

where α̂ = [αT , b]. It should be noted that the resultant formalism is almost
identical to BNN where the training sample dependent kernel function is re-
placed by arbitrary classifiers. In this case, K̂ is an N ×M matrix where it was
an N × N before. The solution of this optimization problem provides optimal
classifier weights and the threshold, b. Due to the positive semi-definite matrix
K̂T K̂, this is a convex quadratic problem where the classifiers can be arbitrarily
selected without having to satisfy any condition.

4 Experiments

In order to investigate the effectiveness of the proposed weighted linear combina-
tion technique, combination of classifiers obtained using AdaBoost is considered.
The performances obtained using the weights computed by the proposed tech-
nique are compared with the original weights of AdaBoost for three different
base classifiers namely, normal densities based quadratic discriminant classifier
(QDC), nearest mean classifier (NMC) and neural networks (NNET) [8]. In the
simulations, 2-class problems are considered with C = 1 and fm(xt) is set as +1
and −1 when the most likely class is first and second, respectively. The experi-
ments are performed on an artificial and eight real datasets. Using an artificial
data set including 2-dimensional pattern samples, it is aimed at visualization of
the advantages of the proposed framework by inspecting the selected classifiers.
The ‘Highleyman’ classes are generated using the PRTOOLS toolbox [9]. One
thousand samples are generated where half of the data are used for training and
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Fig. 1. An ensemble of 25 NMC classifiers on highleyman dataset

the remaining half for testing. The AdaBoost algorithm is run to generate an
ensemble of 25 NMC type classifiers [8]. The classifiers developed by AdaBoost
and the subset of the classifiers selected by the proposed algorithm are illustrated
on the scatter plot of the training data in Figures 1 and Figures 2 respectively.

As it is seen in the figure, the proposed algorithm selected a small subset of
the available classifiers. The figure shows that, although the classifiers are trained
on resampled data sets, some of the resultant classifiers may be correlated. Since
the NMC type classifier is a weak one, it is less sensitive to changes in the training
set providing decision boundaries that may be close to some others leading to
correlated decisions. The classifiers getting nonzero weights are different from
each other, leading to fusion of less correlated decisions.

The experiments are also conducted on eight IAPR TC-5 benchmarking
datasets1 obtained from the UCI machine learning repository. The experiments
are repeated for first ten splits (tra 0 0 to tra 1 4 for training and tst 0 0 to
tst 1 4 for testing) and the average accuracies are computed.

The experimental results are presented in Tables 1 and 2. In Table 1, the
second column provides the number of training and test samples used. The
average accuracies over ten simulations for the NMC type base classifier are
given in the third column. Following two columns list the accuracies achieved
by AdaBoost and the proposed technique (referred as BBoost) respectively for
an ensemble size of M = 25 classifiers. Table 2 presents the results obtained for

1 http://algoval.essex.ac.uk/tc5/
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Fig. 2. The subset of classifiers selected by the proposed algorithm

Table 1. Average results for NMC type base classifiers (in %) and their standard
deviations

Dataset train-test count Base classifier AdaBoost BBoost
phoneme 4323-1081 71.53±2.5 72.01±2.33 75.34±2.36
heart 216-54 63.70±8.29 69.07±5.86 70.19±5.27
liver 276-69 55.07±5.16 60.44±6.19 65.80±6.27
diabetes 614-154 62.97±5.32 70.71±4.55 73.44±3.01
german 800-200 63.30±4.49 63.75±4.79 68.10±2.77
australian 552-138 65.52±1.25 65.79±1.26 69.06±2.87
cancer 546-137 95.70±1.86 95.79±1.83 96.25±1.89
ionosphere 281-70 72.81±5.89 85.04±3.77 85.47±4.09
Average N/A 68.83 72.83 75.46

QDC type base classifier. As it can be seen in the tables, the bounded weighting
technique improves accuracies with the use of smaller number of classifiers.

The main observation is that the improvement is more significant in the
NMC base classifier case. Since the weights are bounded, subset of the ensemble
members are generally used. When averaged on all datasets, 9 and 15 classifiers
are used for NMC and QDC type base classifiers respectively. As it was described
above, it is reasonable to have fewer NMC classifiers selected since they are
expected to be more correlated compared to the QDC ensemble.

The proposed scheme is also evaluated for comparatively less stable classi-
fiers. For this purpose, neural networks are used as base classifiers. Each neural
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Table 2. Average results for QDC type base classifiers (in %) and their standard
deviations

Dataset Base classifier AdaBoost BBoost
phoneme 78.40±1.47 79.03±2.08 79.71±2.26
heart 68.33±15.99 77.22±5.99 77.22±5.86
liver 58.41±4.59 65.07±5.53 67.97±6.17
diabetes 73.05±2.23 74.54±3.47 73.83±3.91
german 70.80±4.47 71.65±3.37 72.00±2.92
australian 61.17±9.08 74.83±6.61 79.36±4.64
cancer 94.70±0.93 94.79±1.73 95.06±1.74
ionosphere 83.62±2.72 91.18±4.00 92.74±2.36
Average 73.56 78.54 79.74

network member consists of a single hidden layer. The number of neurons in
the hidden layer is equal to twice the number of inputs. Each neural network
is trained for 250 iterations using backpropagation algorithm. Each ensemble
included 25 members as before. The average performances over all datasets are
obtained as 81.31% and 81.46% respectively for AdaBoost and the proposed
approach, respectively. In this case, the performance is not improved as before.
This is in fact what we expected. Since the NNET type classifiers are less stable,
the resultant ensemble members are not correlated as in NMC case. In other
words, AdaBoost algorithm does not generate redundant members as in NMC
case. This is also evident from the number of classifier selected by the proposed
approach. When averaged over all datasets, 21 out of 25 classifiers are selected.

There are other parameters that also affect the performance of AdaBoost.
For instance, the size of datasets is important for boosting. It is already known
that AdaBoost performs better for larger datasets [10]. We observed that the
proposed technique has a potential also in the case of small datasets. Although
the improvement is not significant, the proposed technique improved the accu-
racies provided by AdaBoost for the small datasets, ”liver” and ”ionosphere”
more than 1%. This is reasonable since samples drawn from small datasets may
not give a good representation for the real distribution of the data. Hence, some
ensemble members may provide misleading information. The proposed approach
may be useful in discarding such poor members.

5 Conclusions

In this study, a least squares error minimization approach with bounded weights
is developed for the estimation of an optimal set of weights for ensemble members
obtained using AdaBoost algorithm. It is observed that the proposed approach
may provide better combined accuracies by using a subset of the ensemble mem-
bers. Since the gain in accuracy is different for NMC, QDC and neural networks,
the proposed approach should be further investigated for the relation between
the base classifier and the gain in the classification accuracy. In particular, the
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effect of capability and stability of the base classifier on the performance of the
proposed approach should be studied. Its effectiveness in selection of classifier
subsets obtained by approaches other than AdaBoost should also be studied.
The extended version of bounded neural networks is also available for multi-
classes case [3]. As a further research, extension of the proposed technique into
multi-classes case will be considered.
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Abstract. In dynamic financial time series prediction, neural network training 
based on short data sequences results to more accurate predictions as using 
lengthy historical data. Optimal training set size is determined theoretically and 
experimentally. To reduce generalization error we: a) perform dimensionality 
reduction by mapping input data into low dimensional space using the 
multilayer perceptron, b) train the single layer perceptron classifier with short 
sequences of low-dimensional input data series, c) each time initialize the 
perceptron with weight vector obtained after training with previous portion of 
the data sequence, d) make use of useful preceding historical information 
accumulated in the financial time series data by the early stopping procedure.  

Keywords: Classification, changing environments, commodity prices, fore-
casting, neural networks. 

1   Introduction nto the Problem 

A characteristic feature of current research in economic and financial data mining 
methods is the environment dynamics. The changes in nature of the data could be 
minor fluctuations of the underlying probability distributions, steady trends, random 
or systematic, rapid substitution of one prediction task with another [1]. Therefore, in 
the financial prediction task, the algorithms ought to include the means to reflect the 
changes, to be able to operate in new, unknown environments, to adapt to sudden 
situational changes, to compete with other methods and to survive [2]. If only very 
short training sequences could be allowed, one needs to reduce both dimensionality of 
the data (number of features) and complexity of the training algorithm. Moreover, one 
needs to find ways to utilize useful information accumulated in the times series 
history. The objective of the present research was to analyze the theoretical 
background of factually unsolvable financial time series prediction task, suggest 
methods to achieve more reliable forecasting results in situations when the 
environment is changing permanently. We reformulate forecasting task as pattern 
classification problem in present paper. 

2   Originality and Contribution 

Analysis of financial time series usually is aimed to predict the price of a given 
security in the future. What is foremost important in this task is the direction of the 

i
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price change (i.e. price goes up or down as compared to today’s value) prior to 
absolute value of the prediction error (i.e. by how many basis points the price 
changes). Wrong direction of prediction for investors concerned might bring 
significantly higher losses than absolute error in predicted security price, having right 
predicted direction of the price change. We analyze financial time series prediction 
task delimiting it to classification task, i.e. classifying the trading days into days of 
increase and days of decrease in security price as compared to previous periods. Such 
delimitation serves for two purposes: 1) analysis gets less complicated and the results 
achieved are more convenient to interpret; 2) analysis gives more value added in 
practice. We solve financial time series prediction task using classification tools, 
therefore, hereinafter we refer to prediction when addressing the task and we refer to 
classification when discussing the tools.  

To develop classification and prediction algorithms aimed to work in changing 
environments training of the algorithms ought to be based on short learning 
sequences. For that reason, the algorithms should operate in a low dimensional space 
and be able to make use of partially correct historical information accumulated in the 
past. To achieve this goal, data is mapped into a low dimensional space by wrapper 
approach based multilayer perceptron MLP training firstly considered in [3]. To have 
simple nonlinear classifier for final classification, second order polynomial features 
are formed in the new feature space and single layer perceptron (SLP) based classifier 
is trained starting from weight vector obtained from previous portion of the time 
series data. To save useful information extracted from previous data the training 
process is terminated far beyond minimum of current cost function is obtained.  

By analysis of training dynamics of standard Fisher linear discriminant function a 
presence of minimum of training sequence length is demonstrated theoretically if data 
is changing stochastically. The optimal length of training data is inversely 
proportional to intensity of data changes. Usefulness of the suggested forecasting 
methodology is demonstrated by solving commodity prices forecasting task from 
stock market statistical data.  

3   Researches in the Field and Competing Techniques 

Financial forecasting task is of great interest to businessmen as well as to 
academicians. The reader is referred to excellent review [4], where several methods 
for forecasting using artificial neural networks (ANN) are compared, to a large extent 
applicable to various financial time series. The environment dynamics and researches 
in the field performed already for several years are considered in [2, 4, 5]. 
Kuncheva [1] states classification of possible changes in the class descriptions into: 
random noise, random trends, random substitutions and systematic trends and 
suggests employing different strategies for building the classifier, depending on the 
type of changes.  

To select small number of attributes for training and performing forecasting task, 
typically one uses fixed length of historical data and reduces the number of input 
factors. Moody states and experimentally shows in [6], that there exists an optimum 
for training window length at which the test error is minimal. Sliding window  
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approach for commodity price prediction was used by Kohzadi et al [7] back in 1996. 
Fieldsend and Singh in [8] give a novel framework for implementing multi-objective 
optimization within evolutionary neural network domain for time series prediction. 
Sound results were achieved. Unfortunately, due to huge profit opportunities involved 
in financial time series forecast, a disclosure of the most significant findings in this 
field is limited particularly.  

4   Proposed Method 

In this section we present theoretical foundation of pattern classification algorithm 
used to forecast non-stationary financial time series based on the knowledge that 
excessive increase in training set length can deteriorate generalization error when 
algorithm is applied to forecast future data. 

4.1. Training Set Length and Generalization Error 

Consider a p-dimensional two category classification problem. Suppose the classes 
are Gaussian with different mean vectors μ1, μ2 and common pooled p×p covariance 
matrix Σ = ((σsr)). Then asymptotically optimal is Fisher linear discriminant function 

gF(X) = X T 
Fŵ +w0, where Fŵ = Σ̂ -1

( ˆ 1μ - ˆ 2μ ),w0= -½ ( ˆ 1μ + ˆ 2μ )T 
Fŵ

 
are weighs of 

sample based DF and classification of vector X is performed according to a sign of 
discriminant function (DF). Sample mean vectors and covariance matrix are estimated 

from training set vectors: ˆ1μ =
1

2
0

1
N
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jN

−
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=

X  and ˆ 2μ =
1

2 2
0
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−

+
=

X ; 
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2 2

1 0

2 1
1

( (ˆ ˆ) )T
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N

n + +
= =

−
− −X Xμ μ , where N is number of training vectors in one 

class, n=2N; (for a general introduction into statistical pattern recognition see e.g. [9, 
10]). If true distributions of input vectors, X, are Gaussian with parameters μ1, μ2, Σ, 
expected probability of misclassification (mean generalization error) is [10] 

ε N
F ≈ Φ{ − ½ δ (TM TΣ )-½} (1) 

where δ2
= (M)T Σ -1

(M) is a squared Mahalanobis distance, the term TM = 1+ 4p/(δ2
n) 

arises due to inexact sample estimation of the mean vectors of the classes and the term 

TΣ  =1+ p/(n-p) arises due to inexact sample estimation of the covariance matrix. 

M = (m1, …, ms)Τ = 1μ - 2μ . 

Equation (1) shows that with an increase in training set size, N, the mean 
generalization error decreases monotonically. If Fisher discriminant function is 
utilized to classify time series data which is varying in time, in estimation of 
parameters μ1, μ2, Σ, the changes of the data cause additional inaccuracies that are 
accumulating with time. Thus, with an increase in training set size the mean  
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generalization error decreases at first, reaches a minimum and then starts increasing. 
We will demonstrate this phenomenon theoretically.  

The simplest, a random drift, model of changes in distribution of X will be 
considered. Here we suppose that after each time moment, dependent Gaussian 

random variables, 2j+i = 20 s i

j
s += ξ  (i =1,2; j=0,1,…, N-1} are added to components of  

Xij. Random contributions, 2s+i, are accumulating. Then  
  

ˆ ∗Σ = 2

2 1 1 1

22 2 2 2
1 0 0 0

1 1 1
( ˆ ˆ( ))( ( ))T

j i

N N N

j ij i i j i j i i j i
i j j jn N N  +

− − −

++ + + +
= = = =

− + − − + −ζ ζζ ζI IX Xμ μ ,  

where I stands for p-dimensional column vector composed of ones, I = (1, 1, … , 1)T, 
and 2s+i ~ N(0,α2)) are independent. 

After tedious combinatory and statistical analysis utilizing first terms of Taylor 
series expansion we obtain expectations of the means and covariance matrix with 
respect to random variables 2j+i: 

E *ˆ iμ = ˆ iμ , E ˆ ∗Σ = Σ̂ + E × β, (2) 

where E stands for p×p matrix composed of ones and β =  α2N. 
Using (2), for small α and N we find effective Mahalanobis distance  

δ∗= 1 1 1 1/ 2( ( ) ) ( ) ( )( )T− − − −+ β + β + βE E ETM M M MΣ Σ Σ Σ  (3) 

Then for small α and N we become aware that we can use Eq. (2) to calculate 
approximate values for mean generalization error. Note that both the effective 
Mahalanobis distance and mean generalization error depend on all components of 

vector M and matrix Σ. In Fig. 1a we present a graph ε N
F  as a function of N. 

Theoretical calculations confirm that statistical dependence between subsequent 
components of multivariate time series deteriorates generalization performance and 
diminishes optimal training length.  

4.2   Effect of Initialization and Early Stopping in Changing Environments 

Analysis performed in previous sections has shown that the length of learning 
sequence should be short, if time series characteristics are changing all the time. It 
means that in training we ought to reject old data. Old data, however, may contain 
information, which if correctly used may appear useful. One of the ways to save 
previously accumulated data in situations of permanent environmental changes is to 
start training from the weight vector obtained with previous portion of the data, which 
is not precise enough to be used for training. It was demonstrated that information 
contained in the initial weight vector can be saved if training of the perceptron is 
stopped in a right time [11]. Due to the fact that in perceptron training we can obtain a 
sequence of the classifiers of varying complexity [10], and due to unknown accuracies 
of initial and final weight vectors the early stopping should be performed in empirical 
way. 
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Fig. 1. Generalization errors ε N
F

, as a function of training set length N; a) the Fisher classifier, 

theoretical result (p=10; ms=1.2526; σss =1; σ1s = 0.1,  if r =1; σrs = 0, if r > 1), b) MLP, pork 
price forecasting task. The bold line in graph b denotes approximation of the results. 

Table 1. The algorithm proposed 

Step 1 Data preparation (get TR and TE) 1st stage 
Step 2 Initial dimensionality reduction using MLP (TR,TE->TR3,TE3) 
Step 3 Derivation of polynomial features (TR3, TE3 ->TR9,TE9) 2nd stage 
Step 4 SLP training on TR9, testing on TE9 using “sliding window” 

approach 

In the next section the underlying considerations of stage 1 and stage 2 are discussed.
 Data  preparation and  the  flow of training and testing are  presented further  in
 Simulation experiment, Section (5). 

The First Stage of the Algorithm. In order to design functional classification 
algorithm capable to work well if trained on very short non-stationary time series 
data, we have to reduce the number of features at first, as large dimensionality of 
input vectors increases a need of training samples.  

For dimensionality reduction we selected multilayer perceptron (MLP) used to map 
the data into a low dimensional space as suggested in [3]. This simple feature 
extraction (FE) method performs linear feature extraction with nonlinear performance 

criterion. The r new features: z1, z2,…, zr, are linearly weighted sums, zs = 1
p
j sj jw x= , 

(s = 1, 2,…, r) of p inputs (r < p) calculated in r hidden neurons. The new extracted 
feature space depends on minimization criterion used in training, i.e. on complexity of 
decision boundary. Thus, the number of hidden units of MLP (the number of new 
features, r) are affecting the complexity of feature extraction procedure. In spite of 
simplicity, it is very powerful feature extraction method, which allows make use of 
discriminatory information contained in all input features. Nevertheless, in finite 
training sample size situations, one cannot use many hidden units. After several 

α=0.1 
 
 
 
 
 
 
α=0.02 

4.3   Two Stage Pattern Classification Algorithm 
The algorithm used to solve commodity price forecasting task is divided into to stages 
(see Table 1). 
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preliminary experiments performed with data TR (every second vector was used for 
training the MLP classifier and remaining vectors of TR were used for validation, 
determining the number of training epoch, tL), three hidden neurons we selected, i.e. 
r = 3. Then the MLP, trained on all data TR, after tL epochs produced new three-
dimensional data sets, TR3 and TE3. It was the first stage of the algorithm. 

The Second Stage of the Algorithm. Following to the considerations presented in 
previous sub-section, in the second stage of the algorithm, we have to apply adaptive 
classifier capable to make use of the historical data series information accumulated in 
starting weight vector wstart. Analysis showed that in the second stage, non-linear 
boundary would be preferable.  

The MLP classifier can be easily trapped into bad local minima. Therefore, we 
have chosen SLP classifier, performed in polynomial 2nd order feature space derived 
from TR3 and TE3: instead of three features, z1, z2, z3, we used nine new ones: z1, z2, 
z3, (z1)

2, (z2)
2, (z3)

2, z1z2, z1z3, z2z3. Thus the SLP classifier was trained in 9-
dimensional (9D) space.  

To save possibly useful information contained in starting 10-dimensional weight 
vector wstart, we had to stop training early, much earlier as minimum of cost function 
was obtained. In practical application of this approach, in the first iteration cost 
function to be minimized could be very large. Therefore, each new training session 
started from scaled initial weight vector κ×wstart, where parameter κ was determined 
from a minimum of cost function estimated from the testing set after recording current 
test results. 

5   Simulation Experiment 

Data Used. To demonstrate usefulness of the algorithm described above we analyzed 
a real word 5-dimensional financial data recorded in a period from November 1993 
till January 2005. The price of Pork Bellies was chosen as forecasting target.  

The following variables were used as inputs for the algorithm: x1 - spring wheat, 
x2 - raw cane sugar (as other eatable commodities), x3 - gold bullion (as alternative 
currency), x4 - American Stock Exchange (AMEX) oil price index (supposed to be 
influential for eatable commodity prices due to transportation and techniques) and 
x5 - Pork Bellies price. Input data vectors were formed using four days price 
history of each of the presented variables. 20-dimensional data matrix X was split 
into training data TR (first 1800 days history), and testing data TE (last 1100 
days).  

As we are dealing with financial variables, a highlight from theory in finance 
needs to be addressed. The Efficient Market Hypothesis [12] states that in efficient 
market, the prices reflect all the information available from the market. Thus, 
statistically significant forecast can be made only in situations where either the 
market is not efficient enough in terms of information flow or the problem solving 
method is unexpected for other participants. Therefore, we constructed original 
index, 
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 2 1 1 1 1 2( ) /( ) ( ) /( )t t t t t t t t tY B B B B B B B B+ + − + − −= + + − + + ,  

where Bt is Pork Bellies price at day t, formed from historical data. Yt is our 
forecasting target. Such index was not used by other researchers.  

We formulate forecasting task as pattern classification problem. We calculate Yt for 
all training data TR at first. Then we selected two threshold values Ymax and Ymin in a 
way that Ymax is the smallest value from 25% of the highest Yt, which were calculated 
from training set TE. Similarly, Ymin is the highest value from 25% of the smallest Yt, 

which were calculated from training set TE. This way we split training, as well as 
testing data (using the same thresholds, but the thresholds were determined only from 
training data) into categories C1 (Yt > Ymax), C2 (Yt < Ymin) and Caverage – the remaining 
50% of data. The first two classes C1 and C2, were used to develop classification 
algorithm based on the theory presented above.  

Experimental Design. 9-dimensional two category training and test data sets, TR9 
and TE9, composed of 450+450 and 199+184 vectors were obtained as described in 
Section 4.3. Tuning of number of hidden units, MLP initialization, optimal number of 
MLP training epochs were determined on pseudo-validation sets formed from each 
training subset by means of colored noise injection [10, 13]. 

Data TE9 was split into 44 not intersecting blocks composed of 25 consecutive 
days. In each iteration, the training subset consisted of L days ending one day before a 
current testing block starts (depending on L, the training blocks intersected by  
0 - 98%; at optimum, Lopt=210, we had 88% intersection). Note that in our analysis 
we skipped the middle pattern class, Caverage. Therefore, numbers of vectors from 
classes C1 and C2, in each single block were different. Training was performed if there 
were more than two vectors of each class (C1 and C2) in current training block. If no 
testing vectors were in the current testing block training, we used κ=1.  

For training the neural network and testing the results, sliding window approach 
was used. The SLP was trained on one subsequent 9-dimensional block data, starting 
from weight vector wstart obtained after training with data of preceding block. The 
supplementary training before testing on each of 44 testing blocks was essential, as 
the environment affecting commodity prices is changing very rapidly and training 
takes place on short history.  

Results. The core simulations presented in this paper are stated in Table 2. In Fig. 1b 
we have an influence of training set length (in years) on average generalization error 
in classifying 383 two category (C1 and C2) 20D test vectors of TE by means of MLP 
with 3 hidden units: 1100 days for testing (44 blocks, 25 days each).  

We see several minima in smoothed graph (bold curve). Presence of several 
minima is caused by the fact that real world environmental changes do not follow 
simplified assumptions used for derivation analytical formula in Section 4.1. The first 
convex sector in averaged graph does not lead to optimum test error, as there is a lack 
of training vectors as compared to number of features (p=20) at that short training 
window.  
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Table 2. Simulation experiments 

Fisher classifier, 
theoretical result 

Fig. 1a Generalization error, as a function of training set length. 
Experiment with artificial data. 

MLP, 
 pork price 
forecasting task 

Fig. 1b Generalization error, as a function of training set length. 
Experiment on real data repeated 179 times having 
different training set length L (20…1800). Without feature 
reduction. MLP used for training. 

SLP,  
pork price 
forecasting task 

Fig. 2a Generalization error, as a function of training set length. 
Experiment on real data repeated 179 times having 
different training set length L (20…1800). Feature 
reduction using MLP. Final training using SLP. 

SLP,  
Pork price 
forecasting task 

Fig. 2b Generalization error, as a function of number of training 
epochs. Experiment on real data repeated 150 times having 
different number of training epochs (1…150). Feature 
reduction using MLP. Final training using SLP. 
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Fig. 2. Classification error as a function of window size (in years) (a) and number of epochs 
(b). The bold line denotes approximation of the results. 

We see that minimum of the generalization error in 9D space (16.8%) is notable 
lower as that in original, 20D feature space (20.3%). It means that our strategy to 
extract features and to train SLP in low-dimensional space with initialization with 
previous weight vector and early stopping appeared fruitful. We have to admit that in 
experiments with SLP in 9D space the test data participated in determining optimal 
length of training history and the number of training epochs. It is a shortcoming. The 
only consolation is that in nowadays, the world trade market changes so rapidly that 

In Fig. 2 we have similar graphs performed with SLP in 9-dimensional feature space.  
In this case, two types of experiments were performed with the test set data TE9: 

a) for fixed number of training epochs, t*, (this number was evaluated during 
additional experiments), training window, L, vas varying in interval [20, 1800] 
days;  

b) training window length, L, was fixed (it was also obtained in additional 
experiments) and a number of training epochs varied in interval [1, 150].  
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any optimality parameters determined six years ago does not fit nowadays. Similar 
gains in accuracy were obtained in forecasting experiments of oil and sugar prices.  

6   Implementation 

In dynamic financial time series prediction, neural network training based on short 
data sequences results to more accurate result as using lengthy historical data. The 
optimal training set size is stated theoretically and experimentally. To reduce 
generalization we suggest:  

a) to map the data into low dimensional space using multilayer perceptron,  
b) to make final forecasting by single layer perceptron classifier trained in low 

dimensional space,  
c) to initialize SLP with weight vector obtained after training the perceptron with 

previous portion of data sequence,  
d) save useful preceding historical information by early stopping. 

The proposed methodology was tested on other financial time series as well, in 
particular, for oil and sugar forecasting task, the gains achieved supported the 
conclusions made here. As the objective of the present research is to analyze 
methodological issues rather than detailed presentation of the results with other 
commodity price forecasting are left out of the scope of the paper. 

When forming initial data classes C1 and C2, 50% of the data was omitted due to 
business reasons. Experiments showed that taking all the data or different percentage 
of it to classes C1 and C2 influences absolute testing error, but gives the same 
principal results, i.e. gain from dimensionality reduction, using MLP, gain from 
scaled preservation of information from previous trainings, presence of optimum 
lengths of learning sequences. 

7   Conclusions 

Our experimental results confirm that in practical utilization of the forecasting 
approach developed in the paper:  

1. Theoretically derived optimal length of time series history to be utilized to 
improve the forecasting algorithm do not fit for practical application since the 
parameter of the environmental changes are not known and since in real world, 
the changes follow much more complicated laws (if they could exist in reality).  

2. Forecasting strategy consisting on a) reduction the number of features by 
utilizing long history of multivariate financial data series by means of MLP 
based linear feature extraction, b) training the SLP classifier in low-dimensional 
polynomial features space starting from scaled previous weight vector and early 
stopping could become a good alternative to existing forecasting methods. In 
each practical application, optimal length of times series history and optimal 
perceptron’s training times have to be determined from latest data history and 
additional non-formal end users information. Possible solution to find these 
values is to solve several forecasting problems simultaneously. 
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Abstract. Model development on high dimension database is very difficult. 
This paper presents a new rough set based machine learning method, named 
feature decomposition method, to discover concept hierarchies and develop a 
multi-hierarchy model of database. For the databases which we are familiar 
with, the feature group can be selected by experience of expert. When dealing 
with the databases without any background knowledge, a new criterion based 
on rough set is presented to select the features to form a feature group. 
According to some measures of rough set theory, the objects defined on the 
proposed feature group are labeled by a new intermediate concept. The concept 
hierarchies of the database have specific meaning, which increased the 
transparency of data mining process and enhance the comprehensibility of the 
model. Each feature group and the corresponding intermediate concept 
compose the structure of the database. Finally rule induction can be processed 
on the intermediate concepts. The algorithm presented is verified by datasets 
from UCI. The results show that the multi-hierarchy model established by 
feature decomposition method can get high classification accuracy and have 
better comprehensibility. 

Keywords: Rough set, feature decomposition, classification, rule induction, 
concept hierarchy. 

1   Introduction 

The volume of data is growing at an unprecedented rate, both in the number of 
features and instances. Data mining resolves the problem by offering tools for 
discovery of patterns, associations, rules and structures in data. Fayyad et al. [1] claim 
that the explicit challenges for the KDD research community is to develop method 
that facilitate the use of data mining algorithms for real-world databases. Researchers 
realize that in order to use these tools effectively, an important part is pre-processing. 
In many applications, the number of features can be quite large, many of which can be 
irrelevant and redundant. Feature transformation and feature selection are some 
frequently used techniques in data pre-processing. Feature transformation is a process 
through which a new set of features is created. Feature selection is different from 
feature transformation in that no new features will be generated, but only a subset of 
original features is selected and feature space is reduced. 
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In the last decade, feature selection has enjoyed increased interest by the data mining 
community. Consequently many feature selection algorithms have been processed, 
some of which have reported remarkable accuracy improvement [2]. Mining of 
transformed data sets exhibits about the same classification accuracy with the increased 
transparency and lower complexity of the developed models. The most useful form of 
transformation of data sets is decomposition [3]. There are two forms of decomposition 
in space, feature set decomposition [3, 4, 5] and object set decomposition [6]. 

Besides concentrating on individual features, the feature set can be divided into 
some feature groups by intermediate concepts, which are based on aggregation of the 
original features. A more mathematically exact method for binding the aggregate 
conceptual directions of a data set is Principal Component Analysis (PCA) [7]. But 
PCA is suitable for continuous attributes. For discrete attributes, feature relevance 
decomposition becomes especially important in data sets. Zupan et al. [5] presented a 
function decomposition approach for machine learning. According to the approach, 
the new concept was formed based on function decomposition method, an approach 
originally developed to assist in the design of digital circuits. But the approach is 
limited to consistent datasets and nominal features. Butine [8] used the concept 
aggregation to classify free text documents into predefined topics. Kusiak [9] 
introduced feature bundling method, which is of particular interest in temporal data 
mining as relationships are formed among features rather than their values. The 
relationships among features tend to be more stable in time comparing to the 
relationships among feature values. 

Although many learning methods attempt to either extract or construct features, 
both theoretical analyses and experimental studies indicate that many algorithms are 
inscrutable to the users [10]. Moreover these methods do not attempt to use all the 
relevant features and ignore the relationship between the condition attributes. In this 
paper, we present a new feature decomposition method to discover concept 
hierarchies and construct the intermediate concept. This method based on rough set 
theory of Pawlark [11] facilitates the creation of a multi-attributes model. For the data 
sets which we are familiar with, feature group can be selected by skill and experience 
of expert. When dealing with the databases without any background knowledge, a 
new criterion based on rough set theory is presented to select the features to form a 
feature group. According to some measures of rough set theory, the instances defined 
on the proposed feature group are labeled by a new intermediate concept. The concept 
hierarchies of the database have specific meaning, which enhances the 
comprehensibility of the model. Each feature group and the corresponding 
intermediate concept compose the structure of the database. 

The rest of the paper is organized as follows. Section 2 introduces some basic 
concept of Rough Set Theory. Section 3 presents the feature decomposition algorithm 
in detail. Section 4 the method is experimentally evaluated on several dataset coming 
from UCI depository and the last section contains final conclusions.  

2   Preliminaries 

The rough set methodology was introduced by Pawlak [11] in the early 1980s as a 
mathematical tool to deal with uncertainty. It tries to extend capabilities as the 
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treatment of incomplete knowledge, the management of inconsistent pieces of 
information, knowledge reduction preserving information, etc. The framework is 
especially suitable to the determination of attribute-value relationships in 
attribute-value systems [12]. Here, we only introduce the basic notation from 
rough set approach used in the paper.  

Formally, the decision table is defined as 4-tuple DT=(U, A, V, f), where U is a 
non-empty finite set of objects and A is a non-empty finite set of condition C and 
decision D attributes, such that C D A=  and C D = ∅ . V is a non-empty finite 
set of attribute values. Each attribute a A∈  can be viewed as a function that maps 
elements of U into a set Va. f is an information function, :f U A V× → . 

Let ( )IND P U U∈ ×  denote an indiscernibility relation defined for a non-empty 

set of attributes P A⊆  as: 

( ){ }( ) , : ( , ) ( , )
q P

IND P x y U U f x q f y q
∈

= ∈ × ∀ =  

If ( , ) ( )x y IND P∈  we will say that x and y are P-indiscernible. Equivalence classes 

of the relation ( )IND P  are referred to as P-elementary sets. In the rough set approach 

the elementary sets are the basic building blocks of our knowledge about reality. The 
family of all equivalence classes of ( )IND P , i.e., the partition determined by P, will 

be denoted by U/P.  
For every subset X U⊆  we define the lower approximation ( )*B X  and the 

upper approximation ( )*B X  as follows: 

( ) [ ]{ }* :
B

B X x U x X= ∈ ⊆ , ( ) [ ]{ }* :
B

B X x U x X= ∈ ∩ ≠ ∅ . 

Another important issue in data analysis is discovering dependencies between 
attributes. Let D and C be subsets of A. we will say that D depends on C in a degree k, 

denoted kC D , if 
( )

( , ) CPOS D
k C D

U
γ= = ,where *

/

( ) ( )C
X U D

POS D C X
∈

=  

called a positive region of the partition U/D with respect to C, is the set of all 
elements of U that can be uniquely classified to blocks of the partition U/D, by means 
of C. The coefficient k expresses the ratio of all elements of the universe, which can 
be properly classified to blocks of the partition U/D, employing attributes C and will 
be called the degree of the dependency.  

3   Feature Decomposition Algorithm 

Feature decomposition methodology can be considered as effective strategy for 
changing the representation of a learning problem. By using some intermediate 
concept instead of single complex features, several sub problems with different and 
simple concepts are defined. There are two important issues in feature decomposition 
problem. One is how to select features to aggregate into a feature group. It might be 
obtained manually based on expert’s knowledge on a specific domain or induced 
without human interaction by some criterion. Another is how to define the 
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intermediate concept. In this section, we first present an approach to select features to 
aggregate into one feature group. Information gain is computed to measure the 
significance of feature groups and get rid of the redundant features. The intermediate 
concepts are discovered according to two measures based on Rough Set theory. After 
that, the description of algorithm is presented to express the process of feature 
decomposition and model development. 

3.1   Feature Selection 

Feature decomposition methodology attempts to select the features by some criteria to 
form a feature group and label the union by a new intermediate concept. About the 
model of the transformed dataset, the classification accuracy does not decrease 
significantly, and the comprehensibility will be increased. The first step in feature 
decomposition method is to obtain the structure of databases. The original features 
should be selected to aggregate into feature groups. There are several methods for the 
selection of features.  

For a given dataset, if we are familiar with the background knowledge, supervised 
selection can process under the human interaction. The dataset can be examined by 
expert, who accessed each feature group according to practical meaning, the cost of 
data collection, the requirement for real time, etc. The expert selects the features to 
form the feature groups that seemed most meaningful and comprehensible. When 
dealing with the databases without any background knowledge, we utilize the basic 
ideas in rough set, and set up an approach to select the features.  

An information system is defined as ( , , , )S U C D V f= ∪ , where C is the condition 

attribute set. D is the decision attribute set. B C∈ . For random ia C∈  and ia B∉ , we 

define the selection criterion as follows. 

{ }( ( )) ( ( ))( { }, ) ( , )

( ) ( ) ( )
i

i i

B a Bi

a a

card POS D card POS DB a D B D
k

card V card U card V

γ γ + −+ −
= =

⋅
 

where ( )card U means the number of instances in set U, ( )
iacard V means the number 

of values of attribute ia . If the selection criterion k gets the maximum value for ia , 

we aggregate ia  into the set B to form a feature group. That is to say, union of B and 

ai can get the maximum enhancement of classification power. 

3.2   Discovering the Intermediate Concept 

Our algorithm is a heuristic method with rough set measures to find the optimal 
partition of the intermediate concept ci. The following are the measures based on 
rough set theory: 

1) Consistency measure: Given the feature group Gi and the corresponding 
intermediate concept ci , We define a criteria based on the degree of dependency for 
partition evaluation as below. 

{ }( )
1

( , ) ,

( , )
iC D R c D

J
C D

γ γ
δ

γ
−

= ≤  
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where { }{ },iR c Dγ  expresses the degree of dependency between attributes 

{ }iR c  and D, R means the remains features except feature group Gi� δ is a user 

given threshold. This definition expresses that { }{ }, , ,new iDT U R c D V f=  has the 

approximate degree of the dependency compared with DT. The threshold δ suits the 
characteristic of consistency measure because real-world data is usually noisy and if 
δ is set to 0 strictly then it may happen that “good” features are filtered away. 
Especially, when 1 0cJ = , the new decision system has the same classification 

performance as the original datasets.  
2) Min-value measure: Generally, the number of the equivalence classes divided by 

the proposed feature group is
1

( )
k

i
i

n card a
=

= ∏  where ai is the feature which is selected 

into the feature group. By merging the equivalence classes under the restriction of 
consistency measure J1, we minimize the number n and get Min-value measure J2.  

2 min( ( ))
icJ Card V=  

The smaller ( )
iccard V , the simpler structure of dataset will get. 

3.3   Description of the Algorithm 

Algorithm. Feature decomposition method based on rough set. 
Given: A N-case data set T containing m-dimensional features, denoted by DT=(U, 
C D). 
Step 1: Select the features to form some feature groups G1, G2,…, Gk. 
Step 2: Compute the significance of feature groups by the information theory. 
Step 3: According to the significance sequence of feature groups, compute the 
intermediate features c1, c2, …, ck by the two measures J1, J2 of rough set theory 
Step 4: Attribute reduct,  induce the rule sets by rough set theory on data set DTi=(U, 
Gi ci), i=1,2…,k 
Step 5: Induce the rule set by rough set theory on data set DT’=(U, {c1,c2,…,ck}�D) 
to obtain the multi-hierarchy model. 

4   Experiments 

The data sets used in the experiment are real-world datasets coming from UCI 
Machine Learning Repository [14]. The experiment was conducted on six 
benchmark datasets. Table 1 describes the character of datasets where N is the number 
of instances, M is the size of the condition feature set, and M’ is the number of the 
intermediate concepts obtained by our algorithm. We carry out experiment to examine 
(1) whether multi-hierarchy classification model can achieve high classification 
accuracy compared with some classical approaches and (2) whether the multi-
hierarchy structure is more comprehensible and easy to interpret. 

The experimental procedure is to run feature decomposition method to get the 
intermediate concepts, compare the performance with two different classifiers, in  
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Table 1. Datasets and comparative results of classification accuracy (%) 

Dataset character Classification accuracy (%) 
Name N M M’ C4.5 RSES Our algorithm 
Car 1728 6 3 100 100 100 

Australian 690 15 4 84.5 86.5 88.3 
Monk-1 124 6 2 100 88.7 100 
Monk-2 169 6 2 64.8 73.6 89.5 
Monk-3 122 6 2 94.4 94.7 85.8 

Tictactoe 958 9 3 84.1 80.7 87.03 

which C4.5 is a standard machine learning algorithms and has been widely used to 
compare with newly-proposed algorithms, while RSES directly generates decision 
rules according to rough set analysis. Table 1 indicates that the multi-hierarchy model 
can achieve high classification accuracy. For example, on Car, Australian, Monk-1, 
Monk-2, and Tictactoe, our algorithm all gets better performance. On Monk-3, it can 
be seen that the accuracy for our algorithm can achieve 85.8% and the result is 
inferior to other algorithm to a certain extent. This is because Monk-3 has noisy data. 
The existence of noisy data can take an impact on the process of discovering 
intermediate concepts. This impact becomes more serious in the small feature set, for 
example the feature group Gi. And as a result it makes the classification rate of our 
algorithm on  Monk-3 lower than other methods. 

Next the comprehensibility of model can be illustrated with the example of monk 
and car datasets. The intermediate concept of every dataset and the corresponding 
feature group are listed in table 2. The features in bracket are the original features. 
The features outside the bracket are the new intermediate concepts which were 
created by the algorithm. 

The MONK’s problems rely on an artificial robot domain, in which robots are 
described by six different attributes. Detailed descriptions of Monk’s problems can be 
found in [15].Monk-1 and Monk-2 have no noise data, but Monk-3 has 5% noise in the 
training set. In the six attributes x1, x2,…, x6,, x1 means head shape, and x2 means body 
shape. So we can define a new intermediate concept c1 which means shape factor of the 
instances by the experience. The new concept which has specific meaning can be 
discovered by our algorithm. The value number of the new concept c1 on Monk-1, Monk-
2 and Monk-3 is 2, 3 and 5 respectively. For example, the two values of the intermediate 
concept on Monk-1 are easy to interpret. If the body shape is the same as the head shape, 
the intermediate concept is equal to 1. If not, it is equal to 2. And our algorithm maps 9 
combinations of x1 and x2 to only two values of the intermediate concept. For Monk-2, 
because of the complexity of the features combination, most of the algorithm cannot 
produce excellent classification rules. But the accuracy obtained by our algorithm on 
Monk-2 reaches to 89.5%, which is obviously higher than the classification accuracy of 
other algorithms. The reason for increased classification accuracy with the intermediate 
concept might due to the fact the associations among features and decisions are stronger 
than those built on single feature. In fact, the intermediate concept can be looked as the 
target of the regression function defined on a subset of features.  

Car dataset is a famous database to test the performance of classification model. It 
has six attributes. The first two attributes, buying price (a1) and the price of the 
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Table 2. The intermediate concept and the corresponding feature group 

Dataset Feature Group 
price factor (a1, a2) 
comfort factor (a3, a4, a5) Car 
safety factor (a6) 
shape factor (a1, a2) Monk 
 appearance factor (a3, a4, a5,a6) 
k1(a1, a2, a9,a11) 
k2(a3, a4, a8,a10) 
k3(a5, a7, a15) 

Austrilian 

k4(a6, a12, a13,a14) 
top factor (a1, a2, a3) 
meddle factor (a4, a5, a6) Tictactoe 
bottom factor (a7, a8, a9) 

maintenance (a2), can be aggregated into one intermediate concept, named price 
factor. Like price factor, we can get comfort factor (a3, a4, a5) and safety factor (a6), 
then develop multi-hierarchy model on these intermediate concepts with high 
comprehensibility. For example, a customer can evaluate a car by the three combined 
criterion instead of concentrating on individual features. And another advantage of 
our algorithm is that it can break down a high dimensionality problem into several 
manageable problems. For example, there are 1728 instances in car dataset. After run 
our algorithm on car dataset, it maps 16 combinations of a1 and a2 to only 4 values of 
price factor. And transform 36 combinations of a3,, a4 and a5 to 3 values of comfort 
factor. It can be seen that the number of objects in each subset of multi-hierarchy 
model is much less than in original dataset. So the rule set obtained by our algorithm 
is much simpler and with high support degree. 

In a word, the multi-hierarchy model developed by our algorithm is not only a 
powerful model with high performance but also a simple model with better 
comprehensibility. 

5   Conclusions and Future Work 

In the most data mining applications, the model is developed on the original data set. 
In this paper a new method based on rough set named feature decomposition 
algorithm was introduced. Two measures based on rough set theory are presented to 
discover the new intermediate concept. And rule induction is processed by rough set 
theory to build the multi-hierarchy model. Experiments on datasets coming from UCI 
are made to evaluate the performance of the method. The results show that the multi-
hierarchy model established by feature decomposition method can get high 
classification accuracy and have better comprehensibility. We conclude the main 
advantages of the feature decomposition method as follows: 

1. This method can enhance the transparency of the model. The model developed by 
the feature decomposition method expresses the hierarchy structure of database 
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clearly. And the rule sets induced by the method are comprehensible. So in 
decision support tasks, reasons for the decision can be clearly identifiable. 

2. Feature decomposition method can break down a high dimensionality problem 
into several manageable problems. It makes the problem more feasible by 
reducing its dimensionality. 

3. This method can deal with the inconsistent dataset, process appropriate treatment 
of noise in data. Though the existence of noise degrades the performance of 
model, the results of experiment verify that this method can extract the structure 
of dataset and build multi-hierarchy model. 
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Abstract. Gaussian mixture models are being increasingly used in pat-
tern recognition applications. However, for a set of data other distribu-
tions can give better results. In this paper, we consider Dirichlet mixtures
which offer many advantages [1]. The use of the ECM algorithm and the
minimum message length (MML) approach to fit this mixture model
is described. Experimental results involve the summarization of texture
image databases.

1 Introduction

Finite mixture models have continued to receive increasing attention over the
years [2]. These models are used in various fields such as image processing,
pattern recognition, machine learning and remote sensing. For multivariate data
attention has focused on the use of Gaussian components. However, for many
applications the Gaussian can fail when the partitions are clearly non-Gaussian.
In [1], we have demonstrated that the Dirichlet can be a good choice to overcome
the problems of the Gaussian. In dimension dim the Dirichlet distribution with
parameters α = (α1, . . . , αdim+1) is given by:

p(X|α) =
Γ (|α|)∏dim+1

i=1 Γ (αi)

dim+1∏
i=1

Xαi−1
i (1)

where
∑dim

i=1 Xi < 1, |X| =
∑dim

i=1 Xi, 0 < Xi < 1 ∀i = 1 . . . dim, Xdim+1 =
1 − |X|, and |α| =

∑dim+1
i=1 αi, αi > 0 ∀i = 1 . . . dim + 1. This distribution

is the multivariate extension of the 2-parameter Beta distribution. The mean of
the Dirichlet distribution is given by:

μi = E(Xi) =
αi

|α| (2)

A mixture with M components is defined as : p(X|Θ) =
∑M

j=1 p(X|αj)p(j)
where p(j) (0 < p(j) < 1 and

∑M
j=1 p(j) = 1) are the mixing parameters and

p(X|αj) is the Dirichlet distribution. The symbol Θ refers to the entire set of
parameters to be estimated: Θ = (α1, . . . ,αM , p(1), . . . , p(M)), where αj is the

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3686, pp. 172–182, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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parameters vector of the jth component. The EM algorithm is a popular method
for iterative maximum likelihood (ML) estimation of finite mixture distributions.
This algorithm, however, is unattractive when the M-Step is complicate [2]. This
is the case of the Dirichlet mixture. Indeed, the M-Step involves the inverse of
the (dim + 1) × (dim + 1) Fisher information matrix which is not easy to com-
pute especially for high-dimensional data. In this paper, we introduce another
approach based on the ECM algorithm which replace a complicated M-step of
the EM algorithm with several computationally simpler CM-Steps [3]. The de-
termination of the number of components is based on the MML approach. The
rest of the paper is organized as follows. Section II, discusses the basic concepts
of the EM algorithm and proposes the ECM algorithm as a method to overcome
the problems of the EM in the case of Dirichlet mixtures. In Section III, we
present the MML approach for the selection of the number of clusters. Section
IV is devoted to experimental results, and Section V ends the paper with some
concluding remarks.

2 ML Estimation of a Dirichlet Mixture Using ECM

We consider now ML estimation for a M-component mixture of Dirichlet dis-
tributions. Given the set of independent vectors X = {X1, . . . ,XN}, the log-
likelihood corresponding to an M -component mixture is:

L(Θ,X ) = log

N∏
i=1

p(Xi|Θ) =
N∑

i=1

log

M∑
j=1

p(Xi|αj)p(j) (3)

It’s well-known that the ML estimate: Θ̂ML = argmaxΘ{L(Θ,X )} which can
not be found analytically. The maximization defining the ML estimates is subject
to the constraints 0 < p(j) ≤ 1 and

∑M
j=1 p(j) = 1. Obtaining ML estimates

of the mixture parameters is possible through EM and related techniques [2].
The EM algorithm is a general approach to maximum likelihood in the presence
of incomplete data. In EM, the “complete” data are considered to be Yi =
{Xi, Zi}, where Zi = (Zi1, . . . , ZiM ) with Zij = 1 if Xi belongs to class j and
Zij = 0 otherwise. The relevant assumption is that the density of an observation
Xi given Zi is given by

∏M
j=1 p(Xi|αj)Zij . The resulting complete-data log-

likelihood is:

L(Θ,Z,X ) =
N∑

i=1

M∑
j=1

Zij log(p(Xi|αj)p(j)) (4)

The EM algorithm produces a sequence of estimates {Θt, t = 0, 1, 2 . . .} by
applying two steps in alternation (until some convergence criterion is satisfied):

1. E-step: Compute Ẑij given the parameter estimates from the initialization:

Ẑij =
p(Xi|αj)p(j)∑M

j=1 p(Xi|αj)p(j)
(5)
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2. M-step: Update the parameter estimates according to:

Θ̂ = argmaxΘL(Θ,Z,X ) (6)

The quantity Ẑij is the conditional expectation of Zij given the observation Xi

and parameter vector Θ. The value Z∗
ij of Ẑij at a maximum of Eq. 4 is the

conditional probability that observation i belongs to class j (the posterior proba-
bility); the classification of an observation Xi is taken to be {k/Z∗

ik = maxjZ
∗
ij},

which is the Bayes rule. The EM algorithm has been shown to monotonically
increase the log-likelihood function. When we maximize Eq. 6, we obtain:

p(j)(t) =
1
N

N∑
i=1

Ẑ
(t−1)
ij (7)

However, we do not obtain a closed-form solution for the αj parameters. We
therefore use the Fisher scoring method to estimate these parameters [1]. The
inconvenient of this approach is that it involves the inverse of the (dim + 1) ×
(dim +1) Fisher information matrix which is not easy to compute especially for
high-dimensional data. One of reasons of the popularity of the EM algorithm
is that the M-step involves only complete-data ML estimation. But, if the M-
Step is complicated as in the case of the Dirichlet mixture, the EM algorithm
becomes less attractive. In many cases, however, the ML estimation is simpler
if maximization is undertaken conditional on some functions of the parameters.
For this goal, Meng and Rubin [3] introduced an algorithm called ECM which
replaces a complicated M-step of the EM algorithm with several computationally
simpler CM-Steps. As a consequence the ECM converges more slowly than the
EM in terms of number of iterations, but can be faster in total computer time.
Another important advantage of the ECM is the preservation of the convergence
properties of the EM, such as its monotone convergence. Now, we focus on the
use of this algorithm for the estimation of Dirichlet mixture.
By substituting Eq. 2 in Eq. 1, the Dirichlet distribution can be written as the
following:

p(X||α|, μ) =
Γ (|α|)∏dim+1

i=1 Γ (μi|α|)
dim+1∏

i=1

X
μi|α|−1
i (8)

where μ = (μ1, . . . , μdim+1). By this reparameterization, the parameters of the
Dirichlet mixture to estimate will be ξ = (μ1, . . . ,μM , |α1|, . . . , |αM |, p(1), . . . ,
p(M)). This set of parameters can be divided into three subsets ξ1 = (|α1|, . . . , |
αM |), ξ2 = (μ1, . . . ,μM ), and ξ3 = (p(1), . . . , p(M)). Then, the different pa-
rameters ξ1, ξ2 and ξ3 can be calculated independently. The likelihood for ξ1

alone is:

p(X|ξ1) ∝
N∏

i=1

[ M∑
j=1

p(j)
Γ (|αj |)∏dim+1

l=1 Γ (μjl|αj |)
dim+1∏

l=1

X
μjl|αj |−1
il

]
(9)
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For the estimation of |αj |, we use a Newton-Raphson method:

|αj |(t) = |αj |(t−1) −
(

∂2logp(X|ξ(t−1)
1 )

∂2|αj |
)−1

∂logp(X|ξ(t−1)
1 )

∂|αj | (10)

The likelihood for ξ2 alone is:

p(X|ξ2) ∝
N∏

i=1

[ M∑
j=1

p(j)
dim+1∏

l=1

X
μjl|αj |−1
il

Γ (μjl|αj |)
]

(11)

By maximizing p(X|ξ2) taking into account the constraint
∑dim+1

l=1 μjl = 1, we
obtain:

μ
(t)
jl =

μ
(t−1)
jl

∑N
i=1 p(μj

(t−1)|Xi)
(

log(Xil) − Ψ(μ(t−1)
jl |αj |(t))

)
∑dim+1

l=1

[
μ

(t−1)
jl

∑N
i=1 p(μj

(t−1)|Xi)
(

log(Xil) − Ψ(μ(t−1)
jl |αj |(t))

)] (12)

Then, on the iteration t of the ECM algorithm, the E-Step is the same as given
above for the EM algorithm, but the M-Step is replaced by three CM-Steps, as
follows:

– CM-Step1: Calculate ξ
(t)
1 using Eq. 10 with ξ2 fixed at ξ

(t−1)
2 and ξ3 fixed

at ξ
(t−1)
3 .

– CM-Step2: Calculate ξ
(t)
2 using Eq. 12 with ξ1 fixed at ξ

(t)
1 and ξ3 fixed at

ξ
(t−1)
3 .

– CM-Step2: Calculate ξ
(t)
3 using Eq. 7 with ξ1 fixed at ξ

(t)
1 and ξ2 fixed at

ξ
(t)
2 .

3 MML Approach for the Determination of the Number
of Clusters

3.1 MML Principle

Let us consider a set of data X controlled by a mixture of distributions with
vector of parameters ξ. According to information theory [4], the optimal number
of clusters of the mixture is that which requires a minimum amount of informa-
tion, measured in nats, to transmit X efficiently from a sender to a receiver. The
message length is defined as minus the logarithm of the posterior probability.

MessLen = −log(P (ξ|X )) (13)

The MML principle has strong connections with Bayesian inference, and hence
uses an explicit prior distribution over parameter values. Wallace [5] and Baxter
[6] give us the formula for the message length for a mixture of distributions:
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MessLen � −log(h(ξ)) − log(p(X|ξ)) +
1
2
log(|F (ξ)|) − Np

2
log(12) +

Np

2
(14)

where h(ξ) is the prior probability, p(X|ξ) is the likelihood, and |F (ξ)| is the
Fisher information, defined as the determinant of the Hessian matrix of minus
the log-likelihood of the mixture. Np is the number of parameters to be estimated
and is equal to M(dim+3) in our case. The estimation of the number of clusters
is carried out by finding the minimum with regards to ξ of the message length
MessLen. We will determine the expression of MML for a Dirichlet mixture.

3.2 Fisher Information for a Mixture of Dirichlet Distributions

Fisher information is the determinant of the Hessian matrix of the logarithm of
minus the likelihood of the mixture. The Hessian matrix of a mixture leads to
a complicated analytical form of MML which cannot be easily reproduced. We
will approximate this matrix by formulating two assumptions, as follows. First,
it should be recalled that (ξ1, ξ2) and ξ3 are independent because any prior idea
one might have about (ξ1, ξ2) would usually not be greatly influenced by one’s
idea about the value of the mixing parameter vector ξ3. Furthermore, we assume
that ξ1 and ξ2 are also independent. The Fisher information is then [6]:

F (ξ) � F (ξ1)F (ξ2)F (ξ3) (15)

where F (ξ3) is the Fisher information with regards to the probability of the
mixture. F (ξ1) and F (ξ2) are the Fisher information with regards to the vectors
ξ1 and ξ2. In what follows we will compute each of these separately. For F (ξ3), it
should be noted that the mixing parameters satisfy the requirement

∑M
j=1 p(j) =

1. Consequently, it is possible to consider the generalized Bernoulli process with
a series of trials, each of which has M possible outcomes labeled first cluster,
second cluster, ..., M th cluster. The number of trials of the jth cluster is a
multinomial distribution of parameters p(1), p(2), . . . , p(M). In this case, the
determinant of the Fisher information matrix is [6]:

F (ξ3) =
N∏M

j=1 p(j)
(16)

For F (ξ1) and F (ξ3), we assume that the components of ξ1 and ξ2 are indepen-
dent, then:

F (ξ1) =
M∏

j=1

F (|αj |) (17)

F (ξ2) =
M∏

j=1

F (μj) (18)

let us consider the jth cluster Xj = (X l, . . . ,X l+nj−1) of the mixture, where
l ≤ N , with parameters |αj | and μj . The choice of the jth cluster allows us to
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simplify the notation without loss of generality. The Hessian matrix when we
consider the vector μj is given by:

H(μj) =
∂2

∂μjk1∂μjk2

(−logp(Xj|μj)) (19)

where k1 = 1 . . . dim + 1 and k2 = 1 . . . dim + 1. Straight forward manipulations
give us the determinant of the matrix H(μj):

F (μj) = ndim+1
j |αj |2(dim+1)

dim+1∏
k=1

Ψ
′
(μjk|αj |) (20)

By substituting Eq. 20 in Eq. 18 we obtain:

F (ξ2) =
M∏

j=1

(
ndim+1

j |αj |2(dim+1)
dim+1∏

k=1

Ψ
′
(μjk|αj |)

)
(21)

Now we determine the Fisher information when we consider |αj |. The second
derivative is given by:

− ∂2logp(Xj ||αj |)
∂2|αj | = nj

(
− Ψ

′
(|αj |) +

dim+1∑
k=1

μ2
jkΨ

′
(μjk|αj |)

)
(22)

and represent the Fisher information. By substituting Eq. 22 in Eq. 17, we
obtain:

F (ξ1) =
M∏

j=1

nj

(
− Ψ

′
(|αj |) +

dim+1∑
k=1

μ2
jkΨ

′
(μjk|αj |)

)
(23)

Finally the complete Fisher information for the mixture is found by substituting
Eq. 16, Eq. 21 and Eq. 23 in Eq. 15.

3.3 Prior Distribution h(ξ)

The performance of the MML criterion is dependent on the choice of the prior
distribution h(ξ). Several criteria have been proposed for the selection of prior
h(ξ). Following Bayesian inference theory, the prior density of a parameter is
either constant on the whole range of its values or the value range is split into
cells and the prior density is assumed to be constant within each cell. Since ξ1,
ξ2 and ξ3 are independent, we have:

h(ξ) = h(ξ1)h(ξ2)h(ξ3) (24)

We will now define the three densities h(ξ1), h(ξ2), and h(ξ3). The vector ξ3

has M dependent components; i.e. the sum of the mixing parameters is one.
Thus, we omit one of these components, say p(M). The new vector has (M −
1) independent components. We treat the p(j), j = 1 . . .M − 1 as being the
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parameters of a multinomial distribution. With the (M − 1) remaining mixing
parameters, (M − 1)! possible vectors can be formed. Thus, we set the uniform
prior density of ξ3 to [6]:

h(ξ3) =
1

(M − 1)!
(25)

For h(ξ2), since μj , j = 1 . . .M are assumed to be independent:

h(ξ2) =
M∏

j=1

h(μj) (26)

Using the same approach as for the vector ξ3, we set the uniform prior density
of μj to:

h(μj) =
1

dim!
(27)

Indeed,
∑dim+1

k=1 μjk = 1. By substituting Eq. 27 in Eq. 26, we obtain:

h(ξ2) =
1

dim!M
(28)

For h(ξ1), since |αj |, j = 1 . . .M are assumed to be independent:

h(ξ1) =
M∏

j=1

h(|αj|) (29)

We will now calculate h(|αj|). In the absence of other knowledge about the |αj |,
we use the principle of ignorance by assuming that h(|αj |) is locally uniform over
the ranges [0, e3|α̂pop|] (in fact, we know experimentally that |αj | < e3|α̂pop|,
where |α̂pop| is the estimated parameter when we consider the entire population.
We choose the following uniform priors in accordance with Ockham’s razor (a
simple priors which give good results) [7]:

h(|αj |) =
e−3

|α̂pop| (30)

By substituting Eq. 30 in Eq. 29, we obtain

h(ξ1) =
M∏

j=1

e−3

|α̂pop| =
e−3M

|α̂pop|M (31)

By substituting Eq. 31, Eq. 28 and Eq. 25 in Eq. 24, we obtain:

h(ξ) =
e−3M

|α̂pop|M (M − 1)!dim!M
(32)

The expression of MML for a finite mixture of Dirichlet distributions is obtained
by substituting Eq. 32 and Eq. 15 in Eq. 14.



On Fitting Finite Dirichlet Mixture Using ECM and MML 179

3.4 Estimation and Selection Algorithm

The algorithm of selection and estimation is thus as follows:

Algorithm
For each candidate value of M :

1. Initialization
2. E-Step: Compute the posterior probabilities:

Ẑij = p(Xi|αj)p(j)∑M
j=1 p(Xi|,αj)p(j)

3. CM-Steps:
(a) CM-Step1: Calculate ξ

(t)
1 using Eq. 10 with ξ2 fixed at ξ

(t−1)
2 and ξ3

fixed at ξ
(t−1)
3 .

(b) CM-Step2: Calculate ξ
(t)
2 using Eq. 12 with ξ1 fixed at ξ

(t)
1 and ξ3 fixed

at ξ
(t−1)
3 .

(c) CM-Step2: Calculate ξ
(t)
3 using Eq. 7 with ξ1 fixed at ξ

(t)
1 and ξ2 fixed

at ξ
(t)
2 .

4. If the convergence test is passed, terminate, else go to 2.
5. Calculate the associated criterion MML(M) using Eq. 14.
6. Select the optimal model M∗ such that: M∗ = arg minM MML(M)

details about the initialization algorithm can be found in [1]. The convergence
test can involve the stabilization of the parameters or the likelihood function.

4 Experimental Results

The application concerns the summarization of image databases. Interactions be-
tween users and multimedia databases can involve queries like “Retrieve images
that are similar to this image”. A number of techniques have been developed to
handle pictorial queries. Summarizing the database is very important because it
simplifies the task of retrieval by restricting the search for similar images to a
smaller domain of the database. Summarization is also very efficient for brows-
ing. Knowing the categories of images in a given database allows the user to find
the images he or she is looking for more quickly. Using mixture decomposition,
we can find natural groupings of images and represent each group by the most
representative image in the group. In other words, after appropriate features are
extracted from the images, it allows us to partition the feature space into regions
that are relatively homogeneous with respect to the chosen set of features. By
identifying the homogeneous regions in the feature space, the task of summariza-
tion is accomplished. For the experiment, we used the Vistex gray-level texture
database obtained from the MIT Media Lab. In our experimental framework,
each of the 512 × 512 images from the Vistex database was divided into 64
× 64 images. Since each 512 × 512 “mother image” contributes 64 images to
our database, ideally all of the 64 images should be classified in the same class.
In the experiment, six homogeneous texture groups, “Bark”, “Fabric”, “Food”,
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(a) (b) (c) (d) (e) (f)

Fig. 1. Sample images from each group. (a) Bark, (b) Fabric, (c) Food, (d) Metal, (e)
Sand, (f) Water.

Table 1. Number of clusters found by three criteria (MML, MDL and AIC)

Number of clusters MML MDL AIC
1 -12945.10 -12951.40 -12974.90
2 -12951.12 -13001.52 -13019.12
3 -12960.34 -13080.37 -13094.23
4 -13000.76 -13206.73 -13225.57
5 -13245.18 -13574.98 -13591.04
6 -13765.04 -13570.09 -13587.64
7 -13456.71 -13493.50 -13519.50
8 -13398.16 -13387.56 -13405.92
9 -13402.64 -13125.41 -13141.95
10 -13100.82 -13001.80 -13020.23

Table 2. Confusion matrix for image classification by a Dirichlet mixture

Bark Fabric Food Metal Sand Water
Bark 250 0 0 0 6 0
Fabric 0 248 8 0 0 0
Food 0 9 375 0 0 0
Metal 0 0 0 250 0 6
Sand 4 0 0 0 380 0
Water 3 0 0 7 2 372

“Metal”, “Water” and “Sand” were used to create a new database. A database
with 1920 images of size 64 × 64 pixels was obtained. Four images from each
of the Bark, Fabric and Metal texture groups and 6 images from Water, Food
and Sand were used. Examples of images from each of the categories are shown
in Fig. 1. In order to determine the vector of characteristics for each image,
we used the cooccurrence matrix introduced by Haralick et al. [8]. For relevant
representation of texture, many cooccurrences should be computed, each one
considering a given neighborhood and direction. In our application, we have
considered the following four neighborhoods: (1; 0), (1; π

4 ), (1; π
2 ), and (1; 3π

4 ).
For each of these neighborhoods, we calculated the corresponding cooccurrence
matrix, then derived from it the following features: Mean, Energy, Contrast, and
Homogeneity [9]. Thus, each image was represented by a 16D feature vector. By
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Table 3. Confusion matrix for image classification by a Gaussian mixture

Bark Fabric Food Metal Sand Water
Bark 240 0 0 3 8 5
Fabric 0 236 12 0 4 4
Food 0 12 365 4 0 3
Metal 0 2 2 242 4 6
Sand 8 2 0 0 370 4
Water 5 1 0 10 5 363

applying our algorithm to the texture database using MML and other different
selection selection criteria such that MDL and AIC [2], only the MML criterion
found six categories (see Table 1). In what follows we use the selection found
by the MML. The classification was performed using the Bayesian decision rule
after the class-conditional densities were estimated. The confusion matrix for
the texture image classification is given in Table 2. In this confusion matrix, the
cell (classi, classj) represents the number of images from classi which are clas-
sified as classj. The number of images misclassified was small: 45 in all, which
represents an accuracy of 97.65 percent. From Table 2, we can see clearly that
the errors are due essentially to the presence of macrotexture, i.e., the texture at
large scale, (between Fabric and Food for example) or because of microtexture,
i.e., the texture at pixel level (between Metal and Water for example). Table 3
shows the confusion matrix for the Gaussian mixture.

5 Conclusion

In this paper, we have proposed a new method based on the ECM algorithm to
estimate the parameters of a Dirichlet mixture. The ECM algorithm replaces a
complicated M-step of the EM algorithm with several computationally simpler
CM-Steps. The number of clusters is determined using an MML-based approach.
From the experimental results, we can say that the Dirichlet distribution offers
strong modeling capabilities.
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Abstract. We investigate the possibility of using pattern recognition
techniques to classify various disease types using data produced by a new
form of rapid Mass Spectrometry. The data format has several advan-
tages over other high-throughput technologies and as such could become
a useful diagnostic tool. We investigate the binary and multi-class per-
formances obtained using standard classifiers as the number of features is
varied and conclude that there is potential in this technique and suggest
research directions that would improve performance.

1 Introduction

In recent years, microarrays have enabled researchers to measure the expression
of entire genomes simultaneously. Some work has been undertaken to investi-
gate how well classifiers built using microarray data can discriminate between
healthy and diseased samples and samples of differing diseases and disease stages
[1]. However, although this is very interesting from a feature (i.e. gene) selection
perspective, as a general diagnostic tool, it is unlikely to prove useful. There are
several underlying reasons for this. Firstly, the cost of microarray analysis and
the time required to perform the analysis are both currently prohibitive. Sec-
ondly, the mRNA levels measured by a microarray only give a partial picture of
the proteomic activity inside the cell. Finally, samples have to be very localised.
For example, to diagnose a bladder cancer, a sample of bladder tissue would be
required. This is obviously a highly invasive procedure.

In this paper, we consider a new form of biological data (introduced in [2,3,4])
generated using Mass Spectrometry (MS) and assess whether it has potential as
a diagnosis tool, using various pattern classification techniques. This data can be
obtained very rapidly and inexpensively, suggesting that it may be well suited
for a diagnostic purpose. Also, the data is collected from a urine sample. This
is easily obtained and therefore can potentially be used to diagnose any disease
that will cause a change in the particle content of the urine.

The remainder of the paper is set out as follows. In the next section, we intro-
duce the data generation process. In section 3, we discuss the data pre-filtering
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and pre-processing and briefly mention the classification algorithms used. In
sections 4 and 5 we present results and conclusions.

2 CE/MS Data Generation

Recently, a new MS approach has been investigated that couples capillary elec-
trophoresis (CE) directly to MS enabling detailed analysis to be available quickly
(< 1 hour) and directly from a suitable (e.g. urine) sample [2,4,3]. Traditionally
MS has been used to identify individual proteins but typically cannot be per-
formed on a sample consisting of various proteins. Separation techniques exist
to isolate individual proteins from such a mixture but these tend to be highly
labour intensive and therefore expensive and slow. Here, the CE takes a com-
plex sample of particles (in this case, the particles can be anything that might be
found in the urine, not necessarily complete proteins) and by applying a charge
differential along the capillary, separates the various particles in time. The out-
put is connected directly to the MS realising a mass profile that evolves with
time. This data is then analysed by MosaiquesVisu software that detects and
outputs intensity values at the unique mass/time peaks (for details, see [4]). The
separation in time means that only a small fraction of the particles are applied
to the MS at any particular time. If the sample was applied directly to the MS
without this stage it would be far more difficult to distinguish between individual
particles.

This method has many possible diagnostic advantages over microarrays.
Firstly, the analysis is quick and non-invasive. Secondly, in the case of using
urine samples, there is the potential to be able to diagnose any diseases that
would result in a variation of the products found in urine. However, there are
drawbacks to this method. Firstly, the data produced is of a very high dimension
(∼ 30, 000 features) and the number of available samples is relatively small. Sec-
ondly, as no real control is imposed on the sample being analysed, it is possible
that amongst this high number of features, there will be many due to other,
spurious factors.

To date, there has been some research focused on the potential of MS pro-
teomics data as a diagnostic tool, but using serum rather than urine. For exam-
ple, Lilien et al [5] use Principal Components Analysis and a linear discriminant
to distinguish between the MS spectra of serum samples from patients with var-
ious tumours. Similarly, Wagner et al [6] use supervised techniques to try and
create protein profiles from MS analysis of serum samples. These approaches are
all based on identifying whole, specific proteins whereas CE/MS can detect a
much wider range of particles.

3 Method

3.1 Data

The data set we shall use consists of analysis of 632 samples that come from
one of 22 separate classes from individuals with various renal diseases, cancers
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and diabetes as well as samples from healthy individuals. We have performed
binary classification with a variety of algorithms on a large number of pairs
of classes from this set, however, in this investigation, we will concentrate on
a group of five classes - Bladder Cancer (BLA - 47 instances), Renal Cancer
(REN - 25 instances), Prostate Cancer (PCA - 8 instances), Benign Prostate
(PB - 12 instances) and Healthy (NK - 41 instances). The total number of
features is 28378. The inclusion of benign prostate samples is interesting as
clinical differentiation between individuals with prostate cancer and those with
a benign growth is challenging and the two different conditions require vastly
different treatment.

3.2 Feature Pre-filtering

This particular form of data has several important characteristics. Firstly, al-
though the total number of possible features is very high (∼ 30, 000), in each
sample, only a small proportion of these values are non-zero, indicating that this
particular particle was not present or, and this distinction may be important,
not detected. Therefore, if we call our N (samples) ×M (features) dataset X,
the vast majority of the xij values are zeros. Secondly, those values that are
present take values over a very large range (see figure 1(a) (top)). To overcome
this second problem, we have adopted a log transform1. Figure 1(a) shows the
binary classification performances for a wide range of pairwise comparisons and
algorithms with and without this transform. We can see that in the vast majority
of problems the log transform improves performance (all points below the y = x
line).

The first problem is not quite so straightforward to address. As an initial
step, we perform a simple pre-filtering. For a given classification problem (i.e.
2 or more classes), we only keep features that appear (i.e. are non-zero) in at
least ρ% of the data samples for one or more of the classes. Note that we do
not force the feature to be present ρ% of the time across all of the classes as it
is possible that both presence and absence of a feature as well as presence with
varying magnitude could be indicative of changing condition. We will investigate
the effect of varying ρ in more detail later.

3.3 Classifiers

In this investigation we limit ourselves to two main classes of classifiers. Naive
Bayes classifiers (NB) and Support Vector Machines (SVM’s). This is by no
means a complete list but serves as a reasonable starting point. Due to limitations
of space, a description of these algorithms is omitted, readers are referred to [7,8]
for more details. When using a NB classifier, it is necessary to determine the
parametric form of the density function that will be used for each feature. Here,
we have considered the following four (defining the data matrix X as before, and

1 specifically, log(xij +1), where the additive term ensures that our zero values remain
at zero.
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Fig. 1. Log transformation example (left, note that due to the wide range of values,
many bars on the top histogram are too small to be visible ) and binary classification
errors with and without log transform

indexing the individual features with m = 1 . . .M and the classes c = 1 . . . C
and defining the M × 1 data vector x)

– Gaussian: Each class is defined by an M dimensional Gaussian distribution
with diagonal covariance. i.e. p(x|c, μc, σc) =

∏M
m=1 N (xm|μm

c , σm
c )

– Binomial: The data is transformed to a binary representation (i.e. value
present (non-zero) or absent (zero). Each class is then defined by an M
dimensional vector of probabilities pc, where pm

c = P (xm = 1|c). i.e.
p(x|c, μc, σc) =

∏M
m=1(p

m
c )xm(1 − pm

c )1−xm

– Multinomial: As binomial but with > 2 possible states. Each class is now
defined by M vectors of state probabilities.

– Exact-zero Gaussian: This density is intended to capture more accu-
rately the characteristics of the particular problem. For each class, we now
have an M dimensional vector of probabilities as in the binomial case. If
the value is non-zero we then assume it can be modelled by a Gaussian.
Therefore, defining the indicator variable tm which is 1 iff xm is non-zero,
p(x|c, pc, μc, σc) =

∏M
m=1(p

m
c N (xm|μm

c , σm
c ))tm(1 − pm

c )1−tm .

In all cases, we define the prior distributions for each class to be the proportion
of training instances from that class and use the standard maximum likelihood
solutions for the parameter values.

As an alternative to the probabilistic, Naive Bayes classifiers, we consider
the SVM. To use an SVM, a kernel function must be defined. We use a linear
kernel (a simple dot product in the input space) after normalising each feature to
have zero mean and unit variance. It may be the case that there are other more
suitable kernels that could be used however, due to the high dimensionality, this
is a reasonable starting point. In addition to this, we set the margin parameter
C to infinity (i.e. a hard-margin).

Multi-class SVM Classifiers. Naive Bayes classifiers are naturally multi-
class. SVM’s however can not be naturally generalised to the multi-class setting.
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However, various tree based heuristics can be used to split the problem down
into a set of binary decisions. We experiment with two of these here

– Directed Acyclic Graph (DAG): In a C class problem, the DAG SVM
[9] formulates the problem as a tree with (C(C − 1)/2) nodes. At each node,
an SVM is trained between two of the classes in the problem. When testing
a point, we start by assuming that the point could belong to any of the C
classes. It then moves through the tree and at each SVM, one class is removed
from the possible solution until only one class remains. For example, in a
3 class problem, we might train our first classifier on class 1 versus class 3.
When testing, if the test point is classified as 1, we remove 3 from the list of
possible solutions and move on to the classifier between 1 and 2.

– Divide-by-2 (DB2): The DB2 [10] classifier operates by repeatedly split-
ting the C class problem into binary problems. For example, in a four class
problem, the first classifier might split the data into the meta-classes (1,2)
and (3,4). If a test point is classified as belonging to the first class, it is then
applied to a classifier between 1 and 2 etc.

In either of these systems, the particular form of SVM can vary between nodes.
Presently, we have kept them all the same (linear kernel, C = ∞) but employing
different ones for different classifications is an obvious next step. This is partic-
ularly promising for the DB2 model where it may be sensible to have different
classifiers built from different features at different levels in the hierarchy. We will
discuss this further below.

4 Results

4.1 Binary Classification

Initially, we have investigated the pairwise classification performance between
relevant pairs of classes in the dataset. This has been performed for many pair-
wise combinations but due to space limitations we will only consider those be-
longing to the cancer subset here. Table 1 shows the results for our five binary
classifiers (SVM and 4 different NB). Each value is the best leave-one-out (LOO)
performance obtained when varying ρ, the feature filtering threshold. In some
cases the best performance was obtained for several different values of ρ. In
these cases, we have shown the minimum and maximum ρ values. We can see
from the table that generally, the performance is reasonably good with low val-
ues LOO error. The highest errors obtained are for the classification between
Prostate Cancer and benign Prostate with a minimum of 10% LOO error ( = 2
data points). This is to be expected, partly due to the difficulty of the problem
and partly due to the fact that there is such a small number of samples in each
class (8 and 12 in PCA and PB respectively). We also note that no-one classifier
out-performs the others although the best performance can generally be found
from an SVM or Naive Bayes with Gaussian or binomial densities. This is es-
pecially interesting as it suggests that in some cases, the magnitude of a value



188 S. Rogers et al.

(if it is non-zero) does not improve performance whereas in other cases it does.
The relatively poor performance of the exact-zero system seems to suggest that
it is not necessary to use both presence and absence information and magnitude
information at once. It is worth mentioning that the exact-zero mixture requires
the fitting of considerably more parameters than the individual Gaussian and
Binomial models and it will be interesting to see if this error rate can be im-
proved as more data becomes available. The results are promising and suggest
that discrimination is possible using CE/MS data. However, further validation
will be acquired through a planned blind test.

Table 1. Binary LOO performances (errors are percentages and the value in brackets
is value for ρ for this particular level of performance)

Classes Class Sizes SVM NB Gauss NB Bin NB Mult Exact Zero

PCA v PB 8 v 12 15.00 (90) 15.00 (95) 10.00 (90) 20.00 (55→ 95) 25.00 (15 → 85)
PCA v NK 8 v 41 0.00 (85) 4.08 (25→95) 0.00 (95) 12.24 (50→85) 6.12 (40→95)
PB v NK 12 v 41 1.80 (65) 0.00 (10→20) 5.66 (30→85) 11.32 (55→75) 7.55 (70)

REN v NK 25 v 41 1.52 (75) 1.52 (20) 6.06 (15) 7.58 (35→50) 6.06 (10→65)
BLA v NK 47 v 41 2.30 (65) 4.55 (15→20) 7.95 (5) 6.82 (45→80) 3.41 (10→15)

4.2 Multi-class Classification

Binary classifications are interesting but are limited from a diagnostic point
of view. One of the possible benefits from CE/MS data from urine samples is
that any number of different diseases could be identified. Therefore, we turn our
attention to multi-class schemes. As discussed above, the various Naive Bayes
classifiers can be naturally expanded to a multi-class scenario. For the SVM’s, we
have used two tree based approaches, DAG and DB2. For DB2, it is necessary to
define the hierarchy - i.e. how we want to perform the successive partitions of the
C classes to create a series of binary problems. In this example, we have decided
on a hierarchy that is sensible from a clinical point of view. The hierarchy is
shown in figure 2(a). At the top level, we split NK from everything else (i.e.
healthy versus unhealthy). If the point is classified as unhealthy, we perform a
further split into (PCA, PB) v (BLA, REN) and then perform a standard binary
classification on whichever of these pairs is chosen. The best results (again, as
ρ is varied) can be seen in table 2. A plot of the number of features retained
against ρ can be seen in figure 2(b). In this case, we see that the two SVM
schemes out-perform the various Naive Bayes classifiers. This may be due to the
fact that the two SVM schemes do a series of more simple binary classifications,
rather than one more complicated multi-class one (as is the case with the Naive
Bayes). The DB2 SVM defines a hierarchy over the possible diseases and so is
able to classify at varying levels of abstraction. For example, at the top level of
the tree (i.e. simply classifying between healthy and unhealthy) there is just one
misclassification (a NK) and at the next level (ignoring the 1 wrong NK from the
previous classification), there are no errors, suggesting that the errors all occur
in the most specific, lowest level. This shows the power of a possible hierarchical
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Fig. 2. Example hierarchy (left) and number of features retained in multi-class problem
as ρ is increased (right)

Table 2. Multi-Class LOO errors. Top line shows overall percentage, second line shows
ρ with the actual number of features in brackets, lower rows give the percentage of errors
in each particular class / absolute number of errors in each class.

SVM(DAG) SVM(DB2) NB Gauss NB Bin NB Mult Exact Zero

All (%) 6.02 6.77 14.29 19.55 24.81 16.45
ρ (No.Feat) 10 (5411) 25 (2366) 40 (1287) 25 (2366) 60 (720) 60 (720)

PCA 0 / 0 37.5 / 3 37.5 / 3 25.0 / 2 100 / 8 50.0 / 4
PB 33.3 / 4 16.7 / 2 41.67 / 5 41.67 / 5 91.7 / 11 66.7 / 8

REN 12.0 / 3 8.0 / 2 8.0 / 2 16.0 / 4 32.0 / 8 20.0 / 5
BLA 2.1 / 1 0.0 / 0 6.4 / 3 12.8 / 6 2.0 / 1 2.0 / 1
NK 0.0 / 0 4.9 / 1 14.6 / 6 22.0 / 9 12.2 / 5 9.8 / 4

approach - currently we are unable to reliably classify between PCA and PB but
it appears that we can reliably classify that something is either PCA or PB from
other classes. The ability to visualise the decreasing certainty as we move down
the hierarchy is a great bonus to such an approach; something that is lacking
from a flat structure such as a simple Naive Bayes classifier.

5 Conclusions and Future Work

In this paper, we have described CE/MS a new rapid, high-throughput form of
proteomic data and have performed several simple experiments to try to give
some indication of the diagnostic capabilities of the data. The data has several
advantages over other similar data formats such as microarray data. It can be
produced very rapidly in a non-invasive manner (normally through analysis of
a urine sample) and has the potential to be able to diagnose many diseases.
However, like microarray data, it is noisy and the number of features is far
greater than the number of collected samples - this latter problem is likely to
improve as the data generation process is a fraction of the cost of a microarray
experiment and obtaining samples for analysis is much more straightforward.
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Results presented suggest that pattern recognition techniques combined with
CE/MS data has potential as a diagnostic tool. In these basic experiments low
LOO errors were observed with only a very basic choice of classifiers and very
crude feature pre-filtering. Although results have been presented for only 5 of
the 22 available classes, the same general level of performance is observed across
other subsets that have been investigated. As might be expected, multi-class per-
formances are worse than binary performances but the performance of the two
tree-based SVM approaches is promising. Particularly, the DB2 SVM enables us
to classify in a hierarchical manner, revealing where the errors are made and giv-
ing a more useful diagnosis. Such an approach isn’t limited to SVM classifiers -
any particular classifier could be used at each node and it would be expected that
by tuning classifiers to the different hierarchical problems performance could be
considerably improved. i.e. by extracting relevant features at each level. This is
something for future investigation. The only feature selection considered here
has involved the initial pre-filtering step. Examining the results, we see that the
value of ρ for best performance varies dramatically. This suggests that for some
problems, there are a small number of features that are consistently varied for
the different diseases, whereas for others, we are obtaining useful information
from features that are very rarely present. In these latter cases, it should be re-
membered that it is possible that several different features could correspond to
the same particle that has undergone some small change. This suggests that per-
formance may be improved by combining features or developing more applicable
kernel functions, possibly including the mass and time information available for
each detected peak. It may also be beneficial to include extra meta-data in the
decision making process. This could be clinical history or more general observa-
tions (e.g. the gender of the individual). This would be particularly interesting
in the hierarchical classifier as different meta-data could be incorporated at each
level.

Of the multi-class methods investigated, the hierarchical SVM methods look
to be the most promising and it is likely that the performances considered pre-
sented here could be improved by careful selection of the classifier at each level.
This would involve more careful selection of kernels and a more rigorous feature
selection stage.

Finally, the diseases that have been investigated so far have all been chosen
due to the fact that they are very likely to produce a change in the urine profile. It
would be interesting in future work to investigate whether or not such techniques
could be used to diagnose diseases without such an obvious effect or in other
testing circumstances.
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Abstract. Analyzing large image databases is an interesting problem
that has many applications. The entire problem is very broad and con-
tains difficult subproblems dealing with image analysis, feature selection,
database management, and so on. In this paper we deal with efficient
clustering and indexing of large feature vector sets. Our main tool is
the Evolving Tree, an unsupervised, hierarchical, tree-shaped neural net-
work. It has been designed to facilitate efficient analysis and searches of
large data sets. Comparison to other similar methods show a favorable
performance for the Evolving Tree.

1 Introduction

The Self-Organizing Map (SOM) is a widely used tool in various data analysis
tasks [1]. However, some of its intrinsic features make it unsuitable for analyzing
very large scale problems. Almost all operations on SOM start by locating the
best matching unit (BMU) among all the nodes. This operation scales linearly
according to the map size. Analyzing huge data sets requires very large maps.
While operating on these maps is not usually intractable, it can be extremely
slow. Another drawback is that the map size must be chosen beforehand. While
there are some heuristics for this, experimenting with different sized maps is
quite time-consuming.

There have been several different approaches to solve these problems. They
can be roughly divided into two different groups. The first ones are flat sys-
tems that grow during training [2,3]. The second group tries to build efficient
search structures to make operations faster. Combinations of these are also quite
popular [4,5,6].

In this paper, we present and analyze the Evolving Tree [7,8] (ETree) and
its behaviour. The Evolving Tree is a new kind of self-organizing neural network
that has been designed to scale to very large problems. In Section 2 we give an
overview of the Evolving Tree’s algorithms and architecture. This is followed by
the novel improvements and analysis in Section 3. In Section 4 we subject our
system to several qualitative and quantitative experiments. Then we discuss the
results and conclude the paper.
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2 The Evolving Tree

In this section we briefly describe the ETree algorithm. We refer the readers
interested in details on the basic algorithm to [8]. We also describe a new method
for controlling the complexity of the system.

The basic building blocks of ETree are the same as in the SOM. We have
nodes which have prototype vectors. We also use the same training formulas as
the SOM. The difference is that we use these blocks in a very different way. The
basic idea is to use a tree topology as opposed to the grid structure of SOM.
The leaf nodes are used for data analysis while the trunk nodes maintain an
efficient search tree to the leaf nodes. This makes SOM’s most time consuming
operation, finding the best matching unit (BMU), very fast. This is illustrated
in the left image in Figure 1.

Fig. 1. Fundamental operations of the Evolving Tree. The left image shows how the
BMU is found. The right image demonstrates how the tree distance between two nodes
is calculated.

Another important part of SOM is the neighborhood. It measures the dis-
tance between two nodes along the grid. We use an equivalent metric called the
tree distance. It computes the distance between two leaf nodes along the the
search tree, as can be seen in the second image in Figure 1. With these we can
train the tree structure in the same way as in the SOM. The last missing piece
for a working system is a method for growing the tree. This is done by counting
how many times each node has been the BMU. When this value reaches a pre-
specified threshold, we split the node. The leaf node is transformed into a trunk
node by giving it some child nodes.

2.1 Weight Decay

Training is usually performed for some amount of epochs and then stopped. Se-
lecting the epoch count beforehand is very difficult, and usually leads to nonop-
timal trees. To get around this, we used an algorithm based on weight decay [9].
As mentioned above, every node contains a counter, which says how many times
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it has been the BMU. After every epoch these counters are multiplied by a con-
stant that is less than one. This inhibits the growth by decreasing the amount of
splits. When we discover that the tree has grown only very little, such as under
5%, in one epoch we stop the training.

2.2 K-Means Adjustment

A known property of the SOM is that if the neighborhood function does not
go to zero the resulting map will be nonoptimal. One way to optimize the leaf
node locations in ETree, while still maintaining ETree’s non-supervised nature,
is to use a variant of k-means clustering after the training process. First all
training vectors are mapped to leaf nodes using the established BMU search.
Then the leaf nodes are moved to the center of mass of their respective data
vectors. This procedure is repeated a few times to obtain the final leaf node
locations.

3 Comparison Methods

3.1 Classical Methods

We used two classical data analysis methods as a basis for comparison, the Self-
Organizing Map (SOM) and k-means clustering. Both of them are established
algorithms that have been successfully applied in both scientific and industrial
settings. These two were chosen because they work in a roughly similar way as
ETree. That is, they both have a bunch of prototype nodes, and the training
consists of finding BMUs for training vectors and then updating the nodes. The
difference between these methods and ETree is that they are nonhierarchical and
flat. This makes training and querying slow on large databases.

3.2 Tree-Shaped Methods

We also compared ETree against two other tree-shaped neural network systems.
These experiments show the relative performance of modern neural systems. All
three systems use a tree structure that is grown during training.

S-Tree. The first test system is the S-Tree by Campos and Carpenter [10]. It
is noticeably more complex than ETree, having complicated rules for splitting
and pruning of nodes. It does not have a concept of the neighborhood function
as in SOM and ETree.

CNeT. The other algorithm we tested was CNeT by Behnke and Karayian-
nis [11]. It resembles ETree more than S-Tree. In fact, if you remove the neigh-
borhood function from ETree and remove some portions from CNeT’s training
algorithms, they reduce to almost the same algorithm. The main difference be-
tween these two is the neighborhood function, which CNeT lacks, and the slightly
simpler architecture and training formulas of ETree.
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4 Experiments

We have used two different kinds of data sets for our experiments. The first data
set consists of three different MPEG-7 features [12]: Homogeneous texture, Edge
histogram, and Color structure. These were calculated for 1300 paper surface
defect images [13]. This gives us moderate sized databases with dimensions of
around 20. The exact dimension varies somewhat depending on the descriptor
being used. This data set represents actual industrial data. There are a total
of 14 different classes which are fuzzy and overlapping and therefore extremely
difficult to classify.

The other data set consists of 18 000 handwritten digits. The digit images
were normalized to 32 × 32 pixels with 256 gray scale values. 38 principal com-
ponents were obtained using PCA and used for our experiments [14]. This is a
relatively large classified database. Comparing results to the MPEG-7 feature
databases shows how different algorithms scale to larger problems.

All classification results have been obtained by using majority voting and ten
fold cross validation.

4.1 Comparison to Classical Methods

We compared ETree to SOM and k-means using two different data sets. The
first one is edge histogram, which was used with the paper defect data set. The
second one contained the handwritten digits. We tested both the classification
accuracy as well as training time. The amount of clusters in k-means was chosen
to be approximately the same as the corresponding ETree had leaf nodes.

In Figure 2(a) we have classification results for both datasets. The classifica-
tion rates for edge histogram are quite similar for all methods. SOM is clearly
the worst while k-means obtains the best result. ETree is very close to the per-
formance of k-means. An interesting result is that k-means adjusted ETree is
slightly worse than the regular algorithm. Results with the other MPEG-7 data
sets were very similar.

The large digit database shows the benefits of k-means adjustment. Regular
ETree algorithm achieves only 82% classification rate, which is slightly worse
than SOM’s. Using the k-means adjustment raises it noticeably to 87%. Plain
k-means obtains the extremely good result of 93% which is an expected result.
Since the cluster centers in k-means are not constrained by the search tree, they
can move more freely.

This freedom does come with a heavy cost, though, as we can see in Fig-
ure 2(b). It lists the running times of ten cross-validated training/query rounds.
Both versions of ETree take only two minutes, while k-means take up to a half
hour. SOM takes almost five times as long as either ETree algorithm. We used
the batch version of SOM that is much faster than the iterative SOM. A thing
to note is that k-means and SOM were done in Matlab, whereas ETree is a light
weight C++ program. Most CPU time in all algorithms is spent calculating the
Euclidean distances between vectors at which Matlab is very good. Thus we can
conclude that the bulk of the differences stem from differences in the algorithms.
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(a) (b)

Fig. 2. Comparison of ETree to SOM and k-means clustering. (a) The classification
percentages and (b) the training times for the handwritten digits.

Another interesting thing to note is that the k-means adjustment to the
Evolving Tree adds only a negligible fraction to the total training time, yet it
improves classification percentages noticeably. K-means adjustment seems to be
useful in large databases, because fine tuning node locations becomes harder and
harder as a data set grows.

ETree is clearly the fastest of the algorithms but it still obtains very good
classification results. It cannot reach the performance level of k-means, but runs
in a fraction of the time. This is a very acceptable trade-off in many cases.

4.2 Comparison to Other Tree-Shaped Neural Systems

All three systems are based on competitive learning and have a tree structure
that grows as the training progresses. Algorithmically S-Tree is the most com-
plicated one and ETree is the simplest one. We examined both the classification
performance and the training time. All the algorithms were coded in C++, so
CPU time comparisons are fair. Because of the similarities we list the times
relative to ETree’s time.

Figure 3 shows the classification percentages for the different algorithms. The
results are consistent with earlier experiments. All three hierarchical systems
outperform the regular SOM. ETree and CNeT are very evenly matched, and
their performance is very close to k-means (see Figure 2(a)). S-Tree has the worst
performance of the hierarchical methods, but the margin is quite small. On the
larger digit database, k-means enhanced ETree is clearly the best, CNeT holds
second place with S-Tree very close to it.

Figure 4 shows the training times for the different algorithms. The times
have been normalized by dividing them with ETree’s training time. In all cases
S-Tree is the slowest one. CNeT is slower on MPEG-7 data but slightly faster
than ETree on the digit database. Overall ETree and CNeT seem to have very
similar time complexity.

The Evolving Tree has arguably the best total performance in almost all the
tests which makes it the preferred algorithm of the three, especially in these
kinds of classification and clustering tasks.
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Fig. 3. Classification percentages for ETree, S-Tree, and CNeT using MPEG-7 features
and handwritten digits

Fig. 4. Normalized training times for ETree, S-Tree, and CNeT using MPEG-7 features
and handwritten digits

5 Conclusions

We have examined the Evolving Tree algorithm and compared it against sev-
eral different algorithms. We have found that ETree’s performance is very good
against the classical methods, SOM and k-means, but it runs several times faster.
ETree performs also favorably against the modern tree-shaped neural systems,
S-Tree and CNeT. Its performance is consistently better. It is also roughly as
fast, and in many cases faster than them.

These results indicate that ETree could be effectively utilized in large scale
problems, that classical methods have not been able to adequately solve. Further
research includes evaluating the algorithm with a database of millions or tens of
millions of vectors.

We have created a software package that implements the Evolving Tree algo-
rithm. It can be freely downloaded from our web page http://www.cis.hut.fi/
research/etree/.
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Abstract. Record linkage is an important application area of text pat-
tern analysis. In this paper we propose a new sequence labeling method
that can be used to extract entities from a string for record linkage.
The proposed method combines a classifier and a Hidden Markov Model
(HMM) to utilize both syntactical and textual information from the
string. We first describe the model used in the proposed method and
then discuss the parameter estimation for this model. The proposed
method incorporates a classifier for handling textual information and
integrates the classifier with the HMM statistically by estimating the er-
ror probability of the classifier. We applied the proposed method to the
bibliographic sequence labeling problem, in which bibliographic compo-
nents are extracted from reference strings. We compared the proposed
method with other methods that use textual or syntactical information
alone and showed that the proposed method outperforms them.

1 Introduction

Record linkage is an important application area of text pattern analysis. Record
linkage refers to the problem of integrating the information in various heteroge-
nous resources focusing on entities. Many kinds of entities are handled in this
study, such as vital records (e.g., [10]), and bibliographic records (e.g., [4,15]).
Recent advances in scientific literature search systems such as CiteSeer[7] and
Google Scholar[13] have attracted many researchers and have led to new record
linkage techniques focusing on the bibliographic information as an entity. They
include bibliographic matching methods [8,6], and field extraction [14].

The record linkage problem is categorized into four components [2]: (1) du-
plicate record detection; (2) record integration; (3) reference identification; and
(4) co-reference extraction. Duplicate record detection finds records that repre-
sent the same entities and merges them into a single record. For bibliographic
information, a bibliographic database sometimes contains multiple records rep-
resenting the same item, and the duplicate record detection must deal with the
problem of finding those records and unifying them to make the database clean.
The underlying technique of duplicate record detection is record matching. Be-
cause a record usually consists of a set of fields, record matching consists of
measuring the similarity of values of corresponding fields between the objective
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records and combining the field similarities into a record similarity. For pro-
cessing efficiency, a blocking technique that roughly separates the database into
groups of similar records is important [1].

Record integration is the same problem as duplicate record detection, but
it is applied to multiple databases. For bibliographic information, record inte-
gration is used to merge multiple bibliographic databases, e.g., the DBLP and
Science Citation Index databases. In this problem we confront various kinds of
heterogeneity, such as schema mismatches and higher discrepancies in field value
representation, so that a more robust matching technique is required.

Reference identification consists of finding the record in a database corre-
sponding to an entity appearing in the text. Finally, for bibliographic informa-
tion, the problem is to extract entities in articles and find corresponding records
in a bibliographic database. Entity extraction and entity matching are the key
techniques of this problem.

Co-reference extraction refers to the problem of finding entities in text and
merging them into groups, each of which refers to the same entity. For biblio-
graphic information, this problem consists of finding a set of articles that refer
to the same article. Though the purpose of co-reference extraction is the same
as that of reference identification, it requires the extraction of entities without
a well-maintained entity database. Therefore, from the technical point of view,
it requires a more powerful entity extraction [18] technique, such as information
extraction as is used in the literature of natural language processing.

As described above, the record linkage problem relies on various textual pat-
tern analysis techniques. In this paper we discuss a sequence labeling problem [3]
that assigns a label to each token in a sequence and we propose a new labeling
method that uses both syntactical and textual features of the token sequence.
The sequence labeling problem can be applied to the field extraction step of the
reference identification problem. In this paper, we apply the proposed method
to bibliographic component extraction from reference strings and show experi-
mental results.

2 Sequence Labeling Based on Score Vectors

Before discussing the proposed method, let us define our notation. A vector is
denoted as a bold letter x or by listing its components, such as (x1, x2, · · · , xn).
A sequence is denoted as a bold letter x or by listing its components as <
x1, x2, · · · , xl >. For a sequence x, |x| denotes the length of the sequence. In
sequence labeling, a sequence <t1, t2, · · · , tn > of tokens is represented with a
sequence <x1, x2, · · · , xn> of feature vectors. For a set Σ of labels, the sequence
labeling assigns a label in Σ to each feature vector. To solve this problem, both
the syntactical structure of the sequence and the features of tokens represented
by a feature vector should be used. Therefore, we must construct a model rep-
resenting both kinds of information.

A Hidden Markov Model (HMM) [12] is often used for sequence labeling. In
this paper, we assume that each state in the HMM corresponds to one label in



A Sequence Labeling Method Using Syntactical and Textual Patterns 201

Σ, and we denote the corresponding label of a state q as ψ(q). An HMM has
an initial probabilities, state transition probabilities and output probabilities
as parameters. For a state q, the initial probability, denoted as π(q), defines
the probability that the transition starts from the state q. For states qi and
qj , the transition probability, denoted as τ(qi, qj), defines the probability that a
transition from state qi to state qj occurs. The probability τ(qi, qj) denotes the
likelihood a label ψ(qi) is followed by a label ψ(qj). For a state q and a feature
vector x, the output probability, denoted as Pq(x), defines the probability that
the state emits the feature vector x. The probability density function Pq stands
for the probability distribution of the label ψ(q) in the feature vector space.

The probability that the HMM M produces a feature vector sequence x ≡<
x1, x2, · · · , xn> by a state transition q ≡<q1, q2, · · · , qn> is expressed by:

P (x,q | M) = π(q1)
n∏

i=1

Pqi(xi)
n−1∏
i=1

τ(qi, qi+1) . (1)

In this setting, for a feature vector sequence x, the sequence labeling is solved
by finding the following most likely path:

qmax ≡ argmax
q

P (X,q | M) . (2)

Note that each state corresponds to a label and we can obtain a label for a
feature vector xi in x as ψ(qi) using the corresponding qi in qmax.

The parameters of the HMM are derived from training data based on the
maximum likelihood (ML) estimation, in which only positive examples are used.
However, negative examples are also useful for sequence labeling. To incorpo-
rate the information from negative examples, we propose a sequence labeling
method that combines a classifier and an HMM. For each label c let us as-
sume that there exists a classifier that assigns a score φc(x) to a feature vec-
tor x. Using those classifiers, a feature vector x is converted to a score vector
(φc1(x), φc2(x), · · · , φc|Σ|(x)), where |Σ| stands for the number of classes. We
call this vector a score vector of the feature vector. By using a classifier, we
obtain a score vector sequence <s1, s2, · · · , sl> from a feature vector sequence
<x1, x2, · · · , xl>. For a score vector s and a class c, let σ(s, c) denote the score
for the class c of the score s. The score vector represents the likelihood of the
feature vector belonging to each class and information about negative examples
is incorporated in the learning process of the classifier. Hereafter we consider a
score vector sequence instead of a feature vector sequence.

For each state q and a score vector s, let us introduce a random variable
Xq for the score of the label of q and use the probability Pr(Xq ≤ σ(s, q)) as
the output probability of s at state q. This probability has a high value when
the score of the classifier is high, so it is suitable for score vector processing.
Using this probability, the probability that the HMM M produces a score vector
sequence s ≡<s1, s2, · · · , sn > with a state transition q ≡<q1, q2, · · · , qn > is
expressed as:
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Q(s,q | M) ≡ π(q1)
n∏

i=1

Pr(Xqi ≤ σ(si, qi))
n−1∏
i=1

τ(qi, qi+1) . (3)

Then, the sequence labeling for a score vector sequence s is solved by finding the
following state transition of the HMM:

qmax ≡ argmax
q

Q(s,q | M) . (4)

This optimization problem has the same structure as the most likely path of the
HMM, and it can be solved by dynamic programming techniques.

The parameters of the HMM are estimated from training data which are
labeled as score vector sequences. For a reference string, let s be a score vec-
tor sequence obtained from the reference string. Parameters of the HMM for
the scored sequence can be estimated by the expectation maximization (EM)
technique [12] by maximizing the following value

1
Q(s|M)

∑
q

Q(s,q|M) log Q(s,q|M̂) (5)

where Q(s | M) stands for
∑

q Q(s,q | M) and M̂ stands for the model with
modified parameters. For reasons of space, we skip the derivation of the algorithm
and show only the parameter modification step in each EM algorithm.

Initial probability: For a score vector sequence s for training, let I(|s|, q) be the
set of paths with length |s| that start at the state q. Then the modified initial
probability of state qi is given by:∑

q∈I(|s|,qi)
Q(s,q | M)

Q(s | M)
. (6)

Transition Probability: For a path q, let cij(q) denote the number of transitions
from state qi to qj in q. Similarly, let ci denote the number of transitions from
state qi to any state. Then the modified state transition probability from state
qi to qj is given by: ∑

q
Q(s,q|M)

cij(q)
ci(q)

. (7)

Score Distribution: We discuss the estimation of score distribution in the next
section.

3 Bibliographic Reference Labeling

3.1 The Bibliographic Reference Labeling Problem

We have been developing a bibliographic record linkage system where the ref-
erences of several kinds of bibliographic databases and article archives are in-
tegrated. This section discusses the application of the proposed method to a
bibliographic reference labeling problem.
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This problem involves decomposing a reference string into substrings and as-
signing a label to each substring. For instance, when given the following reference
string:

T. Okada, A. Takasu and J. Adachi: “Bibliographic Component Extrac-
tion”, LNCS 3232, pp. 501-512, 2004.

then the problem is to extract the following tagged strings:

<author>T. Okada</author>,
<author>A. Takasu</author> and
<author>J. Adachi</author>:
“<title>Bibliographic Component Extraction</title>”,
<conf>LNCS 3232</conf>,
pp. <page>501-512</page>,
<year>2004</year>.

3.2 Bibliographic Reference Labeling Procedure

This problem is the first step in bibliographic reference identification and co-
reference extraction. Extracted bibliographic components are used to find the
corresponding records in a bibliographic database or other reference strings in
articles. We apply (1) segmentation, (2) feature vector construction, (3) conver-
sion of feature vector to score vector, and (4) labeling, to extract bibliographic
components.

Segmentation: A reference string is segmented into subfields using delimiters
[11]. As delimiters, we use punctuation such as commas, quotation marks, peri-
ods, and strings specific to reference strings such as ‘vol.’, ‘no.’, ‘pp.’ and ‘ed.’
This method sometimes causes over-segmentation; however, over-segmented sub-
strings are merged in the labeling phase. In this phase, we obtain the following
segmented reference.

T. Okada /,/ A. Takasu / and / J. Adachi /: “ / Bibliographic Compo-
nent Extraction / ”, / LNCS 3232/ , pp. / 501-512 / , / 2004 /.

Token Feature Construction: To apply classification, subfields must be repre-
sented with feature vectors. We use the vector space model for information re-
trieval [5], where words appearing in subfields are used as features and their
frequency is used as the feature value. To handle delimiters and numerical words
such as year published, we use the heuristics described in [11]. As a result, each
substring in a reference is converted to a feature vector.

Score Vector Conversion: Any classifier that gives a score can be used in this
process. We use Support Vector Machines (SVM). For each label in Σ, an SVM
classifier is constructed from training data. In the SVM, a feature vector x is
projected into the weight vector w in the feature space, and the score is the
distance from the decision boundary given by K(x, w) − b, where K stands for
the kernel used for the SVM and b stands for the decision boundary.
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Fig. 1. Graphical Structures of HMMs

Bibliographic Sequence Labeling: When constructing the HMM, we assign one
and only one class to each state, as depicted in Figure 1. As shown in the
figure, each state has a transition to itself. This transition is used to handle
over-segmentation in the segmentation step. When given a score vector sequence
s, we obtain the most likely state transition by solving the optimization problem
(4). The most likely state transition assigns a class (i.e., label) to each score
vector in the sequence s.

3.3 HMM Construction

Having described the parameter estimation of the HMM in the previous section,
in this section we focus on the HMM’s graphical structure and the probabil-
ity estimation of the score vector, which is specific to bibliographic sequence
labeling.

The graphical structure of the HMM defines the syntactical structure of the
reference strings. Currently we use two kinds of structure. The first is a robust
HMM that assumes that the delimiters and bibliographic components appear
alternately. The robust HMM accepts reference strings in which bibliographic
components appear in any order as long as they are separated by delimiters.
The other HMM is a rigid one [14] in which the order of the bibliographic
components is defined by the HMM structure. For example, a rule such as “title
must be located after authors” is represented by the graphical structure of the
HMM. The rigid HMM is more powerful in its ability to modify the classification
error in score vector construction; however, it fails to analyze reference strings
in which the order of bibliographic components is different from the expected
one.

For the probability P (Xq ≤ φq(x)) in (3), we use the following exponential
distribution:

βe−λq,1(α−x) x ≤ α

1 − (1 − β)e−λq,2(x−α) x > α
(8)

where λq,1, λq,2, α and β are parameters for the distributions. All classes have
score distributions of the form (8), but the values of the parameters are different.
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The parameter α stands for the margin boundary for the positive example in
SVM. That is, the score of the positive support vectors falls into α. β is a
value in the range of (0, 1) and stands for the ratio of tokens with scores less
than the positive margin boundary. These two parameters are determined by
the SVM used for the score calculation. Equation (8) is a heuristic function
and we have not validated it analytically; however, the expression (8) is easy to
handle mathematically and it fits well with the score function in our preliminary
experiment.

In contrast, the parameters λq,1 and λq,2 are estimated by maximum likeli-
hood estimation. First, the following density function is derived from (8):

λq,1βe−λq,1(α−x) x ≤ α

λq,2(1 − β)e−λq,2(x−α) x > α
. (9)

For each label c, let us consider the set P of score vectors that belong to the
label c, that is, the set of positive example in the training data. Suppose S is
the set of c-components of the score vector in P, where c-component stands for
the component corresponding to the label c. Let Sp be {v|v ∈ S, v > α} and
Sn be {v|v ∈ S, v ≤ α}. Then, the parameters λq,1 and λq,2 are derived by the
following formula:

argmax
λq,1

∑
s∈Sn

[log λq,1 + log β − λq,1(α − s)]

argmax
λq,2

∑
s∈Sp

[log λq,2 + log (1 − β) − λq,2(s − α) .]

By solving these optimization problems, parameters for the exponential distri-
bution are obtained as:

λq,1 =
1

α − avg(Sn)
λq,2 =

1
avg(Sp) − α

(10)

where avg(S) stands for the average of the set S of values. As shown in (10),
parameters of the exponential distributions are easily estimated by calculating
the average of positive score vectors.

By (10) and the output of SVM training, all parameters of the score distri-
bution for all states are obtained, and consequently, the HMM is obtained. By
finding the most likely path of the HMM, we can obtain the bibliographic label
for each substring in the reference string.

4 Experimental Results

We applied the proposed bibliographic sequence labeling method to reference
strings in academic articles. In this experiment, we used 312 articles in the
Transactions of the Institute of Electronics, Information and Communication
Engineers, published in 2000. This data set contains both Japanese and English
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Fig. 2. Performance Comparison

articles. We extracted 4814 reference strings from the reference sections of these
articles. Then, we decomposed each reference string into substrings and assigned
a label to each substring manually. In the feature vector construction, we ap-
plied a stemmer for English references, and we applied the Mecab morphological
analyzer [9] to extract words from Japanese references. For the SVM we used
TinySVM [17]. In the preliminary experiment, we did not observe any differences
in accuracy among the kernel functions, and adopted the linear kernel because
it requires fewer parameters.

In this experiment our goal was to assign one of the following six labels to
each subfield: ‘author’, ‘title’, ‘journal’, ‘vol&no’, ‘publisher’ and ‘date’. In this
experiment, we first compared the proposed method with two other methods.
One is SVMs without the HMM, where only textual information is used. We
applied SVMs to the feature vector of each substring and assigned the label for
which the SVM had the highest score, i.e., a one-versus-rest SVM classifier [16].
These results have the label ‘SVM’ in Figure 2. The other model is the combi-
nation of the HMM and a feature vector sequence. In this method we omitted
the score vector conversion in the proposed method and used feature vectors
as they are. These results have the label ‘FV’ in Figure 2. Figure 2 (a) shows
the performance of the three methods when applying 5-fold validation, using
the manually prepared 4814 reference strings. We can derive two implications
from this graph. First, as shown in the figure, ‘FV’ has the worst performance of
the three methods. This means that textual information can be used by SVMs
more effectively than syntactical information can be used by HMMs. Second, the
performance can be improved by using both textual and syntactical information
and the proposed method is useful in utilizing this information.

Although the proposed method improves the accuracy, the improvement
against SVM is moderate. Figure 2 (b) compares the error rate of the proposed
method with SVM with respect to the training data size. The X axis of the
figure stands for the number of references used for learning SVM and parame-
ter estimation in the proposed method. As shown in this figure, performance of
the SVM is deteriorated for smaller training data. Let us consider, for example,
author name in the bibliographic entity extraction problem. It will be difficult
for SVM to know that ”Takasu” is author’s name if ”Takasu” is not included
in training data. Therefore, SVM requires large amount of training data for
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handling this problem. On the other hand, from the syntactical information, we
can guess it is author’s name because it is located before article title even if we
don’t know the person. This kind of information can be obtained from small
amount of training data. Therefore, the proposed method has advantage espe-
cially for smaller training data. The cost of constructing training data is labor
intensive work, and this advantage of the proposed method is effective in the
bibliographic entity extraction problem.

5 Conclusions

In this paper we proposed a new sequence labeling method. The proposed
method combines SVMs and HMMs to utilize both syntactical and textual infor-
mation. The main idea is to convert a feature vector sequence into a score vector
sequence using an SVM. We focused on the parameter estimation of the HMM
for handling a score vector. We applied the proposed method to the bibliographic
sequence labeling problem and showed that the proposed method improves the
labeling accuracy.

We used a heuristic probability function for score vector distribution. One
future task is to analyze the score vector distribution from both experimental
and theoretical points of view, and to derive a suitable function. The graphical
structure of the HMM will affect the performance. We plan to study this effect
and develop an induction method for the graphical structure.
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Abstract. There is need for more formal specification of recognition
tasks. Currently, it is common to use labeled training samples to il-
lustrate the task to be performed. The mathematical theory of games
may provide more formal and complete definitions for recognition tasks.
We present an imitation game that describes a wide variety of recogni-
tion tasks, including the classification of isolated patterns and structural
analysis. In each round of the game, a set of ‘players’ try to match the
interpretation of an input produced by a set of ‘experts.’ The ‘playing
field’ on which experts and players operate is a set of interpretations gen-
erated from legal sequences of ‘moves’ for a round. The expert and player
moves transform interpretations, and select interpretations for output.
The distance between interpretations in the playing field is defined by
a distance metric for interpretations, and the game outcome by a rank-
ing function on distance values observed for players’ interpretations. We
demonstrate how this imitation game may be used to define and compare
recognition tasks, and clarify the evaluation of proposed solutions.

1 Introduction

Many recognition tasks have strong similarities to the children’s game ‘pin the
tail on the donkey.’ In that game, players are shown a picture of a donkey without
a tail. Players take turns being blindfolded, turned around several times, and
then trying to place a pin with an attached tail at the proper location on the
donkey. At the end of the game, the adult running the game awards prizes to
the children based on the closeness of their pins to the ‘proper’ location. At first,
‘pin the tail on the donkey’ might seem like a strange analogy for recognition
tasks, but consider the following similarities.

1. The basic task is to choose points in space. In the game, a pin is used
to pick a physical location within a room. In recognition, interpretations
of an input or object are selected from a space of possible interpretations.
The relative distances (‘closeness’) of interpretations within the space are
determined by a distance metric (e.g. classification risk or edit distance).

2. Goal points are determined by an expert opinion. In the game, the
adult chooses the optimal tail location(s) using his or her understanding

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3686, pp. 209–218, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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of donkey anatomy. For recognition tasks, one or more experts use their
understanding of the problem domain to select goal interpretations.

3. From an initial point in space, the goal point(s) must be guessed.1

In each turn of the game, a blindfolded and disoriented player must make a
sequence of guesses as to how to move and eventually place their tail from
their starting position. Similarly, despite ambiguities in an input’s content or
introduced by noise, a recognition protocol must make a sequence of guesses
about which interpretations should be considered and/or selected as goal
interpretations, starting from some initial interpretation (e.g. ‘reject’).

4. Guesses are ranked using their distance from the expert opinion.
In the game, tail locations are ranked using the distance from pins to the
location(s) chosen by the adult. For recognition tasks, recognition protocols
are ranked using a function of the distances from guessed to goal interpre-
tations within the interpretation space (e.g. the minimum, mean, or median
of interpretation space distances observed for a test sample).

We propose that like the players in ‘pin the tail on the donkey,’ recognition
systems evaluated against expert opinions are engaged in an imitation game
where players producing responses that are closest to that of an expert opinion
are deemed most successful. The outcome of such a game depends directly upon
expert opinion(s), how ‘closest’ is defined, and the interpretation spaces used
by experts and players, which may not coincide. As an extreme example, if the
donkey picture in ‘pin the tail’ is placed too high for a child to reach the goal
tail location(s), the child might not consider these locations (i.e. they do not
exist in the child’s interpretation space). Similarly, the use of different domain
models by experts and recognition algorithms may produce ‘holes’ in the algo-
rithms’ interpretation spaces, which may prevent goal interpretations from being
considered.

Using an imitation game to define recognition tasks places evaluation within
problem definitions, as opposed to treating evaluation as a validation of proposed
solutions for more abstract problems. This is similar to how Turing avoided
directly considering whether machines “think” by instead considering outcomes
of his own famous imitation game [3]. As an example, consider classifying images
of handwritten digits (0..9) when the cost (risk) of classification error is fixed, as
opposed to when it is not (i.e. solutions try to ‘recognize digits,’ in the absence of
an explicit evaluation scheme). In the second scenario, an evaluation mechanism
may be chosen after solutions for recognizing digits have been defined. This
compares solutions unfairly, particularly if they are designed assuming different
evaluation schemes. Evaluation in the context of an imitation game is more
meaningful, because the assumptions (‘rules’) under which solutions (‘players’)
operate are explicit and uniform. Imagine telling children after placing two tails
each in ‘pin the tail on the donkey’ that they will be ranked by mean rather
than minimum pin distance.

1 Interesting discussions pertaining to guessing in pattern recognition have recently
been provided by Kanatani [1] and Oommen and Rueda [2].
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Games and game theory [4,5] have of course been used previously in the
pattern recognition literature. For example, game-theoretic models have been
used for combining modules in vision systems [6,7] and for modeling sequential
prediction problems [8]. Based on earlier work for monitoring aircraft engines [9],
Pau has modeled Bayesian classification using two-player games, with a classifier
deciding the a posteriori probabilities of input patterns, and a teacher providing
the a priori class probabilities to the classifier [10]. A zero-sum game between
the teacher and classifier is used for the worst-case, when the teacher tries to
maximize the number of errors made by the classifier. A bi-matrix game in
which teacher and classifier may cooperate is also examined. Optimal strategies
for player and teacher in each game (equilibrium solutions) are presented.

We are taking a different tack here, as we present a class of games for defin-
ing and comparing various recognition problems, including the classification of
isolated patterns and structural analysis. The purpose of our imitation game is
to compare recognition strategies rather than optimize a single one, as in Pau’s
game. For this discussion we assume that all our ‘players’ produce a sequence of
decisions, leaving issues pertinent to parallelism for the future. We use examples
from ‘pin the tail on the donkey,’ digit recognition, and table cell detection for
illustration.

2 Rules of the Game: Interpretation Models

Let’s consider a simple mathematical model for the rules of ‘pin the tail on the
donkey,’ ignoring the vertical position of pins. We will model the position of a
child and their tail-pin as a line segment in R2, with the child at one point,
and the pin at the other. The distances between pins will be defined by their
Euclidean distance in R2. During a turn, a child may do the following actions:
move forward, turn varying amounts clockwise or counter-clockwise, and push
their tail-pin forward to fix it in a wall. We model these actions as transforming
the location of the line segment; walking forward translates the segment, turning
rotates the ‘pin’ point around the ‘child’ point, and a successful push of the pin
into the wall fixes the pin location, and ends the turn. If a child pushes their pin
into empty space, the line segment remains unchanged, and the turn continues.

We now have rules for the game, defining the legal space of guesses (interpre-
tation space) from the sequences of moves that a child may perform during their
turn(s). If we include failed pin pushes (pushes into air), the locations a child
may attempt to place the pin includes all the space in R2 on and between the
walls of the room. This provides us with a generative model of the interpretation
space, in which a player’s turn is described by a sequence of model operations
(an operation sequence), and the interpretation(s) selected as a result.

In our imitation game for recognition tasks, we will define an interpretation
model as a 7-tuple m:

m = (Dm, im0 , T m, Γ m, applym, δm, timem
max). (1)

Dm is a set of problem domain inputs, the set of elements for which interpre-
tations are constructed by the model. For a model m, the interpretation for all
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inputs d �∈ Dm is defined as the initial interpretation, im0 . For a classification
model, im0 would be ‘reject’, and for a structural recognition model, im0 might be
the empty set.

T m is a set of model operations that transform interpretations, the set of
possible moves for the game. In ‘pin the tail on the donkey,’ these were the actions
to move and push the tail-pin. Generally speaking, operations in T m create,
delete, classify, segment, and relate entities in interpretations [11]. T m must
include an accept operation which marks interpretations for output (as a final
‘guess’ in the game), and may also include a reject transform for reversing an
accept operation. Model operations in T m may alter sets of interpretations, such
as for representing the combination of interpretations by a classifier ensemble, or
for generating alternatives. As a simple example, T m for an interpretation space
of digit strings might contain accept, reject, and a set of string edit operations
(e.g. replace a digit, transpose a digit, insert a digit, delete a digit).

Γ m defines legal sequences of moves (the model operations, T m) similar to
a string grammar with start symbol im0 and terminals T m. Restrictions on the
maximum number of moves in a turn may be enforced by defining Γ m such
that legal transformation sequences have a finite maximum length k. All turns
begin with the initial interpretation (im0 ) as the default interpretation. The legal
interpretation sequences are denoted Lm (the language of model m), and the
interpretation space Im is obtained using the function applym.

Lm = Γ m(im0 , T m) (2)

Im = im0 ∪
⋃

s∈Lm

applym(s, im0 ) (3)

applym(s �∈ Lm, im0 ) = im0 (4)

The function applym constructs interpretations by applying an operation se-
quence to the initial interpretation (im0 ); illegal sequences are mapped to im0 .

We define one property of operation sequences, the interpretation history
(hm). The interpretation history of an operation sequence s ∈ Lm is the set of
unique interpretations generated over the course of applying the sequence.

hm(s = {t1 ∈ T m, .., t|s| ∈ T m}) =
|s|⋃
i=1

applym(t1..ti) (5)

An interpretation history contains all unique interpretations constructed during
recognition. This is the set of pin locations for a turn in ‘pin the tail on the
donkey.’

The distance function δm defines a distance between interpretations (this
was Euclidean distance in R2 for our simple ‘pin the tail’ model). Consider our
example of the digit string interpretation space employing string edit operations
in T m. δm could be defined as a ‘string edit distance,’ the minimum number of
operations needed to transform one digit string to another. Alternatively, if we
use the numerical difference of the numbers represented by the strings for δm,
the operation sequences and distances are less directly related.
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The final component of an interpretation model m is timem
max, the maximum

time in which an operation sequence may be generated. Unbounded recognition
time may be represented using ∞. For both ‘pin the tail on the donkey’ and
real-world recognition problems, timem

max is finite, and relatively small.

3 Playing Recognition Games

We now define an imitation game for recognition tasks, in which a sample of
a problem domain is taken, experts define goal interpretations for the sample
elements, and players try to guess the expert interpretations. Experts and play-
ers use two models, differing only in the time for choosing interpretations. This
allows for differences between human ‘experts’ (e.g. using a GUI to create inter-
pretations) and algorithms under real-time constraints.

For a recognition game, the recognition game parameters (g) are an 8-tuple:

g = (mg, timeg
e, timeg

p, μ
g, n, φg, Eg, P g). (6)

mg is an interpretation model as described in the previous section. timeg
e is the

maximum time allowed for creating expert interpretation(s), and timeg
p is the

maximum duration of a player’s turn. μg is a sampling function returning a list
of q elements from a set (e.g. μg(Dmg

, q) = (d1 ∈ Dmg

, ..., dq ∈ Dmg

)); n is
the sample size used in the game. φg is a ranking function, defining an ordering
for sets of values (e.g. ranking by minimum distance, as in ‘pin the tail on the
donkey’).

Players are represented as functions called recognition strategies (P g = {α1,
.., αp}) returning legal operation sequences from the language of mg (for i ∈
{1..p}, αi(d ∈ Dmg

, mg, timeg
p) = s ∈ Lmg

). The expert protocol defining goal
interpretations is defined as a pair Eg = (Ae, β), where Ae = {αe

1, .., α
e
j} is

another set of recognition strategies using time restriction timeg
e, and β is a

function combining the expert opinions (operation sequences) to produce goal
interpretation(s) for an input d ∈ Dmg

(β(αe
1(d), ..., αe

j(d)) = {i1, ..., im}).
Given recognition game parameters g, a recognition game is an imitation

game that proceeds as follows:

1. The game input set Dg is defined by

Dg = μ(Dmg

, n) = {d1..dn} ⊆ Dmg

. (7)

2. The goal interpretation set (Ie
dk

) for each input dk ∈ Dg, k = 1..n is defined
using the expert protocol Eg

3. A series of ‘rounds’ is played, one for each dk, k = 1..n. In each round:
(a) Each player in P g is given dk and produces an operation sequence ({sα1

dk

.. s
αp

dk
}), from which the guessed interpretation sets ({Iα1

dk
..I

αp

dk
}) are ob-

tained using applymg

(e.g. Iα1
dk

= applymg

(sα1
dk

))
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(b) Each player is scored using the distance function of the game interpre-
tation model (δmg

), to produce a set of distances Δαx

dk
between each

guessed interpretation in Iαx

dk
and each goal interpretation in Ie

dk
:

Δαx

dk
=

⋃
iα∈Iαx

dk
, ie∈Ie

dk

δmg

(iα, ie), ∀x = 1..p,∀k = 1..n (8)

4. The player ranking is determined by applying the ranking function φg to the
scores from each round (e.g. φg({Δα1

d1
..Δ

αp

dn
}) = (α3, {αp, α1}, ...), where α3

wins, and αp and α1 are tied for second place).

4 Decision Making in Recognition Strategies

In our game, the experts and players are modeled by functions called recogni-
tion strategies, which return operation sequences for a problem domain input.
Operation sequences represent decisions made within a series of decision spaces
containing the alternatives for each decision; applying a model operation implies
that some inference has been made regarding the appropriate model instance(s)
for an input [11]. Sequential decision making can be represented by a decision
tree, flow chart, or similar representation [4,5]. We will consider properties of a
decision tree representation for decision making in our recognition games.

Consider Figure 1, which presents a single turn for ‘pin the tail on the donkey.’
Shown are the sequence of decisions made (s = (forward, turn 5 deg. CC,
push)), and the set of alternatives considered. At each point in the tree, some
alternatives will produce identical pin locations. For example, deciding to turn
30◦ clockwise produces the same pin location as turning 330◦ counter-clockwise.
Though not shown in Figure 1, at some points certain moves may not be possible
(e.g. moving forward if a chair blocks the child) or even considered. If a child
decides after turning that they are at the right location, they may only consider
pushing the pin (i.e. the decision space has only one element, ‘push pin’).

Let us now define the decision spaces, alternative decision sequences, and
interpretations considered by a recognition strategy α for an input dk ∈ Dg.
The series of decision spaces encountered by a recognition strategy α may be
represented as a list of subsets of the game moves, T mg

:

αspaces(α, mg, dk ∈ Dg) = {{T α
1 } ⊆ T mg

, .., {T α
|s|} ⊆ T mg} (9)

where |s| is the length of the operation sequence produced by α. The complete
set of alternative operation sequences considered for a given series of decision
spaces A = αspaces(α, mg, dk ∈ Dg) and the related operation sequence s is then
given by:

S(A, s) = {∅} ∪
|s|⋃
i=1

⋃
a∈Ai

cat(s[1,i−1], a) ⊆ Lmg

(10)
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turn 5 deg. CC

forward turn 5 deg. C

push

forward push turn 5 deg. C

turn 5 deg. C turn 5 deg. CC

turn 5 deg. CCpush

forward ... ...

... ...

... ...

Fig. 1. Decision tree for one child’s turn in ‘pin the tail on the donkey.’ The sequence
of moves (operation sequence) shown is s = (forward, turn 5 deg. CC, push), rep-
resenting the child stepping forward, turning five degrees counter-clockwise, and then
pushing their tail-pin into a wall. ‘...’ is used to represent turning clockwise and counter-
clockwise in increments of five degrees (from 10◦ to 355◦).

where cat appends elements of a decision space (a ∈ Ai) to subsequences of s
from lengths 0 (s[1,0]) to |s|− 1, and {∅} is the empty sequence. S also describes
the exhaustive set of paths from the root of the corresponding decision tree.

The complete set of points in the game’s interpretation space (Img

) consid-
ered by recognition strategy α for input dk is then given by:

Cα
dk

(A, s) =
⋃

y∈S(A,s)

applymg

(y) ⊆ Img

(11)

Equations (9), (10), and (11) allow us to analyze and compare recognition
strategies quantitatively using decision spaces, operation sequences, and inter-
pretations considered. For example, within a recognition game we can determine
if a goal interpretation was considered by a strategy, and if so, in which decision
space(s) (equivalently, at which nodes in the decision tree).

5 Example: A Table Cell Detection Game

We have previously carried out an informal recognition game for table cell de-
tection [12]. We will now formalize the game, using our imitation game. In the
game we compared the detection of table cells within lists of words and lines
in segmented tables. We implemented two table recognition algorithms from
the literature [13,14] using the Recognition Strategy Language (RSL [12]). RSL
formalizes decision making and captures operation sequences that transform in-
terpretations represented as attributed graphs. One of the authors selected five
challenging tables from the UW-I technical document corpus [15], and then pro-
duced a single set of table cells for each table. Both player algorithms return sin-
gle interpretations. The distance from the algorithms’ cell sets to the author’s
cell sets were measured using the harmonic mean of cell recall and precision
(with a higher mean representing a smaller distance in the interpretation space).
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Player 1 (Handley algorithm [13]) Player 2 (Hu et al. algorithm [14])

Expert (author)

Fig. 2. One round of a table cell detection game

The game had a ‘best three out of five’ outcome, where the algorithm with the
highest harmonic mean would ‘win’ for each round (table). One round from the
game is shown in Figure 2, for a table taken from page a038 of the UW-I corpus.
For the round shown, Player 2 wins because both recall and precision are higher
than for Player 1.

Let us now define the interpretation model mc for our cell detection game.
The problem domain Dmc

included the marked tables in the UW-I technical
document corpus. The language of mc was defined with im

c

0 equal to the empty
set of cells, T mc

containing basic operations of RSL that modify cell hypothe-
ses (e.g. accept, classify, relate), and Γ mc

defined by legal RSL operation
sequences. The function applymc

was defined by the interpretive layer of the
RSL core that generates interpretations from operation sequences. The distance
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metric δmc

was 1 - the harmonic mean of cell recall and precision, and timemc

max

was roughly 30 minutes, for both the author ‘expert’ and the algorithms.
The cell detection game parameters g included mg = mc, with timeg

e =
timeg

p = timemc

max. Sampling was defined by μg (select ‘challenging’ tables), with
sample size n = 5. Players were ranked using a ‘best three out of five’ protocol
(φg). For the expert protocol Eg = (Ae, β) the author acted as the sole ‘ex-
pert’, providing 1 interpretation per table (Ae = {author}, β =‘choose single
best interpretation’). The choice of β was significant, because often the author
considered multiple interpretations. Finally, the players P g were the two table
recognition algorithms. One of the algorithms won; complete details may be
found elsewhere [12].

The two player algorithms used different models of table structure. To ad-
dress this, we isolated operations where cell hypotheses may have been affected.
In terms of our imitation game, this might have been achieved using a more
restrictive model language Γ mc

r ⊂ Γ mc

that included only sequences of RSL op-
erations affecting cell hypotheses. The generated operation sequences could then
have been filtered to include only these operations (a well-formed version of such
an approach requires further investigation). For both algorithms, we were able to
plot cell recall and precision against operation sequence positions affecting cell
hypotheses, and observe new metrics describing the recall and precision of the
entire set of cell hypotheses. The new metrics rely on the interpretation history
(see equation (5)), and are called historical recall and historical precision. Using
interpretation histories also simplified error analysis, particularly for locating
which operations introduce errors [12].

In the future, we wish to modify RSL to automatically collect the decision
space associated with each operation, given an input. We could then use the
properties defined in the previous section to further compare recognition strate-
gies. The game model might also provide the basis for a formal semantics of the
RSL language.

6 Conclusion

The proposed imitation game defines the variables for a recognition task and
the evaluation of proposed solutions explicitly, using an interpretation model and
game parameters. This allows recognition tasks to be compared quantitatively in
terms of the game variables (e.g. the relative sizes of interpretation spaces), and
stipulates the terms of evaluation within the problem definition. Additionally,
within the game expert and player moves are transparent, and may be compared
using the decision trees they produce for inputs. In the future we are interested
in defining general classes of strategies for specific games, as for example Cesa-
Bianchi and Lugosi [8] have done, and begin considering optimal strategies for
recognition games (similar to what Pau has done for Bayesian classification [10]).

For recognition tasks, we commonly talk about ground-truth as the set of
correct interpretations for a problem domain. However, in practice ground-truth
is comprised of interpretations for a sample of a problem domain, produced
by experts whose opinions may vary and even conflict [16]. We propose that
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this type of ground-truth is more accurately understood as expert opinion, as
suggested in this paper.
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Abstract. Bayesian Gaussian processes are known as ‘smoothing de-
vices’ and in the case of n data points they require O(n2) . . . O(n3) num-
ber of multiplications in order to perform a regression analysis. In this
work we consider one-dimensional regression with Wiener-Lévy (Brow-
nian motion) covariance functions. We indicate that they require only
O(n) number of multiplications and show how one can utilize input de-
formations in order to define a much broader class of efficient covariance
functions suitable for discontinuity-preserving filtering. An example of
the selective smoothing is presented which shows that regression with
Brownian motion filters outperforms or improves nonlinear diffusion fil-
tering especially when observations are contaminated with noise of larger
variance.

1 Introduction

Pattern analysis can be improved if feature extraction and regression stages are
not separated, but designed in a systematic way which bridges boundaries be-
tween supervised and unsupervised learning. The aim of this work is to justify
rather informally one such inference principle known as ‘learning by input defor-
mations’, e.g. [4], which will be considered in the context of fast one-dimensional
Gaussian process (GP) regression.

A central quantity of interest is the covariance matrix (possibly infinite di-
mensional) postulated for the joint vector of observations and model output at
any input location. GP regression then proceeds by estimating the conditional
density of the model output given observations. In the simplest case of regres-
sion with a single optimal parameter setting this can be interpreted as Tichonov
regularization. The optimal model minimizes the sum of squared errors between
its output and the observations, and the Euclidean norm of the model output
vector, weighted by its inverse covariance matrix which can be diagonal.

Unfortunately, most frequently applied GP models already assume the oppo-
site of this case, namely dense covariance matrices which require O(n2) . . .O(n3)
number of multiplications to solve the regression task. Surprisingly, more efficient
covariance functions exist that yield filtering in O(n) number of multiplications.

One such example is the synthesis of covariance functions based on the zero-
pole diagram of their constrained Laplace transform [6]. However, this can be
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difficult to accomplish especially in boundary value problems and situations
which demand discontinuous or output-dependent covariance functions. We de-
fine an alternative class of efficient covariance functions by considering nonlinear
input deformations of a particular type of the GP models, known as Wiener-Lévy
process or simply Brownian motion.

For this purpose, the GP regression modeling is stated in Section 2. Sec-
tion 3 shows how to extend the applicability of Brownian motion (bridge) co-
variance functions by deforming their inputs. Section 4 explains the meaning of
deformations in connection to nonlinear diffusion filtering [10]. An example of
discontinuous rgeression is analyzed in Section 5, while Section 6 concludes our
study.

2 Gaussian Process Regression

The hypothesis that regularities in data can be modeled as a Gaussian random
process lies in the core of many regression techniques. Let us assume that the true
signal u(x), i.e. the vector of its sample values u1:n = {ui|i = 1, 2, . . . , n, ui ∈

1} given at any n spatial locations x1:n = {xi|i = 1, 2, . . . , n,xi ∈ d} is
normally distributed with zero mean and the covariance matrix Kθ ∈ Rn×n.
The signal can only be observed imperfectly via observations y1:n:

p(y,u, θ) = p(y|u, θ0)p(u|x, θ) = N (u, θ0I)N (0,Kθ) , (1)

where θ denotes the unknown parameters of the GP model including variance of
‘an additive noise’ θ0. Given little knowledge about the specific values of optimal
model parameters θ, it is often enough to perform the approximate Bayesian
regression p(u|y) ≈ p(u|y, θ∗) with a single parameter setting θ∗:

u∗ ≡ E[u|y] = arg min
u

( 1
2θ∗0

||u−y||2 +
1
2
uT K−1

θ∗ u
)

= Kθ∗(Kθ∗ +θ∗0I)
−1y . (2)

Eq. (2) gives an intuition behind the Gaussian process regression: regularity
properties of the model outputs are controlled by a quadratic form determined
by the inverse covariance matrix K−1

θ . Given an input value x, the prediction is

u∗(x) =
n∑

i=1

αik(x,xi), αi ≡ [(Kθ∗ + θ∗0I)
−1y]i . (3)

The GP model Eq. (1) usefully completes the regularization in Eq. (2) by pro-
viding means to compare different covariance models [4]. The optimal model θ∗

can be chosen to maximize the logevidence B of observations y [9,4]:

−2B(θ) = n ln 2πθ0 + ln det(Kθ + θ0I) + θ−1
0 yT (y − u∗). (4)

This criterion is also relevant to the issue of computational complexity because,
if suitably modified, it would yield models with sparse inverse covariance K−1

θ .
However, paradoxical situations are very likely when human observes that there
exists a model with smaller evidence values and slightly higher error rates, but
allows to estimate the regressor thousand times faster. This can be avoided if an
efficient model hypothesis space is chosen a priori.
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3 Input Deformations in Brownian Motion Filters

3.1 Covariance Functions of Brownian Motion

In what follows, we will consider only one-dimensional filtering, i.e. x ≡ x ∈ 1.
A variety of useful covariance functions can be derived in the case of boundary
value problems, where the combinations of the values of the model output and
its derivative are known on the boundary. Without loss of generality we consider
the case when x ∈ [0, 1].

A general source for the efficient covariances lies in the exact Markovian
factorization of Eq. (1). One such example is the GP model with the exponential
covariance function k(xi, xj) = e−θ1|xi−xj |. When sampling the signal at regular
locations x = h, . . . , nh, Eq. (1) then decomposes into [5]

p(u|t, γ) = p(u1)
n∏

i=2

p(ui|ui−1) = p(u1)
n∏

i=2

N (γui−1, 1 − γ2), γ ≡ e−θ1h. (5)

Eq. (5) allows direct application of the Kalman filter to estimate the states u1:n

in O(n) multiplications because no matrix inverses will be present as the states
in the decomposed model Eq. (1) become scalar. One can add that Eq. (4) can
be employed to find the optimal value of γ by rewriting ln det(Kγ + θ0I) =
ln det(I + θ0K−1

γ ) − ln detK−1
γ and exploiting the fact that the exponential co-

variance yields a tridiagonal inverse K−1
γ whose determinant can be evaluated

recursively [3].
One of the most studied Gaussian random processes, which admits the par-

ticularly simple case of the Markovian decomposition p(ui|ui−1) = N (ui−1, h),
is known as the Brownian motion or Wiener-Lévy process [5,8]. The covariance
function of the corresponding zero mean GP model is

k0(xi, xj) = min(xi, xj). (6)

This process can intuitively be understood as the ‘integrated white noise’ as its
increments are independent and distributed with zero mean and variance equal
to the step size h. If a regression outcome on the boundaries is known, e.g.
u(0) = a and u(1) = b, then the conditioned Brownian motion can be defined [8]
with mean as the linear trend E[u|x] = a + (b− a)x and the covariance function

k1(xi, xj) = min(xi, xj) − xixj . (7)

This is known as the ‘Brownian bridge from a to b on x ∈ [0, 1]’. Eqs. (6) and (7)
define ‘mildly’ non-stationary covariance functions in the sense that a pair of
any two points separated by the same distance will have different correlation
properties if the points are closer to the boundaries. Zero-correlations can take
place only between the boundary and interior points, negative correlations do
not exist.

Fig. 1 shows the result of filtering a rectangular pulse in the additive Gaussian
noise by employing Brownian bridge from 0 to 0. As the variance of the noise
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Fig. 1. Regression with the Brownian bridge model when the variance of the additive
zero-mean Gaussian noise is (a) θ0 = 0.25 and (b) θ0 = 1. As most of conventional GP
models, Brownian motion blurs away the edges of a signal.

increases, the effect of blurring away edges strengthens. Similar result could
be obtained with any stationary smoothing kernel function. However, whereas
the most frequently used Gaussian kernel results in a dense covariance matrix,
Brownian motion processes yield tridiagonal inverses which require only O(n)
number of multiplications when computing a matrix-vector product in Eq. (2).

3.2 Input Deformations for Discontinuous Regression

The Brownian motion covariance functions not only yield tridiagonal inverse
covariance matrices, but this important feature is also preserved when using
input deformations. Therefore, the range of applicability of the Brownian motion
filters can be considerably expanded. Consider a transformation

x �→ x̃ =
1√∫ 1

0
p−1(x)dx

∫ x

0

p−1(x)dx, (8)

where p(x) > 0 is not necessarily continuous, but can be chosen so that x̃ is
a bijection. Now let us consider the discrete counterpart of Eq. (8) on the grid
x0 = 0, x1, . . . , xn, xn+1 = 1 and apply the midpoint approximation∫ xi

0

p−1(x)dx ≈
i∑

k=1

hk

pk−1/2
, (9)

where hk ≡ xk − xk−1 and pk−1/2 ≡ p((xk−1 + xk)/2). Eq. (9) would hold with
O(h) or O(h2) accuracy (h = maxhk) depending whether p(x) is continuous by
itself or together with its first derivative. In general, we do not even require this
to be the case and consider Eq. (9) as the defined input deformation.
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We can then build the covariance matrices of size n × n by sampling the
functions given by Eqs. (6) and (7) at x̃ rather than x. The inverse covariance
matrix of the Brownian bridge then becomes [11,2]

K−1
θ =

⎛⎜⎜⎜⎜⎜⎝
a1 + a2 −a2

−a2 a2 + a3 −a2

. . . . . . . . .
−an−1 an−1 + an −an

−an an + an+1

⎞⎟⎟⎟⎟⎟⎠ , (10)

where ai ≡ 1
hi

pi−1/2. When the matrix is of the form in Eq. (10), a matrix-vector
product can be computed via Thomas algorithm [10] or by means of dynamic
programming in general.

A skeleton of a regression algorithm which uses the Brownian motion filter
with input deformations can now be presented:

Define p(x) ≡ p(x,θ) on x0 = 0, x1, . . . , xn, xn+1 = 1.

Compute kernel matrix Kθ ∈ n×n in Eq. (10).

Solve for u∗ by optimizing θ including θ0:(
u∗, θ∗) = arg min

u,θ

{
n ln 2πθ0 + ln det(Kθ + θ0I) + θ−1

0 yT (y − u∗)
}
,

subject to u = (I + θ0K
−1
θ )−1y . (11)

There is no guarantee that a cost function will have a single optimum w.r.t. all
its parameters. We will minimize it w.r.t θ0 by employing the conjugate gradients
algorithm [7,4] for a pre-selected set of values of the remaining parameters θ,
finally picking up the global minimum.

4 Connection to Nonlinear Diffusion Filtering

Input deformations can be used to expand the applicability of regression with
Brownian covariance matrices within the constraint of efficient O(n) filtering. At
this point, however, it remains unclear how to choose the corresponding input
deformation. Eq. (8) has an intuitive meaning. Up to a scaling by a diagonal ma-
trix, Eq. (10) is Green’s matrix obtained by considering discrete approximation
to

−∂x[p(x)∂xu] = y, u(0) = 0, u(1) = 0. (12)

More precisely, the approximate solution to Eq. (12) would be u = H−1Kθy with
H = diag[2/(h1+h2), . . . , 2/(hn+hn+1)], see [2]. One can check that the solution
to Eq. (12) also minimizes the sum of two Euclidean norms ||u−y||2+||p(x)∂xu||2.
The function p(x) appears as the penalty weight for the norm of the derivative
of the solution.

In spite of its clear meaning, the function p(x) can seldom be known and it
has to be estimated from observations alone. Section 5 will study a particular
parametric form designed to solve an edge-preserving filtering problem shown in
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Fig. (1). However, it is important to note that one can choose a different path
by employing what is known as nonlinear diffusion filtering [10].

According to nonlinear diffusion principle, one assumes that the function
p(x) depends on the gradient of the true signal, and it should be small where
the gradients are sharp so that the smoothing does not blur the edges. A very
rough estimate of the gradient can be made from observations, and the results
can be greatly improved by applying a variant of Eq. (12) iteratively.

Table 1 indicates the connection between (i) the regularization in Eq. (12),
(ii) the GP regression with the covariance function of Brownian bridge enhanced
via input deformations and (iii) nonlinear diffusion filtering. One can see that a
single iteration of nonlinear diffusion filtering corresponds to the above-discussed
regression with input deformations where the additive noise is spatially variant,
e.g. θ0 ≡ θ0(xk) = τ2/(hk +hk+1), where τ is the time step obtained by approx-
imating the time derivative with the first order divided difference.

Table 1. GP regression model with the Brownian covariance function and its connec-
tion to diffusion filtering. The first row clarifies the action of the inverse covariance
matrix stated in Eq. (10) in the continuous case. The models in the second row would
be equivalent only if a discrete model is considered on the regular grid with spacing h

and θ0 = 1/h. The nonlinear diffusion filtering in the third row starts with u0 = y, τ

denotes the discrete time step.

Name Discrete Model Continuous Space Model
Poisson Equation HK−1

θ u = y −∂x(p∂xu) = y
Brownian regression (I + θ0K

−1
θ )u = y −∂x(p̃∂xu) + u = y

Nonlinear Diffusion (I + τHK−1
t )ut = ut−1 −∂x(p(u)∂xu) = −∂tu

An example of nonlinear diffusion filtering is presented in Fig. 2. For moderate
variance values, such as θ0 = 0.25, nonlinear diffusion works rather fine as can
be seen in Fig. 2a. There is a problem in automating the optimal choice of the
stopping time, but at least such quantity exists. However, increasing the noise
level to θ0 = 1 makes the determination of the optimal stopping time nearly
impossible. As the result in Fig. 2b shows, the early stopping based on minimal
value of the mean of the sum of the squared errors between the true signal
and the diffusion outcome would not solve the problem even if it were possible
to evaluate it. In this example, a structure similar to the true signal emerges at
about T = 100 iterations, this result in shown in Fig. 2c, whereas the steady state
decays to the mean value as can be seen in Fig. 2d. Clearly, nonlinear diffusion
process gets uncontrollable with the increasing noise variance. Eq. (12) could as
well be used as a starting point in regression without any reference to the GP
regression. However, such an approach would require continuity assumptions on
the function p(x) and making it data-dependent in the nonlinear diffusion way
turns out to miss some important information which can be incorporated and
adapted into p(x) via the Bayesian GP model.
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Fig. 2. Typical examples of nonlinear (edge-preserving) diffusion filtering by using
p(u) ≡ 1 − exp(−c( λ

||∂xuσ|| )
s), see [1] for more details. (a) θ0 = 0.25 and (b)–(d)

θ0 = 1. The outcome of the nonlinear diffusion filtering depends on the stopping time:
(b) T = 14, (b) T = 100, (c) T = 1200. Here the case (b) corresponds to the minimal
achievable mean squared error between the estimated and true signals, (c) indicates
the diffusion outcome which preserves the structure of the original signal, while (d)
shows the steady state. The examples in (b)–(d) show that nonlinear diffusion filtering
works only when θ0 < 1.

5 Experiment: Regression with Input Deformations

Consider the filtering problem presented in Figs. 1 and 2. Suppose that we know
the nature of the signal to be found in the noisy observations, e.g. we can assume
that there are two discontinuities whose precise locations have to be discovered.
At the first glance this minor information seems to be very marginal because,
as can be seen in Fig. 2a, nonlinear diffusion finds the solution without such
assumption. On the other hand, the knowledge that there are two discontinuities
turns out to be crucial when the noise variance increases from θ0 = 0.25 to
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Fig. 3. Example of the adaptive input deformations used with the Brownian bridge
model. The shape of a one-dimensional warp is chosen to be the simplest one which
could yield edge preserving of two discontinuities when filtering a rectangular pulse in
very noisy observations. The optimal input deformation depends on two parameters:
location of the first and second discontinuities, denoted by x0 and x0 + Δ. They can
be estimated from noisy observations by maximizing the logevidence criterion Eq. (4).

θ0 = 1. Incorporating such a constraint allows to solve the problem reliably in
one iteration. Based on the assumption that there are two discontinuities, we
are now posed with the problem of finding them. In order to solve this task,
we apply input deformation shown in Fig. 3 with the covariance function of the
Brownian motion. This transformation is by no mean unique, but it is one of
the simplest ways to incorporate two discontinuities a priori. The parameter x0

denotes the location of the first discontinuity whereas x0 + Δ stands for the
second discontinuity.

Next, we apply the algorithm described in Section 3.2. The variance parame-
ter θ0 is usually slightly over-estimated, but this does not affect much the optimal
location of discontinuities. The dependence of logevidence on two discontinuities
can be seen in Fig. 4. The maximum appears to be very close to the true values
x0 = 0.05 and Δ = 0.4. If the noise variance is increased up to θ0 = 1.4, it would
become impossible to locate two discontinuities at the same time because the
second large maxima would occur at x0 = 0.075 and Δ = 0.376, e.g. the pulse,
which is shorter and starts slightly later, would compete with the ideal solution.
Most of the local maxima occur on the line Δ ≈ −x0 + 0.45. They correspond

to the incorrect estimation of the first discontinuity while preserving the second
one. The results of the Brownian motion regression with adapted input defor-
mations are indicated in Fig. 5. The algorithm works even in the case θ0 = 1
avoiding the difficulties present in nonlinear diffusion.
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Fig. 4. Adaptive estimation of the input deformation in the case of two unknown
discontinuities. The logevidence has multiple maxima, but the global one is close to
the optimal values x0 = 0.05 and Δ = 0.4.
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Fig. 5. The Brownian bridge regression with evidence maximizing input deformations
obtained according to Fig. 4: (a) θ0 = 0.25 and (b) θ0 = 1. The edges of the signal are
well-preserved, and the problem of the optimal stopping time is avoided. The algorithm
works with larger values of variance of additive noise such as θ0 = 1, whereas the
performance of nonlinear diffusion is rather poor, clf. Fig. 2.

6 Conclusions

The covariance functions of the Brownian motion or its variant known as the
Brownian bridge are examples of possibly the simplest GP models whose range
of applicability can be expanded to filtering of long discontinuous signals in
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boundary value problems. At the first glance, the use of input deformations
seems to be plagued by the need to consider nonlinearities, i.e. one has to define
the function that transforms the model inputs which are then passed through the
nonlinear model. However, if one considers the Brownian motion kernel, input
deformations can be usefully related to the spatial variance model because they
indirectly impose the spatially-dependent penalty on the derivatives of the model
output.

Currently, the most efficient and general way to solve discontinuous regres-
sion problems is based on nonlinear diffusion filtering [10]. However, even the
simplest examples indicate that such an approach works only for moderate vari-
ance values of the additive noise. As the variance of the noise in the observations
increases, it becomes difficult to set the optimal stopping time and the locations
of discontinuities can not be determined precisely. This should come as no sur-
prise because nonlinear diffusion operates on the general principle ‘smooth less
where the rough estimate of the gradient of the true signal is large’, applied
iteratively. This work has shown a synthetic example where a little more knowl-
edge, such as the number of discontinuities, yields robust filtering. Moreover,
the use of the evidence criterion helps in clarifying model assumptions and it
indicates how the appearance of local maxima with the increasing variance of
noise demands better edge-preserving filters.
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Abstract. This paper addresses the clustering problem of hidden dy-
namical systems behind observed multivariate sequences by assuming
an interval-based temporal structure in the sequences. Hybrid dynam-
ical systems that have transition mechanisms between multiple linear
dynamical systems have become common models to generate and ana-
lyze complex time-varying event. Although the system is a flexible model
for human motion and behaviors, the parameter estimation problem of
the system has a paradoxical nature: temporal segmentation and system
identification should be solved simultaneously. The EM algorithm is a
well-known method that solves this kind of paradoxical problem; how-
ever the method strongly depends on initial values and often converges
to a local optimum. To overcome the problem, we propose a hierarchical
clustering method of linear dynamical systems by constraining eigenval-
ues of the systems. Due to the constraints, the method enables param-
eter estimation of dynamical systems from a small amount of training
data, and provides well-behaved initial parameters for the EM algorithm.
Experimental results on simulated and real data show the method can
organize hidden dynamical systems successfully.

1 Introduction

Hybrid dynamical systems (hybrid systems) such as switching dynamical systems
[6] and segment models [10] have become common models for speech recognition,
computer vision, graphics, and machine learning researchers to generate and
analyze complex time-varying event (e.g., human speech and motion [3, 12, 2,
9]). They assume that a complex event is consist of dynamic primitives, which is
often referred to as phonemes, movemes [3], visemes, motion textons [9], and so
on. For instance, a cyclic lip sequence in Figure 1 can be described by simple lip
motions (e.g., “open”, “close”, and “remain closed”). Once the set of dynamic
primitives is determined, an observed or generated time-varying pattern can be
partitioned by temporal intervals with the labels of primitives.

A hybrid system represents each dynamic primitive by a simple dynamical
system, and models transition between dynamical systems by a discrete-event
model, such as an automaton and a hidden Markov model. Therefore, the system
has a capability of generating and analyzing multivariate sequences that consist
of temporal regimes of dynamic primitives.

In spite of the flexibility of hybrid systems, especially for modeling human mo-
tion and behaviors such as gestures and facial expressions, the real applications
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Fig. 1. Example of a lip image sequence modeled by a hybrid system

are often beset with difficulties of parameter estimation due to the paradoxical
nature of the estimation problem, as we see in the next paragraph.

This paper proposes a bottom-up approach that estimates a set of dynamical
systems based on an agglomerative hierarchical clustering process, which itera-
tively merges dynamical systems. A constraining method for system eigenvalues
(spectra) is proposed to identify stable linear dynamical systems, which are ap-
propriate systems to model human motion, from a small number of training
sequences. In this paper, we use only linear dynamical systems to model dy-
namic primitives and often omit the term “linear”. Since the hierarchical clus-
tering method provides approximate parameters of linear dynamical systems
comprised in a hybrid system, it successfully initializes refinement process of the
overall system such as a maximum likelihood estimation process.

Difficulty of the Parameter Estimation: Let us assume that a large amount
of training data (multivariate sequences) is given. Then, the parameter estima-
tion problem requires us to simultaneously estimate temporal partitioning of
the training data (i.e., segmentation and labeling) and a set of dynamical sys-
tems. The reason is that identification methods of dynamical systems require
partitioned and labeled training sample sequences; meanwhile segmentation and
labeling methods of the sample sequences require an identified set of dynami-
cal systems. The expectation-maximization (EM) algorithm [5] is a well-known
method that solves this kind of paradoxical problems with iterative calculations;
however, it strongly depends on the initial parameters and does not converge
to the optimum solution, especially if the model has a large parameter space to
search. Therefore, the parameter estimation of hybrid systems necessitates an
initialization method that searches an appropriate set of dynamical systems (i.e.,
the number and parameters of dynamical systems) from given training data.

The Assumed Parameter Estimation Scheme: To solve the problem above, we
assume a multiphase learning approach (see Figure 2). The first step is a hier-
archical clustering process of dynamical systems, which is applied to a compar-
atively small number of typical sequences selected from given training data set.
For the second step, we assume a refinement process for all the system parame-
ters based on a maximum likelihood method via EM algorithm [12]. The method
not only refines parameters of dynamical systems but estimates parameters of
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Fig. 2. The assumed parameter estimation scheme of a hybrid system. This paper
concentrates on a hierarchical clustering of dynamical systems that works as an initial-
ization process of the EM algorithm.

the automaton that models transition between the constituent linear dynami-
cal systems. This refinement process is applied to all the given training data.
Thanks to the estimated parameters in the hierarchical clustering process, the
refinement process can be initialized by parameters that are relatively close to
optimum compared to randomly selected parameters. As a result, the refinement
process converges to the optimal solution successfully. This paper concentrates
on the first step of the multiphase approach as an initialization process for the
second step (i.e., EM algorithm).

The Advantage of the Hierarchical Clustering: Although several clustering ap-
proaches have been proposed to find a set of linear dynamical systems from given
training sequences, such as greedy approaches [9], we propose an agglomerative
hierarchical clustering method that extracts dynamical systems. The reason is
that the method provides useful interfaces, such as the history of model fitting
errors in each merging steps, to determine the number of clusters.

In Section 2, we describe a structure of a hybrid system. Section 3 explains the
hierarchical clustering method proposed in this paper. We evaluate the method
using simulated and real data to verify the expressiveness of the extracted dy-
namical systems in Section 4.

2 A Hybrid Dynamical System
2.1 System Architecture

A hybrid system is a generative model that can generate multivariate vector
sequences by changing (or switching) the activation of constituent dynamical
systems [6, 12]. In most case, the dynamical systems are linear. The system has
a two-layer architecture. The first layer has a finite state automaton that models
stochastic transition between dynamic primitives. The automaton has an ability
of generating interval sequences, where each interval is labeled by one of the
dynamic primitives. The second layer consists of a set of multiple dynamical
systems D = {D1, ..., DN}. In this paper, all the constituent dynamical systems
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are assumed to share a n-dimensional continuous state space, and each activated
dynamical system can generate sequences of continuous (real valued) state vector
x ∈ Rn. The generated state sequences are mapped to observation sequences of
multivariate vector y ∈ Rm in a m-dimensional observation space by a linear
function that is also shared by all the dynamical systems.

2.2 Linear Dynamical Systems

The state transition in the continuous state space by a linear dynamical system
Di, and the mapping from the continuous state space to the observation space
is modeled as follows:

xt = F (i)xt−1 + g(i) + ω
(i)
t , yt = Hxt + υt, (1)

where F (i) is a transition matrix and g(i) is a bias vector. Note that each dynam-
ical system has F (i) and g(i) individually. H is an observation matrix that de-
fines linear projection from the continuous state space to the observation space.
ω(i) and υ is a process noise and an observation noise, respectively. We as-
sume that the process noise and the observation noise has Gaussian distribution
N (0, Q(i)) and N (0, R), respectively. The notation N (a,B) is a Gaussian dis-
tribution with an average vector a and a covariance matrix B. As we described
in the previous subsection, we assume that all the dynamical systems share a
continuous state space to simplify the model and to reduce the parameters. Us-
ing the notations above, we can consider the probability distribution functions:
p(xt|xt−1, dt = Di) = N (F (i)xt−1, Q

(i)) and p(yt|xt, dt = Di) = N (Hxt, R),
where the variable dt represents an activated dynamical system at time t.

Calculation of Likelihood in Intervals: Let us assume that a continuous state
has a Gaussian distribution at each time t. Then, the transition of the continuous
state becomes a Gauss-Markov process, which is inferable in the same manner
as Kalman filtering [1]. Therefore, the predicted state distribution under the
condition of observations from 1 to t − 1 is formulated as p(xt|yt−1

1 , dt = Di) =
N (x(i)

t|t−1, V
(i)
t|t−1) and p(yt|yt−1

1 , dt = Di) = N (Hx
(i)
t|t−1,HV

(i)
t|t−1H

T + R), where

the average vector x
(i)
t|t−1 and covariance matrix V

(i)
t|t−1 are updated every sampled

time t. Suppose that the dynamical system Di represents an observation sequence
ye

b � yb, ..., ye, which has a duration length e − b + 1, then the likelihood that
the system Di generates the sequence is calculate by the following equation:

p(ye
b |de

b = Dj) =
e∏

t=b

p(yt|yt−1
1 , dt = Dj), (2)

where we assume a Gaussian distribution N(x(i)
init, V

(i)
init) for the initial state dis-

tribution in each interval represented by dynamical system Di.
In the following sections, we assume the observation matrix and the noise

covariance matrix is H = I (unit matrix) and R = O (zero matrix), respectively,
to concentrate on extracting dynamic primitives represented by transition ma-
trices. Hence, the parameters to be estimated in a hybrid system become the
following.
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– the number of dynamical systems N
– the parameters of dynamical systems Θ = {θ1, ..., θN}, where

θi = {F (i), g(i), Q(i), x
(i)
init, V

(i)
init} is a parameter set of dynamical system Di

– the parameters of an automaton that models transition between dynamics

As we described in the Section 1, we concentrate on estimating N and Θ that
initializing the EM algorithm. We assume that the parameters of the automaton
are estimated and the parameter set Θ is refined by the EM algorithm.

2.3 Generable Patterns by Linear Dynamical Systems
The generable class of time-varying patterns (corresponds to trajectories of
points in the state space) from a linear dynamical system can be described by
the eigenvalues of the transition matrix. To concentrate on the temporal evolu-
tion of the state in the dynamical system, let us assume the bias and the process
noise term is zero in Equation (1). Using the eigenvalue decomposition of the
transition matrix:

F = EΛE−1 = [e1, ..., en]diag(λ1, ..., λn)[e1, ..., en]−1,

we can solve the state at time t with initial condition x0:

xt = F tx0 = (EΛE−1)tx0 = EΛtE−1x0 =
n∑

p=1

αpepλ
t
p, (3)

where ep and λp is a corresponding eigenvalue and eigenvector pair. We omit
the indices i for simplification. A weight value αp is determined from the initial
state x0 by calculating [α1, ..., αn]T = E−1x0. Hence, the generable patterns
from the system can be categorized by the sign (especially in the real parts)
and the norm of the eigenvalues λ1, ..., λn. For instance, the system can generate
time-varying patterns that converge to certain values if and only if |λp| < 1 for
all 1 ≤ p ≤ n (using the term in control theory, we can say that the system is
stable); meanwhile, the system can generate non-monotonous or cyclic patterns
if the imaginary parts have nonzero values.

3 Hierarchical Clustering of Dynamical Systems

The goal of the hierarchical clustering process is to estimate the parameters N
and Θ by assuming only a small amount of typical training data is given.

Let us assume that a multivariate sequence yT
1 � y1, ..., yT is given as a typical

training data (we consider a single training data without loss of generality), then
we simultaneously estimate a set of dynamical systems D (i.e., the number of
dynamical system N and the parameter set Θ) with an interval set I (i.e.,
segmentation and labeling of the sequence), from the training sample yT

1 . Note
that, the number of intervals K is also unknown. We formulate the problem
as the search of the linear dynamical system set D and the interval set I that
maximizes the total likelihood of the training data: L = P (yT

1 |I,D). Because the
likelihood monotonously increases with an increase in the number of dynamical
systems, we need to determine the right balance between the likelihood and the
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number N . A hierarchical clustering approach provides us an interface, such as
the history of model fitting errors in each merging step, to decide the number of
dynamical systems.

To identify the system parameters from only a small amount of training
data, we need constraints to estimate an appropriate dynamics. In this paper,
we concentrate on extracting human motion primitives observed in such as facial
motion, gaits, and gestures; therefore, constraints based on stability of dynamics
are suitable to find motion that converges to a certain state from an initial
pose. The key idea to estimate stable dynamics is the method that constrains
on eigenvalues. If all the eigenvalues are lower than 1, the dynamical system
changes the state in a stable manner, as we described in Subsection 2.3.

In the following subsections, we first propose a constrained system identifi-
cation method that constrains an upper bound of eigenvalues in the transition
matrices of linear dynamical systems. The method enables us to find a set of
dynamical systems that represents only stable dynamics. Second, we describe an
agglomerative hierarchical clustering of dynamical systems based on the pseudo
distance between two dynamical systems. The algorithm also merges two inter-
val sets labeled by the same dynamical system in each iteration step. Thus, the
clustering method solves two problems simultaneously: temporal segmentation
and parameter estimation.

3.1 Constrained System Identification

Given a continuous state sequence mapped from an observation space, the pa-
rameter estimation of a transition matrix F (i) from the sequence of continuous
state vectors x

(i)
b , .., x

(i)
e becomes a minimization problem of prediction errors.

Let us use the notations X
(i)
0 = [x(i)

b , ..., x
(i)
e−1] and X

(i)
1 = [x(i)

b+1, ..., x
(i)
e ], if the

temporal interval [b, e] is represented by a linear dynamical system Di. Then, we
can estimate the transition matrix F (i) by the following equation:

F (i)∗ = arg min
F (i)

||F (i)X
(i)
0 − X

(i)
1 ||2 = lim

δ2→0
X

(i)
1 X

(i)T
0 (X(i)

0 X
(i)T
0 + δ2I)−1, (4)

where I is the unit matrix and δ is a positive real value.
To set a constraint on the eigenvalues, we stop the limit in the Equation (4)

before X
(i)T
0 (X(i)

0 X
(i)T
0 + δ2I)−1 convergences to the pseudo-inverse matrix of

X
(i)
0 . Using Gershgorin’s theorem in linear algebra, we can determine the upper

bound of eigenvalues in the matrix from its elements. Suppose f
(i)
uv is an element

in row u and column v of the transition matrix F (i). Then, the upper bound
of the eigenvalues is determined by B = maxu

∑n
v=1 |f (i)

uv |. Therefore, we search
a nonzero value for δ, which controls the scale of elements in the matrix, that
satisfies the equation B = 1 via iterative numerical methods.

3.2 Hierarchical Clustering of Dynamical Systems

The hierarchical clustering algorithm is initialized by partitioning the training
sequence into motion and stationary pose intervals, which are simply divided
using the scale of the first-order temporal difference of training data. In the
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Hierarchical clustering of dynamical systems

for i ← 1 to N do
Di ← Identify (Ii)

end for
for all pair(Di, Dj) where Di, Dj ∈ D
do

Dist (i, j) ← CalcDistance (Di, Dj)
end for
while N ≥ 2 do

(i∗, j∗) ← arg min(i, j) Dist (i, j)
Ii∗ ← MergeIntervals (Ii∗ , Ij∗)
Di∗ ← Identify (Ii∗)
erase D∗

j from D; N ← N − 1
for all pair(D∗

i , Dj) where Dj ∈ D
do

Dist(i∗, j) ← CalcDistance (Di∗ , Dj)
end for

end while

sampling points in the input state sequence

interval set

interval set

identification

identification

the number of 

the systems: N

the number of 

the systems: N-1

the nearest dynamical system pair

merge

distance space of 

dynamical systems

distance space of 

dynamical systems

D1

D1

D2

D2

D3

D3

D4

Fig. 3. Identify is a constrained system identification that we described in Subsection
3.1 Ii is an interval set that comprises intervals labeled by Di. CalcDistance calculates
the distance between the two modes defined in Subsection 3.2. MergeIntervals merges
two interval set belongs to the nearest dynamical system pair.

first step of the algorithm, a single dynamical system is identified from each
interval in the initial interval set. Then, we calculate a pseudo distances for all the
dynamical system pairs based on the distance definition in the next paragraph.
In the second step, the nearest dynamical systems are merged iteratively based
on an agglomerative hierarchical clustering (see Figure 3.2). As a result, all
the dynamical systems are merged to one dynamical system. We discuss the
determination of the number of dynamical systems in the remaining of this
subsection.

Distance Definition between Dynamical Systems: We define a pseudo distance
between dynamical systems Di and Dj as an average of two asymmetric di-
vergences: Dist(Di, Dj) = {KL(Di||Dj) + KL(Dj ||Di)}/2, where each of the
divergences is calculated as an approximation of Kullback-Leibler divergence [7]:

KL(Di||Dj) ∼ 1
|Ii|

∑
Ik∈Ii

{
log p(yek

bk
|dek

bk
= Di) − log p(yek

bk
|dek

bk
= Dj)

}
,

where ybk
, ..., yek

is a partitioned sequence by interval Ik. |Ii| is the summation
of interval length in the interval set Ii that is labeled by a linear dynamical
system Di. Note that we can calculate the likelihoods based on Equation (2).

Cluster Validation Problem: The determination of the appropriate number of
dynamical systems is an important problem in real applications. The problem
is often referred to as the cluster validation problem, which remains essentially
unsolved. There are, however, several well-known criteria, which can be catego-
rized into two types, to decide the number of clusters. One is defined based on
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the change of model fitting scores, such as log-likelihood scores and prediction
errors (approximation of the log-likelihood scores), during the merging steps.
If the score is decreased rapidly, then the merging process is stopped [11]. In
other words, it finds knee of the log-likelihood curve. The other is defined based
on information theories, such as minimum description length and Akaike’s in-
formation criterion. The information-theoretical criteria define the evaluation
functions that consist of two terms: log-likelihood scores and the number of free
parameters.

Although information-theoretical criteria work well in simple models, they
tend to fail in evaluating right balance between the two terms, especially if the
model becomes complex and has a large number of free parameters [8]. Because
the problem also arises in our case, we use model fitting scores directly. First, we
extract candidates for the numbers of the dynamical systems by finding peaks
in difference of model fitting errors between adjacent two steps. If the value
exceeds a predefined threshold, then the number of dynamical systems in that
step is added to the candidates. We consider that user should finally decide the
appropriate number of dynamical systems from the extracted candidates.

4 Experimental Results

For the first evaluation, we used simulated sequences for training data to verify
the proposed clustering method, because it provides the ground truth of the
estimated parameters. Three linear dynamical systems and their parameters were
set manually. The dimension was n = 2; therefore each of the system had 2 × 2
transition matrix. A two-dimensional vector sequence Y = [y1, ..., yL] (Figure 4
(b)) was generated as an observation sequence from simulated transition between
the dynamical systems based on the activation pattern in Figure 4 (a). The
length of the sequence was L = 100. We then applied the clustering method
proposed in Section 3. Figure 4 (c) shows the overall model fitting error between
the original sequence Y and generated sequences Y gen(N) from the extracted
N dynamical systems. The error was calculated by the Euclid norm: Err(N) =

||Y − Y gen(N)|| =
√∑L

t=1 ||yt − ygen(N)t||2. Figure 4 (d) shows the results of
temporal segmentation partitioned by the extracted dynamical systems in each
iteration step. We see that the error increases monotonously with the decrease
in the number of dynamical systems. Note that there are several steep slopes in
the chart. The steep slopes correspond to the iteration steps in which dynamical
system pairs with a long distance were merged. The candidates of the number
were determined as N = 3 (which corresponds to the ground truth) and N = 8
by extracting the steps in which the difference Err(N − 1) − Err(N) exceeds
the given threshold. Consequently, the history of model fitting errors helps us to
decide the appropriate number of dynamical systems.

For the second evaluation, we applied the clustering method to real video
data. A frontal facial image sequence was captured by 60fps camera. Facial
feature points were tracked by the active appearance model [4, 13], and eight
feature points around the right eye were extracted. The length of the sequence
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Fig. 4. Clustering results on the simulated sequence generated from three dynamical
systems

points (both coordinate coefficients were plotted together in Figure 5 (a)). The
candidates of the number of dynamical systems were determined as N = 3 and
N = 6. Figure 5 (b) and (c) shows the error ||Y −Y gen(N)|| in each step and the
generated sequences in the steps of N = 12 and N = 4. We see that the generated
sequence Y gen(12) remains the spikes, which represent eye blinks, appeared in

was L = 1000. We then applied the clustering method to the obtained 16-
dimensional vector sequence that comprised x- and y-coordinates of the feature

the original sequence; meanwhile, Y gen(4) smoothes out them. For instance, the
dominant dynamical systems D2 and D3 represents the intervals in which the
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eye remains closed and open, respectively. Hence, we can control the coarseness
of the model by changing the number of dynamical systems, which work as the
bases of original motion.

5 Conclusion

This paper proposed a hierarchical clustering method that finds a set of dynam-
ical systems, which can be exploited to a multiphase parameter estimation for
hybrid systems that comprises a finite state automaton and multiple linear dy-
namical systems. The experimental results on simulated and real data show that
the proposed hierarchical clustering method successfully finds a set of dynamical
systems that is embedded in the training data.
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Abstract. The nearest neighbor rule is a non-parametric approach and
has been widely used for pattern classification. The k-nearest neighbor
(k-NN) rule assigns crisp memberships of samples to class labels; whereas
the fuzzy k-NN neighbor rule replaces crisp memberships with fuzzy
memberships. The membership assignment by the conventional fuzzy
k-NN algorithm has a disadvantage in that it depends on the choice of
some distance function, which is not based on any principle of optimality.
To overcome this problem, we introduce in this paper a computational
scheme for determining optimal weights to be combined with different
fuzzy membership grades for classification by the fuzzy k-NN approach.
We show how this optimally weighted fuzzy k-NN algorithm can be ef-
fectively applied for the classification of microarray-based cancer data.

1 Introduction

Methods for pattern classification have been applied for solving many important
problems which can be either abstract (conceptual classification) or concrete
(physical classification). Methodologies and techniques for machine learning and
recognition have been extensively studied by many researchers from many differ-
ent disciplines. However, there is still no unifying theory that can be applied to
all kinds of pattern recognition problems. Most techniques for pattern classifica-
tion and recognition are problem-oriented. Among many approaches for pattern
classification including linear discriminant analysis, Bayesian classifier, Markov
chains, hidden Markov models, neural networks, and support vector machines,
the k-nearest neighbor decision rule, which is a procedure for deciding the mem-
bership of an unknown sample by a majority vote of the k-nearest neighbors, is
one of the most popular classification methods chosen for solving many practi-
cal problems in many disciplines ranging from image, text, speech, to life and
natural sciences [1,3,7,8,15,16,17].

Although the k-nearest neighbor (k-NN) rule is a suboptimal procedure, it
has been shown that with unlimited number of samples the error rate for the
1-NN rule is not more than twice the optimal Bayes error rate [6], and as k
increases this error rate asymptotically approaches the optimal rate [5]. Given
the advantages of the k-NN classifier, it has been pointed out that the assumption
of equal weights in the assignment of an input vector to class labels can reduce
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the accuracy of the k-NN algorithm, particularly when there is a strong degree of
overlap between the sample vectors. To overcome this problem, the fuzzy k-NN
algorithm [13] assigns a fuzzy membership for an unknown sample xu to class
label y, denoted as μyu, as a linear combination of the fuzzy membership grades
of k nearest samples:

μyu =
∑k

i=1 ci μyi∑k
i=1 ci

(1)

where the denomination is used as the normalization, μyi is the fuzzy member-
ship which assigns labeled sample xi to class label y, and ci is the weight that is
inversely proportional to the distance between xi and the unknown sample xu

ci =
1

dp
iu

(2)

in which the distance diu = ||xu −xi||, and the exponent p = 2
q−1 , where q is an

integer variable.

Based on (2), different choices of p in terms of q will lead to different values for
μyu. In other word, μyu can be estimated by using different exponent weights that
are inversely proportional to any power of the distance function. Equation (1) is
also known to be the general inverse distance estimator which offers flexibility
in estimating the fuzzy membership of the unknown sample xu to y class with
respect to its k nearest neighbors. When p approaches 0, the inverse distance
estimate approaches the average of the fuzzy membership grades of the labeled
samples. When p approaches ∞, the inverse distance estimate tends to have
a strong bias to the closest neighbor of xu. The choice of the inverse distance
exponent p is arbitrary, and the most conventional choice for p is 2, which also
means q = 2.

After the assignment of the fuzzy membership grades of an unknown vector
xu to all class labels, the fuzzy k-NN classifier assigns xu as belonging to the
class label whose fuzzy membership for xu is maximum.

It can be seen that the determination of the set of weights {ci} is based on
some arbitrary distance measure between the unkown sample and its neighbors,
and not based on any optimal criterion. In this paper, we apply the method of
ordinary kriging to determine an optimal set of weights for the fuzzy k-nearest
neighbor decision rule. Kriging is known as the best linear unbiased estimator
[10]. This estimation is linear because the estimates are the weighted linear
combinations of the available data; it is unbiased because it imposes a condition
that the mean error is equal to zero; it is best because its aim is to minimize the
error variance. Other estimation methods can be linear or theoretically unbiased.
However, the distinguishing feature of kriging is that its formulation is based
on the minimization of the error variance. We present the proposed optimally
weighted fuzzy k-NN algorithm in the following section.
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2 Optimally Weighted Fuzzy k-NN Algorithm

As the conventional k-NN computes the fuzzy membership grade of an unknown
sample by linearly combining the fuzzy membership grades of the neighbor sam-
ples using the weighting coefficients obtained from a metric measure, the ap-
proach presented herein is to determine the set of optimal weighting coefficients
in terms of a statistical measure.

Using a similar expression of the conventional fuzzy k-NN algorithm, the
proposed k-NN algorithm assigns the fuzzy membership for an unknown sample
xu to class label y as an optimally weighted linear combination of the fuzzy
membership grades of k nearest samples:

μyu =
k∑

i=1

wi μyi (3)

where μyu and μyi have been previously defined, {wi, i = 1, . . . k} are the optimal
weights which indicate the relationship between xi and xu, and to be determined.
It is noted that the normalization is not needed in (3) because

∑k
i=1 wi = 1.

The set of optimal weights expressed in (3), which quantify the relationships
between the unknown and available samples can be equivalently derived from
the estimate of the value of the unknown sample xu, which results in the set of
optimal weights for the linear combination of the available samples:

x̂u =
k∑

i=1

wi xi (4)

where x̂u is the estimate of xu, and xi, . . . ,xk are available sample data.
There are different approaches for determining the weights to the available or

neighbor data with respect to the unknown value, and different approach leads
to different computational scheme. One particular approach for computing these
weights optimally is to minimize the average error of estimation. Let rj denote
the error between any particular estimated x̂j value and the true value xj :

rj = x̂j − xj (5)

then the average error, denoted as ra, of k estimates is

ra =
1
k

k∑
j=1

rj (6)

However, minimizing ra is unrealistic because the true values x1, . . . ,xk are
not known. One possible solution to this problem is the use of ordinary kriging
computational scheme that considers the unknown values as the outcome of a
random process and solves the problem by statistical procedures. In other words,
it is not possible to minimize the variance of the actual errors, but it is possible
to minimize the variance of the modeled error which is defined as the difference
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between the random variables modeling the estimate and the true value. As the
result of statistical and analytical analysis, kriging computes the set of optimal
weights by solving the following system of equations:

C w = D (7)

where

C =

⎡⎢⎢⎢⎢⎢⎢⎣
C11 · · · C1k 1
· · · · · ·
· · · · · ·
· · · · · ·

Ck1 · · · Ckk 1
1 · · · 1 0

⎤⎥⎥⎥⎥⎥⎥⎦

w =
[
w1 · · · wk β

]T
and

D =
[
C1u · · · Cku 1

]T
where Cij is the covariance of xi and xj , w1, . . . , wk are kriging (optimal) weights,
and β is a Lagrange multiplier.

The values of the kriging weights can be obtained by solving

w = C−1 D (8)

where C−1 is the inverse of the covariance matrix C.
It is known that the solution of a kriging system can result in negative weights

that should be avoided in order to ensure the robustness of the estimation. One
can adopt a simple and effective procedure for correcting negative weights which
was proposed by Journel and Rao [12]. This method determines the largest
negative weight and adds an equivalent positive constant to all weights which
are then normalized:

w∗
i =

wi + α∑k
i=1(wi + α)

, ∀i (9)

where w∗
i is the corrected weight of wi and

α = −min
i

wi (10)

The derivation of the kriging system expressed by (7) can be shown in that
the probabilistic model employed by kriging is a stationary random function
that consists of several random variables, one for each of the available values
and one for the unknown value. Let V (x1), . . . , V (xk) be the random variables
for k samples x1, . . . ,xk respectively; and V (xu) be the random variable for xu.
These random variables are assumed to have the same probability distribution,
and the expected value of the random variables at all locations is E{V }. Thus,
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the estimate of xu is also a random variable and expressed by a weighted linear
combination of the random variables at k locations:

V̂ (x0) =
k∑

i=1

wi V (xi) (11)

Thus, the error of estimation is

R(xu) =
k∑

i=1

wiV (xi) − V (x0) (12)

The expected value of the error of estimate is

E{R(xu)} =
k∑

i=1

wiE{V (xi)} − E{V (x0)} (13)

Based on the assumption that the random function is stationary, (13) be-
comes

E{R(xu)} =
k∑

i=1

wiE{V } − E{V } (14)

To satisfy the unbiased condition, E{R(xu)} must be set to zero:

E{R(xu)} = 0 =
k∑

i=1

wiE{V } − E{V } (15)

which leads to

E{V }
k∑

i=1

wi = E{V } (16)

Therefore
k∑

i=1

wi = 1 (17)

The variance of the random variable V (xu) is given by

V ar{
k∑

i=1

wiVi} =
k∑

i=1

k∑
j=1

wiwjCov{ViVj} (18)

Given that R(xu) = V̂ (xu) − V (xu) and using (18), the error variance is
defined as

V ar{R(xu)} = Cov{V̂ (xu)V̂ (xu) − 2Cov{V̂ (xu)V (xu)}
+ Cov{V (xu)V (xu)} (19)
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which can be written as

σ2
R = σ2 +

k∑
i=1

k∑
j=1

wiwjCij − 2
k∑

i=1

wiCi (20)

which defines the variance of error as a function of w1, . . . , wk.
An optimal choice for the kriging weights is to minimize σ2

R. This can be
done by the Lagrangean method:

σ2
R = σ2 +

k∑
i=1

k∑
j=1

wiwjCij − 2
k∑

i=1

wiCi + 2β(
k∑

i=1

wi − 1) (21)

where β is a Lagrange multiplier.
After differentiating (21) with respect to all wi and β and setting each one

to zero, we obtain

k∑
j=1

wjCij + β = Ciu, ∀i = 1, . . . , k (22)

Expressions (22) and (17) define the ordinary kriging system of equations
expressed in (7), which is represented in the form of matrix notation. If the data
are spatially related then the covariance can be calulated as [10]

C(h) =
1

N(h)

∑
(i,j)|hij=h

xixj − (
1
n

n∑
k=1

xk)2 (23)

in which the covariance is a function the lag distance h, N(h) is the number of
pairs that xi and xj are separated by h, and n is the total number of data.

Alternatively, the covariance function C(h) can be replaced by the variogram
function, denoted as γ(h), which is half the average squared difference between
the paired data values:

γ(h) =
1

2N(h)

∑
(i,j)|hij=h

(xi − xj)2 (24)

It can be noted that the computation of the kriging weights that are used
to make inference about the fuzzy membership grade of an unknown sample
with respect to a particular class is not restricted to the sense that the data are
spatially related. Both conventional and spatial covariance values can be used in
the computation of the kriging system to derive the set of optimal weights for
the proposed fuzzy k-NN algorithm.

3 Results

The proposed approach was used to study an important problem of gene ex-
pression microarrays. Microarray-based measure of gene expressions is one of
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the most recent breakthrough technologies in experimental molecular biology
[4]. The utilization of microarrays allows simulateneous study and monitoring
of tens of thousands of genes. One of the most useful quantitative analyses and
interpretations of microarray-based data is diseased-state classification [14,18].

The data used to test the proposed algorithm is the microarray-based heredi-
tary breast cancer data which were first studied by Hedenfalk et al. [9]. The data
consist of 22 cDNA microarrays with 3226 genes. The twenty-two breast tumor
samples were collected from the biopsy specimens of 7 patients with germ-line
mutations of BRCA1, 8 patients with germ-line mutations of BRCA2, and 7
patients with sporadic cases. The ratio data was truncated from below at 0.1
and above at 20. Log of the ratio data were used to classify BRCA1, BRCA2,
and sporadic. The microarray data can be represented in matrix notation as
X = [xij ], i = 1, . . . , N , j = 1, . . . , M , where N and M are the numbers of
tumor samples and genes respectively.

To determine the fuzzy membership grades for sample data, the fuzzy c-
means algorithm (FCM) [2] was applied to partition the data set into three fuzzy
prototypes according to the three classes. The FCM performs the partition based
on the following objective function

Jm =
N∑

i=1

c∑
y=1

(μyi)md2
yi (25)

where
d2

yi = ||xi − vy||2A = (xi − vy)T A(xi − vy) (26)

in which c is the number of clusters or fuzzy prototypes, m is the weighting
exponent, 1 ≤ m < ∞, v = (v1,v2, . . . ,vc), the vector of cluster centers, vy =
(vy1, . . . , vyM ), || ||A is the A-norm which is positive-definite (M × M) weight
matrix, and if A is the identity matrix then it becomes the Euclidean norm.

The FCM tries to minimize Jm by iteratively updating the partiton matrix
using the following equations:

vy =
∑N

i=1(μyi)mxi∑N
i=1(μyi)m

(27)

where 1 ≤ y ≤ c.

μyi =
1∑c

z=1(dyi/dzi)2/(m−1)
(28)

where 1 ≤ i ≤ N , and 1 ≤ y ≤ c.
Ten subsets of the cancer data set were randomly selected, each consists of

22 tumor samples and 100 genes, to test the proposed method and compare
its results with those obtained by the k-NN and fuzzy k-NN algorithms. The
leave-one-out method was used to evaluate the classification performances of the
k-NN (KNN), fuzzy k-KNN (FKNN), and the optimally weighted fuzzy k-NN
(OWFKNN) classifiers. The numbers of nearest neighbors for the classification
were: k= 5, 10, and 15. The weighting exponent m expressed in (25) was taken



246 T.D. Pham

Table 1. Average classification results (%) obtained by KNN, FKNN, and OWFKNN

k KNN FKNN OWFKNN
5 89.5 91.4 92.9
10 90.5 92.4 94.4
15 91.9 94.8 97.7

to be 2, and for the FKNN, the parameter p defined in (2) was also 2. The fuzzy
prototypes obtained from the FCM were used as the mean values for calculating
the covariances which were included in the computation of the kriging system.

For k= 5, the total average percentage of classification accuracy for the KNN,
FKNN, and OWFKNN are 89.5%, 91.4%, and 92.9% respectively. For k= 10,
the total average percentage of classification accuracy for the KNN, FKNN, and
OWFKNN are 90.5%, 92.4%, and 94.4% respectively. For k= 15, the total aver-
age percentage of classification accuracy for the KNN, FKNN, and OWFKNN
are 91.9%, 94.8%, and 97.7% respectively. It can be seen that the OWFKNN
outperformed the other two classifiers in all test cases. The results are shown
in Table 1 and can be seen that the classification results for all algorithms be-
come better when k is increased. The performance of OWFKNN was particularly
improved when more nearest neighbor samples were considered in the sense of
statistical correlation. On the computational aspect of each algorithm, the KNN
is the simplest and fastest method, whereas the OWFKNN requires the most
computational effort which is due to the computations of fuzzy prototypes, co-
variance matrix, and kriging system of equations.

4 Conclusions

We have presented an optimal fuzzy k-NN algorithm based on the concept of
kriging which tries to determine the weights of the labeled vectors in such a
way that the error variance is minimized and subjected to unbiasedness. In
addition to the optimal choice of the weighting parameters used to infer the
fuzzy class memberships of an unknown sample, this optimally weighted fuzzy
k-NN algorithm can particularly be useful for classifying data which are spatially
correlated; whereas conventional k-NN, fuzzy k-NN, and other extended versions
[3] of k-NN algorithms do not handle this type of problem. The proposed classifier
was tested with microarray breast cancer data and found to be superior to both
k-NN and conventional fuzzy k-NN algorithms.
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Abstract. In this article, the metaheuristic algorithm, tabu search, is proposed to 
deal with the clustering problem under the criterion of minimum sum of squares 
clustering. The presented method integrates four moving operations and muta-
tion operation into tabu search. Its superiority over local search clustering algo-
rithms and another tabu clustering approach is extensively demonstrated for ar-
tificial and real life data sets. 

1   Introduction 

The clustering problem is a fundamental problem that frequently arises in a great 
variety of fields such as pattern recognition, machine learning, data mining, and statis-
tics. In clustering analysis, objects to be studied are generally denoted by points in 
m -dimensional Euclidean space and the objective is to group these objects into dif-
ferent clusters such that a certain similarity measure is optimized. In this paper, we 
focus on the minimum sum of squares clustering problem stated as follows: Given N  

objects in mR , allocate each object to one of K  clusters such that the sum of 
squared Euclidean distances between each object and the center of its belonging clus-
ter for every such allocated object is minimized. This problem can be mathematically 
described as follows: 

= =

−=
N

i

K

j
jiij

CW
wCWJ

1 1

2

,
||||),(min cx  (1) 

where 
=

=
K

j
ijw

1

1, Ni ,,1= . If object ix  is allocated to cluster jC  whose clus-

ter center is jc , then ijw  is equal to 1; otherwise ijw  is equal to 0. In Equation 1, 

N  denotes the number of objects, K  denotes the number of clusters, 

},,{ 1 Nxx=Χ  denotes the set of N  objects of m  attributes, 
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},,{ 1 KCCC =  denotes the set of K  clusters, and ][ ijwW =  denotes the 

KN ×  10 −  matrix. Cluster center jc  is calculated as follows:  

∈

=
ji C

i
j

j n x

xc
1

 (2) 

where jn  denotes the number of objects belonging to cluster jC . It is known that 

the clustering problem is a nonconvex program which possesses many locally optimal 
values, resulting that its solution often falls into these traps. Many clustering ap-
proaches have been developed [1]. Among them, K-means algorithm is a very impor-
tant one as it is a typical iterative hill-climbing method. This method is proven to fail 
to converge to a local minimum under certain conditions [2]. In [3], another iterative 
method, a breadth-first search technique, for the clustering problem is reported. Ac-
cording to this algorithm, an alternative approach based on a depth-first search is 
proposed [4]. In [5], two algorithms based on hybrid alternating searching strategies 
are presented to overcome the drawbacks of either a breadth-first search or a depth-
first search in the clustering problem. It has been proved that these four algorithms 
called Moving 1, Moving 2, Moving 3, and Moving 4 in [6], respectively, own 
stronger convergence states than K-means algorithm. They have the same time com-
plexity as K-means algorithm [5]. Moreover, these moving methods can get much 
better clustering results sooner than K-means algorithm [5,6]. In [7], the genetic algo-
rithm is applied to deal with the clustering problem. But this algorithm needs up to 
10000 iterations to attain the correct result. Even so, it cannot reach the best results in 
many cases. It is seen that only adding the number of iterations is not a good way. 
Tabu search is a metaheuristic technique that guides the local heuristic search proce-
dures to explore the solution space beyond the local optimality [8], which has been 
successfully applied to image processing, pattern recognition, etc. In [9], tabu search 
is proposed to deal with the clustering problem, called TABU-Clustering in this pa-
per. It encodes the solution as a string. After the specified number of iterations, the 
best solution obtained is viewed as the clustering result. To efficiently use tabu search 
in various kinds of applications, researchers combine it with the local descent ap-
proach. In [10], Nelder–Mead simplex algorithm, a classical local descent algorithm, 
and tabu search are hybridized to solve the global optimization problem of mul-
timinima functions. Since moving methods with better performance than K-means 
algorithm are simple and computationally attractive, we propose to combine four 
moving methods with tabu search, called MT-Clustering including MT-Clustering 1, 
MT-Clustering 2, MT-Clustering 3, and MT-Clustering 4, to explore the proper clus-
tering result. Moreover, mutation operation, a genetic operator used in the genetic 
algorithm, is adopted to establish the neighborhood of tabu search in this paper.  

The remaining part of this paper is organized as follows: In Section 2, MT-
Clustering algorithm and its components are extensively described and analyzed. In 
Section 3, performance comparisons between our algorithm and others are conducted 
on different data sets. Finally, the conclusions are drawn in Section 4. 
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2   MT-Clustering Algorithm 

Tabu search is a metaheuristic method that guides the local heuristic search proce-
dures to explore the solution space beyond the local optimality. It is introduced by 
Fred Glover specifically for combinatorial problems. The basic elements of tabu 
search are described in the following [9]. The detail introduction to tabu search can be 
found in [8]. 

♦ Configuration denotes an assignment of values to variables. That is, it is a solu-
tion to the optimization problem to be solved. 

♦ Move denotes a specific procedure for getting a trial solution that is feasible to 
the optimization problem and related to the current configuration. That is, a new 
solution (a neighbor) can be generated by some perturbation on the current con-
figuration. 

♦ Neighborhood denotes the set of all neighbors, which are the “adjacent solu-
tions” that can be reached from the current configuration. It also includes 
neighbors that do not satisfy the feasible conditions defined. 

♦ Candidate subset denotes a subset of the neighborhood. It is to be examined 
instead of the whole neighborhood, especially for huge problems where the 
neighborhood include many elements. 

♦ Tabu restrictions are constraints that prevent the chosen moves to be reversed 
or repeated, which play a memory role for the search by making the forbidden 
moves as tabu. The tabu moves are stored in the tabu list. 

♦ Aspiration criteria denote rules that determine when the tabu restrictions can be 
overridden, thus removing a tabu classification otherwise applied to a move. If a 
certain move is forbidden by the tabu restrictions then the aspiration criteria, 
when satisfied, can make this move allowable.  

Fig. 1. General description of MT-Clustering algorithm 

Figure 1 gives the general description of MT-Clustering. It is seen that its most 
procedures observe the architecture of tabu search. Based on the structure of tabu 
search, MT-Clustering algorithm gathers the global optimization property of tabu 
search and the local search capability of four moving approaches together. Besides 
main procedures of tabu search, MT-Clustering algorithm integrates two operations: 
moving operation and mutation operation. Moving operation uses one of four moving 
methods to modulate the distribution of objects belonging to different clusters and to 

Begin 
set parameters and the current solution Xc at random 

while (not termination-condition) do 

perform moving operation 

use mutation operation to generate the neighborhood 

select the proper neighbor of Xc as the new current solution 
update the tabu list and the best solution Xb 

end 
output solution Xb 

end 
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improve the similarity between objects and their centroids. Meanwhile, mutation 
operation provides a good neighborhood for tabu search to avoid getting stuck in local 
optima and to find the proper result. In this article, we let the length of solutions equal 
to the size of objects the same as that in [9], which is suitable for computing the ob-
jective function value and comparing with the TABU-Clustering. That is, the value of 

the thi  element of the string denotes the cluster number assigned to the thi  element, 

where Ni ,,1= . For instance, a clustering partition, ),( 31 xx  ),,( 852 xxx  

),,( 764 xxx , can be represented by )23323121( . 

2.1   Moving Operation 

Corresponding to four moving methods, we get four different moving operations. 
Firstly, we describe the change in the sum of squared Euclidean distances and cluster 
centers after an object moves from its belonging cluster to another one. For cluster 

jC , its sum of squared Euclidean distances is given by: 

∈

−=
ji C

jijJ
x

cx 2||||  (3) 

If object ix  belonging to cluster jC  is reassigned to cluster kC , cluster centers 

are moved accordingly, jJ  will decrease by ijJΔ  

)1(|||| 2 −−=Δ jjijij nnJ cx  (4) 

and kJ will increase by ikJΔ  

)1(|||| 2 +−=Δ kkikik nnJ cx  (5) 

After such a move, the new total sum of squared Euclidean distances is updated by: 

ikij JJJJ Δ+Δ−='  (6) 

and new cluster centers of jC  and kC  will become: 

)1()(' −−= jijjj nn xcc  (7) 

)1()(' ++= kikkk nn xcc  (8) 

Based on above descriptions, four moving operations are described as follows: 

Given solution Nic xxx ,,,,1=X , Ni ,,1= , where N  is the number of 

objects. 
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Moving Operation 1:  

Object ix  belonging to cluster jC  is reassigned to cluster kC , Kk ,,1= , iff 

ijik JJ Δ<Δ )min( , Kj ,,1= , and kj ≠  (9) 

Then cluster centers jc  and kc  are updated based on Equations 7 and 8, respectively. 

Moving Operation 2: 

Object ix  belonging to cluster jC  is reassigned to cluster kC , Kk ,,1= , iff 

ijik JJ Δ<Δ , Kj ,,1= , and kj ≠  (10) 

Then cluster centers jc  and kc  are updated based on Equations 7 and 8, respectively. 

Moving Operation 3: 

Object ix  belonging to cluster jC  is reassigned to cluster kC , Kk ,,1= , if the 

number of iterations is odd then run moving operation 1, else run moving operation 2. 

Moving Operation 4: 

Object ix  belonging to cluster jC  is reassigned to cluster kC , Kk ,,1= , if the 

number of iterations is even then run moving operation 1, else run moving operation 
2. After moving operation, the modified solution is viewed as the current solution. 

2.2   Neighborhood Creation 

In this paper, mutation operation, a genetic operator in the genetic algorithm, is 
adopted to establish the neighborhood of tabu search. It is stated as follows: Given the 

current solution Nic xxx ,,,,1=X , jxi = , Kj ,,1= , the mutation prob-

ability mp , and the size of the neighborhood tN , for Ni ,,1= , draw a random 

number )1,0(~ upi . If mi pp < , then i
t
i xx = , tNt ,,1= ; otherwise 

kxt
i = , Kk ,,1= , jk ≠ . Here, the mutation probability is used to moderate the 

shake-up on the current solution and create a neighbor. The higher the value of this 
parameter, the less shake-up is allowed and, in consequence, the more similar the 
neighbor to the current solution, and vice versa. Determination of the mutation prob-
ability is the process of seeking the balance between exploration and exploitation. In 
this article, we use variable mutation operation in order to keep a good tradeoff be-
tween exploration and exploitation in the neighborhood. That is, the mutation prob-
ability reduces with the increase of the number of iterations. In [11], extensive re-
searches have been conducted and the best parameter settings for the genetic algo-
rithm are given. Among them, the mutation probability is recommended to be in the 
range [0.005, 0.01]. We choose the terminal probability to be 0.005. Then different 
original probabilities are compared as shown in Figure 2. 
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Fig. 2. Comparison of different original mutation probabilities 

It is found that, the mean value and the standard deviation of iterations where the 
clustering result is obtained vary with the original mutation probability. When this 
value is equal to 0.05, the best performance is achieved. So, we choose the original 
one to be 0.05. 

3   Experimental Evaluation 

Firstly, we analyze the time complexities of algorithms employed in this paper. K-
means algorithm and four moving methods have the same time complexity 

)(KmNO . The time complexity of TABU-Clustering is )( mNGNO t , where G  is 

the number of iterations. Four moving operations take the same time )(KmNO . 

Neighborhood creation takes )( mNNO t  time. Hence, the time complexity of MT-

Clustering algorithm is )( KGmNGmNNO t + . In most cases, K  is a small num-

ber, then the time complexity is )( mNGNO t , which is the same as that of TABU-

Clustering. 
Performance comparisons between MT-Clustering algorithm and other techniques 

are conducted in Matlab on an Intel Pentium  processor running at 800MHz with 
128MB real memory. Five data sets are considered for the purpose of conducting the 
experiments, two artificial data sets (Data_2_3, Data_2_5) and three real life data sets 
(Vowel, German Towns, and British Towns). Data_2_3 is a two dimensional data set 
having 200 nonoverlapping objects where the number of clusters is 3. Data_2_5 is a 
two dimensional data set having 250 overlapping objects where the number of clus-
ters is five. Vowel consists of 871 Indian Telugu vowel sounds having three features 
and six classes [12]. Other two classical data sets, German Towns [13] and British 
Towns [14], are considered for different number of clusters the same as those of [5]. 

In MT-Clustering algorithm, both the size of the neighborhood tN and the size of the 

tabu list T  are chosen to be 20, which are recommended in [9] by computer simula-
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tions. For all experiments in this paper, a maximum of 1000 iterations is fixed. Each 
experiment includes 20 independent trials. However, in all cases, K-means algorithm 
and four moving methods terminate much before 1000 iterations. 

The average and minimum values of the clustering results for different data sets 
obtained by ten methods are compared as shown in Tables 1, 2, and 3, respectively. In 
Table 1, for Data_2_3, both four MT-Clustering algorithms and four moving methods 
find the optimal result in each trial; K-means algorithm finds this value in only some 
cases. For Data_2_5 consisting of overlapping objects, the best value is found by four 
MT-Clustering methods in all trials; four moving methods can find the optimal value 
but K-means algorithm cannot. Noticeably, TABU-Clustering fails to attain the opti-
mal values for these two data sets even once within 1000 iterations and its best values 
obtained are far worse than the best ones. For more complicated Vowel, except MT-
Clustering 1, other MT-Clustering methods both find the best result, and these MT-
Clustering methods are far superior to other algorithms which cannot find the best 
value in all trials. Here, it is seen that moving operation 3 and moving operation 4 
with hybrid moving strategies help tabu search to obtain better results than moving 
operation 1 and moving operation 2 with single moving strategy. 

Table 1. Results of different clustering algorithms for Data_2_3, Data_2_5, and Vowel 

Algorithm 
Data_2_3 
Avg (min) 

Data_2_5 
Avg (min) 

Vowel 
Avg (min) 

K-means 2073.15(827.08) 488.71(488.06) 32606098.87(30706183.98) 

Moving 1 827.08(827.08) 488.56(488.02) 32121416.60(30742706.05) 

Moving 2 827.08(827.08) 488.43(488.02) 31322897.26(30690653.07) 

Moving 3 827.08(827.08) 488.49(488.02) 31716824.69(31370642.87) 

Moving 4 827.08(827.08) 488.36(488.02) 31843867.22(30742706.05) 

TABU-Clustering 9524.01(8410.43) 2582.60(2485.43) 247501537.17(243149977.91) 

MT-Clustering 1 827.08(827.08) 488.02(488.02) 30726507.58(30723649.03) 

MT-Clustering 2 827.08(827.08) 488.02(488.02) 30842773.00(30686238.38) 

MT-Clustering 3 827.08(827.08) 488.02(488.02) 30710294.63(30686238.38) 

MT-Clustering 4 827.08(827.08) 488.02(488.02) 30719492.19(30686238.38) 

 

Table 2 shows the results obtained by ten methods for German Towns of different 
number of clusters. All MT-Clustering methods can both find the optimal results. But 
for other approaches, with the increase of the number of clusters, their ability to attain 
the best value greatly degrades. When 8≥K , K-means algorithm and moving meth-
ods except Moving 4 cannot find the best values in each trial.  

In Table 3, it is seen that the proposed method is still superior to other algorithms. 
In all cases, four MT-Clustering methods can obtain better results than others. How-
ever, as other approaches, with the increase of the number of clusters, their ability to 
attain the best values also degrades. MT-Clustering 2 is the best one of all methods. 

For all data sets, the performance of the proposed algorithm is obviously superior 
to that of other approaches. It is surprising that the performance of TABU-Clustering 
with the same time complexity as MT-Clustering algorithm is found to be the poorest 
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in all cases. Meanwhile, we also find that it can still obtain improved results if more 
generations are executed. But, as aforementioned, we do not think that it is a good 
way to attain the best result by only adding the number of iterations. 

Table 2. Results of different clustering algorithms for German Towns 

Algorithm 
Four Clusters 

Avg (min) 
Six Clusters 
Avg (min) 

Eight Clusters 
Avg (min) 

Ten Clusters 
Avg (min) 

K-means 59333.36(49600.59) 34250.86(30535.39) 26503.21(21744.50) 20627.46(17160.61) 

Moving 1 50217.47(49600.59) 32330.11(30535.39) 23192.85(21507.15) 17878.08(17187.99) 

Moving 2 50557.34(49600.59) 32636.08(30535.39) 23512.16(21499.99) 17817.20(16711.94) 

Moving 3 49600.59(49600.59) 32274.68(30535.39) 23120.22(21776.33) 17926.72(17060.13) 

Moving 4 52121.22(49600.59) 32388.20(30535.39) 22922.68(21483.02) 17814.06(16505.67) 

TABU-Clustering 71837.59(64312.22) 55019.44(46476.18) 47343.00(44578.01) 40400.33(35086.87) 

MT-Clustering 1 49600.59(49600.59) 31433.64(30535.39) 21496.82(21483.02) 16426.59(16307.96) 

MT-Clustering 2 49600.59(49600.59) 31134.22(30535.39) 21498.02(21483.02) 16396.93(16307.96) 

MT-Clustering 3 49600.59(49600.59) 31502.50(30535.39) 21497.18(21483.02) 16387.59(16307.96) 

MT-Clustering 4 49600.59(49600.59) 31870.77(30535.39) 21496.69(21483.02) 16381.11(16307.96) 

 

Table 3. Results of different clustering algorithms for British Towns 

Algorithm 
Four Clusters 

Avg (min) 
Six Clusters 
Avg (min) 

Eight Clusters 
Avg (min) 

Ten Clusters 
Avg (min) 

K-means 193.41(180.91) 156.88(147.85) 128.18(117.67) 113.38(100.34) 

Moving 1 187.91(180.91) 148.84(144.61) 128.23(121.33) 115.06(105.35) 

Moving 2 182.59(180.91) 147.11(144.32) 123.23(115.04) 108.39(102.94) 

Moving 3 183.71(180.91) 147.68(144.32) 126.98(116.09) 110.09(102.94) 

Moving 4 182.31(180.91) 147.03(144.32) 125.89(117.22) 107.42(102.94) 

TABU-Clustering 205.23(193.58) 170.79(163.05) 150.49(144.48) 135.36(129.52) 

MT-Clustering 1 180.91(180.91) 144.32(144.32) 119.30(116.00) 107.42(102.94) 

MT-Clustering 2 180.91(180.91) 144.03(141.46) 116.42(113.50) 97.92(92.73) 

MT-Clustering 3 180.91(180.91) 144.32(144.32) 116.55(116.00) 100.64(93.06) 

MT-Clustering 4 180.91(180.91) 144.03(141.46) 118.29(116.00) 100.90(93.06) 

4   Conclusions 

In this paper, a tabu search based method for the minimum sum of squares clustering 
problem, called MT-Clustering, is proposed. Based on the structure of tabu search, 
MT-Clustering algorithm gathers the global optimization property of tabu search and 
the local search capability of four moving methods together. Moreover, we adopt 
variable mutation operation to establish the neighborhood and determine a proper 
initial mutation probability by computer simulations. Performance comparisons be-
tween MT-Clustering algorithm and other algorithms are conducted on artificial data 
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sets and real life data sets. As a result, our approach and TABU-Clustering own the 
same time complexity, but our approach obtains much better performance for experi-
mental data sets than TABU-Clustering and other local search clustering algorithms. 
Meanwhile, how to improve the stability of the proposed algorithm in complicate 
cases will be the subject of future publications. 
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Abstract. 1 In this paper, we show that an ideal regular (convex) poly-
gon corresponding to a digital circle is possible for some of the digital
circles, especially for the ones having smaller radii. For a circle whose
ideal regular polygon is not possible, an approximate polygon, tending
to the ideal one, is possible, in which the error of approximation can be
controlled by the number of vertices of the approximate polygon. These
(ideal or approximate) polygonal enclosures of digital circles have sev-
eral applications in approximate point set pattern matching. We have
reported the conditions under which an ideal regular polygon definitely
exists corresponding to a digital circle, and the conditions under which
the existence of an ideal regular polygon becomes uncertain. Experimen-
tal results have been given to exhibit the possibilities of approximation
and the tradeoff in terms of error versus approximation.

1 Introduction

Polygonal approximation is a common, useful, and efficient representation of
a digital curve in discrete domain [4,9,10,12,13,16,17,19]. The overall objective
is to approximate a given digital curve by a polygonal chain satisfying certain
optimality criterion (e.g., global approximation error is minimized, or local error
is within some predefined threshold). Such approximations reduce significantly
the storage requirements and facilitate the extraction and processing of desired
features from a given set of digital curves.

A large number of methods have been proposed for approximating a digitized
curve into a list of line segments. To cite a few, there is an algorithm by Pikaz
and Dinstein [8], meant for optimal polygonal approximation of digital curves,
where, given a value for the maximal allowed distance between the approxima-
tion and the curve, the algorithm finds an approximation with minimal number
of vertices. Perez and Vidal [7] proposed another algorithm in which the number

1 This work is funded in part by the CBIR Project, Computer Science and Technology
Department, Bengal Engg. & Sc. University.
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c© Springer-Verlag Berlin Heidelberg 2005



258 P. Bhowmick and B.B. Bhattacharya

Octant 8

O
ct

an
t 7

O
ctant 6

Octant 1

Octant 4

O
ct

an
t 3

O
ctant 2

Octant 5

x

y

O

Fig. 1. A real circle, CR(O, 6), and the corresponding digital circle, CZ(O, 6)

of segments is fixed a priori, and the error criterion is the sum of the square of
Euclidean distance from each point of the contour to its orthogonal projection
onto the corresponding line segment. Salotti [11] has proposed some improve-
ments to make the algorithm more efficient, in particular for a large number of
segments. Nevertheless, the engrossing problem of polygonal approximation of
digital curves has been tackled by many other different classes of methodologies,
such as Hough Transform [5], Hopfield Neural Networks [3], Genetic Algorithms
[15], Particle Swarm Optimization [18], etc. Reviews on different polygonal ap-
proximation methods are available in several literatures [10].

Apart from irregularly shaped curves, the common geometric primitives, e.g.
lines, polygons, circles, etc., have found wide applications in various fields, and
their weird and challenging nature in the discrete domain have drawn immense
research interest in recent years. The construction, properties, and characteri-
zation of digital circles make a very interesting area of research, and there exist
several works on digital circles and related problems [6,14]. Described in this
paper is a novel work that explores and exhibits the subtleties and various pos-
sibilities on approximation of a digital circle by a regular (convex) polygon.

It may be mentioned here that approximation of a given digital circle by a
suitable regular polygon has significant applications for approximate matching
of point sets (e.g. fingerprint matching) on two-dimensional plane, using circular
range query [1]. The process becomes faster and efficient if we can find a suitable
regular polygon in R2 (meant for polygonal range query) corresponding to the
given digital circle, such that all the grid points lying on and inside the digital
circle should lie on and inside the polygon, and vice versa.

2 Approximation of a Digital Circle by a Real Polygon

A circle CR(q, r) lying in the real plane R2, q ∈ R2 and r ∈ R+ being its center and
radius respectively, can be realized in the discrete domain Z2 by a digital circle
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Fig. 2. x-distance and y-distance of a grid point (i, j) from CR(O, ρ)

CZ(α, ρ) having center α and radius ρ, where, α is the nearest grid point in Z2

corresponding to q in R2, and ρ is the nearest integer corresponding to r. 2 Now,
for the digital circle CZ(α, ρ), if we consider the center α as the origin (point of
reference) of the local coordinate system in Z2, then it may be observed that
the set of grid points, enumerated w.r.t. α, representing the circle CZ(α, ρ), will
be always independent of α and will be depending only on its radius ρ. Hence,
we can draw the digital circle CZ(α, ρ) centered at any point α ∈ Z2, provided
CZ(O, ρ) is known, where, O = (0,0).

2.1 Generation of a Digital Circle

The conversion of a digital circle CZ(O, ρ) from the corresponding real circle
CR(O, ρ) is done using the property of 8-axes symmetry (Fig. 1) of digital circles
[2]. In order to obtain the complete circle CZ(O, ρ), therefore, generation of the
first octant, CZ,I(O, ρ), suffices.

While generating CZ,I(O, ρ), decision is taken to select between east pixel (E:
(i+1, j)) or south-east pixel (SE: (i+1, j−1)), standing at the current pixel (i, j),
depending on which one between E and SE is nearer to the point of intersection
of the next ordinate line (i.e., x = i + 1) with the real circle CR(O, ρ). In the
case of ties, since any one between E and SE may be selected, we select SE. It
is interesting to note that such a tie is possible only if there is any computation
error, the reason being as follows.

Let a tie occurs when the real circle CR(O, ρ) has (i, j+ 1
2 ) as the corresponding

point of intersection in the first octant with the vertical grid line x = i. That is,
(i, j) ∈ Z2 lies on CZ,I(O, ρ) according to the tie-resolution policy. Since the point
(i, j + 1

2 ) lies on CR(O, ρ), we have i2 + (j + 1
2 )2 = ρ2, or, ρ2 − (i2 + j2 + j) = 1

4 ,
which is impossible, since ρ2 ∈ Z, and (i2 + j2 + j) ∈ Z. Hence we observe the
following fact on tie:
Fact 1. A tie occurs only if there is a computation error.

Now, in relevance with the regular polygonal enclosure of CZ(O, ρ), we make
the following definitions, whose underlying significances are apparent in Fig. 2.
2 For simplicity of notations, CZ(α, ρ) is also used in this paper to denote the set of

grid points (pixels) constituting the digital circle with center at α and radius ρ in
an appropriate context.
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Definition 1. A point (x, y) (in Z2 or in R2, as the case may be) is said to be
lying in the first octant (with respect to O, unless stated otherwise) if and only
if 0 ≤ x ≤ y.

Definition 2. If a grid point (i, j) lies in the first octant and outside CR(O, ρ),
then its x-distance (dx), y-distance (dy), xy-distance (isothetic distance, d⊥), and
radial distance (dr) from CR(O, ρ) are given by:

dx =

⎧⎨⎩
i − xj , if j ≤ ρ, where, the horizontal grid line through (i, j)

intersects CR(O, ρ) in the first quadrant at (xj , j);
∞, otherwise.

dy =

⎧⎨⎩
j − yi, if i ≤ ρ, where, the vertical grid line through (i, j)

intersects CR(O, ρ) in the first quadrant at (i, yi);
∞, otherwise.

d⊥ = min (dx, dy).
dr =

√
i2 + j2 − ρ.

It may be noted that Defs. 1 and 2 can be easily extended for a point lying
in one of the remaining seven octants. It may be also noted that, if a grid point
(i, j) lies in any one of octants 1, 8, 4, and 5, then d⊥ = dy, and if it lies any
one of the other four octants, namely octants 2, 7, 3, and 6, then d⊥ = dx.

Hence, from the principle of construction of CZ(O, ρ), if any grid point (i, j)
lies on CZ(O, ρ) but outside CR(O, ρ), then it must have isothetic distance strictly
less than 1

2 grid unit from CR(O, ρ). This, in turn, ensures that any grid point,
lying outside CR(O, ρ) in any octant with isothetic distance not less than 1

2 grid
unit from CR(O, ρ), does not lie on CZ(O, ρ). And this is true as well if the center
of the circle is at any grid point α instead of O. This analysis is captured in the
following fact:
Fact 2. Any grid point, not lying on CZ(α, ρ) and lying outside CR(α, ρ), must
have xy-distance at least 1

2 grid unit from CR(α, ρ).

2.2 Enclosing Circle

Let μ(iμ, jμ) be a grid point, lying on CZ,I(O, ρ), such that μ has maximum y-
distance from CR(O, ρ), the corresponding y-distance being δμ, where, 0 < δμ < 1

2
for ρ ≥ 2 (for ρ = 1, δμ = 0). If (ρμ, θμ) ∈ R2 be the corresponding polar

coordinates of μ, then ρμ =
√

i2μ + j2
μ = ρ + εμ, and θμ = tan−1 (jμ/iμ), where,

εμ(< δμ sin θμ) is the radial distance of μ from CR(O, ρ), as shown in Fig. 3.
The next point of curiosity about a digital circle is that, whether μ (the grid

point, lying on CZ,I(O, ρ), having maximum y-distance from CR(O, ρ)) is unique
or not. To uncover the fact about the uniqueness of μ, let us consider two distinct
grid points, μ1 and μ2, lying on CZ,I(O, ρ), such that each of them has maximum
y-distance, δμ, from CR(O, ρ). Let μ1 = (i1, j1) and μ2 = (i2, j2). Since in the first
octant, no two grid points lying on CZ,I(O, ρ) can have same abscissa, i1 �= i2.
Therefore, w.l.g., let i1 > i2, which implies j2 > j1, since both μ1 and μ2 lie on
CZ,I(O, ρ). It may be observed that, since μ1 = (i1, j1) and μ2 = (i2, j2) have
same y-distance from CR(O, ρ), j1 = j2 is not possible. Let the corresponding
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points of intersection of CR(O, ρ) with the vertical grid lines x = i1 and x = i2
in the first octant be (i1, y1) and (i2, y2) respectively, where, y1, y2 ∈ R+ \ Z+.
Since (i1, y1) and (i2, y2) lie on CR(O, ρ), we have:

i21 + y2
1 = i22 + y2

2 = ρ2, and j1 − y1 = j2 − y2 = δμ.
So, y2

2 − y2
1 = i21 − i22, or, y2

2 − y2
1 ∈ Z+ [since i21 − i22 ∈ Z+],

or, (y1 + y2)(y2 − y1) ∈ Z+, or, (y1 + y2)((j2 − δμ) − (j1 − δμ)) ∈ Z+,
or, (y1 + y2) is rational [since (j2 − j1) ∈ Z+].

Now y2
1 = ρ2 − i21 = a (say) is an integer but not a perfect square, since

y1 �∈ Z. Similarly, y2
2 = ρ2 − i22 = b (say) is also a non-square integer. Therefore,

y1 + y2 =
√

a+
√

b would be irrational. The reason is as follows. Let
√

a+
√

b be
a rational number c, if possible. Then, a = (c−√

b)2 = c2 + b − 2c
√

b. Since the
product of any rational number and any irrational number is always irrational,
2c

√
b is irrational. Hence a becomes irrational, which is a contradiction.
Therefore, y1+y2 can never be rational, thereby contradicting our assumption

that μ is not unique. Hence μ is a unique grid point in the first octant that lies
on CZ,I(O, ρ), and has maximum y-distance from CR(O, ρ). The result obtained,
along with its proof (with minor modifications), can be applied equally well for
any arbitrary center α ∈ Z2. Thus we establish the following fact:

Fact 3. In the set of grid points lying on CZ,I(α, ρ), there is a unique grid point
that has maximum y-distance from CR(α, ρ).

Now consider the circle CR(O, ρμ) passing through μ (Fig. 3). Since μ lies in
the first octant, we have 0 < iμ ≤ jμ (for ρ ≥ 2, iμ �= 0), whence 450 < θμ < 90o,
which implies 1√

2
δμ < εμ < δμ. Let ν(iν , jν), ν �= μ, be any grid point that

lies on CZ,I(O, ρ). Let δν be the y-distance of ν from CR(O, ρ), and (ρν , θν) be
the corresponding polar coordinates of ν, such that, ρν =

√
i2ν + j2

ν = ρ + εν ,
and θν = tan−1 (jν/iν), where, εν = δν sin θν . Therefore, ν would lie on or
inside CR(O, ρμ) if and only if εν ≤ εμ. Further, since μ is the grid point having
maximum y-distance from CR(O, ρ), we have δν < δμ (δν �= δμ, since from Fact
3, the grid point in the first octant with maximum y-distance is unique). Hence,
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if ν be such that in spite of δν being less that δμ, θν is so high compared to θμ

that εν is higher than εμ, then ν will not lie on or inside CR(O, ρμ).
On the contrary, if we call the point μ̌ as the grid point lying on CZ,I(O, ρ),

for which εμ̌ is maximum in
{
εν | ν lies on CZ,I(O, ρ)

}
, then it may happen that

there exists some grid point ν′ = (i′, j′) lying in the first octant and outside
CZ,I(O, ρ) for which εν′ will not exceed εμ̌ (although δν′ is not less than 1

2 , as
stated in Fact 2), and therefore, ν′ will be lying on or inside CR(O, ρμ̌).

Considering the above artefacts, it can be inferred that, for the set of all
digital circles, we can not find the canonical solution for the set of enclosing
circles, for all possible values of ρ, so that for each CZ(O, ρ), no grid points but
those lying on or inside CZ(O, ρ) would lie on or inside CR(O, ρ′). And no less
importantly, we can, for sure, construct the circle CR(O, ρμ), passing through μ,
where, μ has maximum y-distance from CR(O, ρ), so that all grid points, lying on
or inside CZ(O, ρ), would lie on or inside CR(O, ρμ), if and only if μ has maximum
radial distance (εμ) from CR(O, ρ) among all grid points lying on CZ,I(O, ρ). This
is stated in Fact 4, where the center of the digital circle, in general, is considered
at α ∈ Z2, with obvious justification.
Fact 4. If there exists a grid point μ lying on CZ,I(α, ρ), such that δμ = max{
δν | ν lies on CZ,I(α, ρ)

}
and εμ = max

{
εν | ν lies on CZ,I(α, ρ)

}
, then CR(α, ρμ)

is the smallest enclosing circle for CZ(α, ρ). If no such grid point μ exists, then
the existence of an enclosing circle for CZ(α, ρ) becomes uncertain.

2.3 Enclosing Polygon

Definition 3. A regular polygon in R2 that encloses the digital circle CZ(α, ρ),
such that each point in Z2 lying on or inside the digital circle CZ(α, ρ) lies on or
inside the polygon, and no point in Z2 lying outside the digital circle CZ(α, ρ) lies
on or inside the polygon, is defined as a regular polygonal enclosure, ER(CZ(α, ρ)),
for the digital circle CZ(α, ρ).

Let there exists a grid point μ lying on CZ,I(O, ρ), such that δμ = max {δν | ν
lies on CZ,I(O, ρ)

}
and εμ = max

{
εν | ν lies on CZ,I(O, ρ)

}
. Then, from Fact 4,

CR(O, ρμ) is the smallest enclosing circle for CZ(O, ρ). Hence, any grid point ν′,
lying in the first octant and outside CZ(O, ρ), will lie outside CR(O, ρμ).

α
R

R

C

N
Enclosing Polygon

λ

C ρ

ρ

ρ

ρμ

μC

(α,   )

(α,   )

(α,     )

~φ R

M

Fig. 4. Generation of the enclosing polygon of CZ(α, ρ)
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Let μ′ be a grid point, lying in the first octant and outside CR(O, ρμ), such
that εμ′ = min

{
εν′ = ρν′ − ρ | ν′ ∈ Z+2 lies in the first octant and outside

CR(O, ρμ)}, where, (ρν′ , θν′) and (ρμ′ , θμ′) are the polar coordinates of ν′ and
μ′ respectively. Let ρ̃ = max {ρ′ | ρμ < ρ′ < ρμ′}, i.e., ρ̃ = limith→0+ (ρμ′ − h).
Therefore, any grid point in the first octant that lies outside CR(O, ρμ) will also
lie outside CR(O, ρ̃). Furthermore, CR(O, ρ̃) will be the largest enclosing circle of
CZ(O, ρ) in accordance with our consideration of ρ̃. And this argument holds true
as well if we shift the center of the digital circle from O to α.

Thus, all grid points, lying on and inside CR(α, ρμ), will be lying strictly inside
CR(α, ρ̃); and all grid points, lying strictly outside CZ(α, ρμ), will be lying strictly
outside CR(α, ρ̃). As a result, there will be no grid point that would lie on or
inside CR(α, ρ̃) and outside CR(α, ρμ). Hence, we can construct a regular polygon
in R2, centered at α and having n vertices, such that the following conditions are
simultaneously satisfied:

(c1) each vertex lies on or inside CR(α, ρ̃);
(c2) each edge touches CR(α, ρμ);
(c3) each edge subtends same angle 2φ (= 2π

n rads.) at α.

Let N be the point of contact of one edge of the enclosing polygon with CR(α, ρμ)
(Fig. 4). Let M be one of the two vertices adjacent to N, and λ is the distance of M
from α. So, the angle subtended at α by the line segment MN is φ, which implies
cosφ = ρμ/λ. Since M should lie inside the annular region between CR(α, ρμ)
and CR(α, ρ̃), including the circumference of CR(α, ρ̃), λ should not exceed ρ̃.
Hence, cosφ should be at least ρμ/ρ̃, which implies φ should be strictly less than
cos−1(ρμ/ρμ′), since ρ̃ < ρμ′ . Since there will be no grid point that will lie in
the annular space between CR(α, ρμ) and CR(α, ρ̃) (including the circumference
of CR(α, ρ̃)), this polygon, therefore, would be a regular polygonal enclosure for
the digital circle CZ(α, ρ). The following fact is enumerated to conclude these
findings.
Fact 5. If there exists a grid point μ lying on CZ,I(α, ρ), such that δμ = max{
δν | ν lies on CZ,I(α, ρ)

}
and εμ = max

{
εν | ν lies on CZ,I(α, ρ)

}
, then there

always exists some ER(CZ(α, ρ)) corresponding to CZ(α, ρ).
Now, subject to the conditions c1, c2, and c3, if 2φ be the angle subtended at

α by each edge of the regular polygonal enclosure for the digital circle CZ(α, ρ),
where, φ < cos−1(ρμ/ρμ′), then the minimum number of edges nmin of the
corresponding polygon can be obtained using Fact 6.
Fact 6. Minimum number of edges nmin of ER(CZ(α, ρ)) is given by nmin =

π/φ0� + 1, where, φ0 = cos−1(ρμ/ρμ′), μ′ being the grid point with properties
discussed above.

3 Experiments and Results
Exhaustive procedural checking has revealed that each of the digital circles with
radii from 1 to 10 has a grid point μ that has simultaneously maximum isothetic
distance and maximum radial distance, which implies that each of the digital
circles with radii from 1 to 10 has regular polygonal enclosure. To cite a few



264 P. Bhowmick and B.B. Bhattacharya

Fig. 5. εμ (thick-lined silhouette) and εμ′ (thin-lined bars) plotted against ρ. εμ′ has
been shown only when it exceeds εμ. A regular polygonal enclosure exists for a digital
circle with radius ρ if εμ′ > εμ.

ρ

Fig. 6. 2kmin (thick line) and nmin (thin bars) plotted against the radii (ρ) of the
digital circles having regular polygonal enclosures

more, for ρ = 12−16, 20−25, 32, 33, 40, the corresponding digital circles possess
regular polygonal enclosures. The chance of existence of such a grid point μ,
therefore, goes on decreasing as the radius of the circle gets increasing.

The thin-lined vertical bars, shown in Fig. 5, indicate the circles for which
regular polygonal enclosures exist. But it should be noticed that for each of
these circles having regular polygonal enclosures, it is not always true that
∃ μ ∈ CZ,I(α, ρ), s.t. δμ = max

{
δν | ν lies on CZ,I(α, ρ)

}
and εμ = max {εν | ν

lies on CZ,I(α, ρ)
}

are valid simultaneously (vide Sec. 2.2 and Fact 5). The fil-
lets on the axis of ρ within the thin-lined bars, shown in Fig. 5, indicate the
circles for which ∃ μ ∈ CZ,I(α, ρ), s.t. δμ < max

{
δν | ν lies on CZ,I(α, ρ)

}
and

εμ = max
{
εν | ν lies on CZ,I(α, ρ)

}
. And those without fillets indicate the cir-

cles for which ∃ μ ∈ CZ,I(α, ρ), s.t. δμ = max
{
δν | ν lies on CZ,I(α, ρ)

}
and

εμ = max {εν | ν lies on CZ,I(α, ρ)
}
.

Theoretically, if there exists a regular polygonal enclosure for a digital circle
CZ(α, ρ), then minimum number of edges nmin for the polygon is given by nmin =
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Fig. 7. Error (%) plotted against ρ and k shows that higher values of k = n/2 drasti-
cally reduce the error

k = 2: η = 68.

η = 18.k = 3: η = 0.k = 7:

Fig. 8. Approximate regular polygons for a digital circle with radius ρ = 8. For other
values of k, the corresponding errors are: η(k = 4, 5) = 8, η(k = 6) = 4, η(k ≥ 7) = 0.


π/φ0� + 1. While testing with different digital circles, however, it is found that
if a digital circle CZ(α, ρ) possesses a regular polygonal enclosure with minimum
number of vertices nmin, then in practice, it can be often enclosed by a regular
polygonal enclosure with lesser number of vertices. This is illustrated in Fig. 6,
where the thin-lined vertical bars denote the values of nmin, and the thick vertical
lines represent the corresponding minimum even number of vertices, 2kmin, found
experimentally, that the regular polygonal enclosures should possess, satisfying
Def. 3.
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It should be noted that, for those circles with εμ′ �> εμ, regular polygonal
enclosures, as defined in Def. 3, are certainly not possible. For such digital circles,
approximate polygonal enclosures with low errors are possible, which is evident
from Fig. 7. In Fig. 8, a few approximate polygons have been shown for a sample
digital circle with radius ρ = 8 to demonstrate the rapid convergence of the
polygon towards ideal situation with increase in its number of vertices.

4 Conclusion and Future Works

This work is an attempt for manifestation of some interesting and useful proper-
ties of digital circles, based on which an approximate (if not ideal) regular poly-
gon of a digital circle can be obtained. As discussed in Sec. 1, the approximate
regular polygon will have several applications in Approximate Point Set Pattern
Matching (APSPM). It is encouraging to note that, in fingerprint matching us-
ing the algorithms of APSPM, the circular range query is evoked for a circular
range with radius not exceeding 10 pixels, which can be “ideally” replaced by a
regular polygon. This will enable faster and better matching results, using higher
dimensional kd-tree for query processing [1].
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13. K. Schröder and P. Laurent, Efficient Polygon Approximations for Shape Signa-
tures, Proc. ICIP, 1999, pp. 811–814.



Approximation of Digital Circles by Regular Polygons 267

14. M. Worring and A. W. M. Smeulders, Digitized Circular Arcs: Characterization
and Parameter Estimation, IEEE Trans. PAMI, 17(6), 1995, pp. 587–598.

15. P. Y. Yin, Genetic Algorithms for Polygonal Approximation of Digital Curves,
IJPRAI, 13, 1999, pp. 1061–1082.

16. P. Y. Yin, A Tabu Search Approach to Polygonal Approximation of Digital Curves,
IJPRAI, 14(2), 2000, pp. 243–255.

17. P. Y. Yin, Ant Colony Search Algorithms for Optimal Polygonal Approximation of
Plane Curves, PR, 36, 2003, pp. 1783–1797.

18. P. Y. Yin, A discrete particle swarm algorithm for optimal polygonal approximation
of digital curves, J. Visual Comm. Image Reprsn., 15(2), 2004, pp. 241–260.

19. Y. Zhu and L. D. Seneviratne, Optimal Polygonal Approximation of Digitised
Curves, IEE Proc. Vis. Image Signal Process., 144(1), 1997, pp. 8–14.



S. Singh et al. (Eds.): ICAPR 2005, LNCS 3686, pp. 268 – 277, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

A Novel Feature Fusion Method Based on Partial Least 
Squares Regression 

Quan-Sen Sun 1,2, Zhong Jin 3,2, Pheng-Ann Heng 4, and De-Shen Xia 2

1 School of Science, Jinan University, Jinan 250022, China 
qssun@126.com

2 Department of Computer Science,  
Nanjing University of Science &Technology, Nanjing 210094, China 

deshen_x@263.net
3 Centre de Visió per Computador, Universitat Autònoma de Barcelona, Spain 

zhong.jin@cvc.uab.es
4 Department of Computer Science and Engineering,  

The Chinese University of Hong Kong, Hong Kong 
pheng@cse.cuhk.edu.hk

Abstract. The partial least squares (PLS) regression is a new multivariate data 
analysis method. In this paper, based on the ideas of PLS model and feature fu-
sion, a new non-iterative PLS algorithm and a novel method of feature fusion 
are proposed. The proposed method comprises three steps: firstly, extracting 
two sets of feature vectors with the same pattern and establishing PLS criterion 
function between the two sets of feature vectors; then, extracting two sets of 
PLS components by the PLS algorithm in this paper; and finally, doing feature 
fusion for classification by using two strategies. Experiment results on the ORL 
face image database and the Concordia University CENPARMI database of 
handwritten Arabic numerals show that the proposed method is efficient. More-
over, the proposed non-iterative PLS algorithm is superior to the existing itera-
tive PLS algorithms on the computational cost and speed of feature extraction.  

1   Introduction 

The Partial least squares (PLS) regression is a novel multivariate data analysis method 
developed from practical application in real word. PLS regression originally devel-
oped by Wold has a tremendous success in chemometrics and chemical industries for 
static data analysis[1-4]. The robustness of the generated model also makes the partial 
least squares approach a powerful tool for regression analysis, dimension reduction 
and classification technique, being applied to many other areas such as process moni-
toring, marketing analysis and image processing and so on[5-7]. PLS regression pro-
vides a modeling method between two sets of data (PLS of single dependent variable 
is referred as PLS1, PLS of Multi-dependent variable is referred as PLS2), during the 
regression modeling, both the reduction of primitive data and the elimination of re-
dundant information (i.e. noise) could be achieved. PLS model is effective because it 
integrates the multivariate linear regression (MLR)[8], principal component analysis 
(PCA)[9] and canonical correlation analysis (CCA)[10] together naturally while it is 
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convenient for the analysis of the multi-dimensional complexity system. PLS method 
has received a lot of attention and interest in recent years. 

In PLS modeling methods, a classical algorithm that the nonlinear iterative partial 
least squares( NIPALS) was given by Wold[11]. Based on this, several different 
modification versions of the iterative PLS methods have been given[12]. However, in 
practical applications the iterative PLS modeling may suffer from overfitting or local 
minima. In this paper based on the idea of PLS model, we present a new PLS model-
ing method under the orthogonal constraint. It is a non-iterative PLS algorithm. Fur-
thermore, a novel method of feature fusion is proposed and it has been used in the 
application of pattern classification.  

The rest of this paper is organized as follows. In Section 2, the “classical” PLS al-
gorithm is described and a new PLS modeling method is presented. Then both of their 
performances have been analyzed. In Section 3, based on PLS model a new method of 
feature fusion for pattern classification is proposed. In Section 4, we show our ex-
periment results using the ORL face image database and the Concordia University 
CENPARMI database of handwritten Arabic numerals. Finally, conclusions are 
drawn in Section 5. 

2   PLS Modeling Method 

Let A and B be two groups of feature sets on pattern sample space Ω , any pattern 

sample NR⊂Ω∈ξ , whose two corresponding feature vectors are pAx R⊂∈  and 
qBy R⊂∈ , respectively. Given two data matrices npX ×∈ R on sample space A and 

nqY ×∈ R on sample space B, where n is total number of samples. Further we assume 

centered variables; i.e. the columns of ΤX and ΤY are zero-mean. Let Τ= XYSxy and 

Τ= xyyx SS  ( xySn )1/1( − denotes between-set covariance matrix of X and Y). Note the 

zero mean does not impose any limitations on the methods discussed since the mean 
values can easily be estimated. 

2.1   The Classical PLS Algorithm C-PLS

Basically, the PLS method is a multivariable linear regression algorithm that can 
handle correlated inputs and limited data. The algorithm reduces the dimension of the 
predictor variables (input matrix, X) and response variables (output matrix, Y) by 
projecting them to the directions (input weight α  and output weight β ) that maxi-

mize the covariance between input and output variables. This projection method de-
composes variables of high collinearity into one-dimensional variables (input score 
vector t and output score vector u). The decomposition of X and Y by score vectors is 
formulated as follows:  

ETPEptX d
i ii +=+= Τ
=

Τ
1 ; FUQFquY d

i ii +=+= Τ
=

Τ
1 .

Where ip and iq  are loading vectors, and E and F are residuals. 
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More precisely, PLS method is to find a pair of directions (weight vectors) 

kα and kβ  such that 

{ } βαβαβα
ββααββαα

xykk SYX Τ

==

ΤΤ

== ΤΤΤΤ
==

11

maxarg),Cov(maxarg;
(1)

for dk ,,2,1= .

The nonlinear iterative partial least squares (NIPALS) algorithm[11] is an iterative 
process, which can be formulated as follows. 

Let ΤΤ == YFXE 00 ,  and 1=h of initialization, and randomly initialize 1u of the 

Y-score vector. Iterate the following steps until convergence: 

1. )/(1 hhhhh uuEu Τ
−

ΤΤ =α          4. )/(1 hhhhh ttFt Τ
−

ΤΤ =β

                        2. ||||/ hhh ααα =                  5. ||||/ βββ hh =

3. hhh Et α1−=                         6. hhh Fu β1−=

After the convergence, by regressing 1−hE  on ht  and 1−hF on hu , the loading vec-

tors hhhhh tttEp ΤΤ
−= /1  and hhhhh uuuFq ΤΤ

−= /1  can be computed.  

Although NIPALS algorithm is efficient and robust and it can be extended to some 
nonlinear PLS models[13]. It may lead the uncertain results that the score vector 1u  of 

initialization is random. A faster and more stable iterative algorithm has proposed by 
HÖskuldsson[2] and Helland[14]. As mentioned above, it can be shown that the weight 
vector hα  also corresponds to the first eigenvector of the following eigenvalue problem 

hhhhhhh EFFE αλα 2
1111 =−

Τ
−−

Τ
− (2)

The X-scores t are then given as  

hhh Et α1−= (3)

Similarly, eigenvalue problems for the extraction of hu and hβ estimates can be de-

rived. 
The above iterative algorithm gives out a linear PLS modeling method. It is called 

the classical PLS algorithm(C-PLS) in this paper. C-PLS exist the facts that 

0=Τ
ji tt for ji ≠ , 0=Τ

ji ut  for ij >  and 0== ΤΤ
jiji ββαα  for ji ≠ .

2.2   A New Non-iterative PLS Modeling Method(NI-PLS) 

In this section, we present a new PLS modeling method based on idea of PLS model. 
Under the object criterion function (1), we give out a theorem based on the following 
the orthogonal constraint 

0== ΤΤ
ikik ββαα (4)

for all ki ≤≤1 , where dk ,,2,1= .
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Theorem. Under the criterion (1), the number of effective weight vectors, which 
satisfy constraint (4), is r (r is the number of non-zero eigenvalues of matrix yxxy SS )

pairs at most. )( rd ≤  pairs of weight vectors are composed of vectors which are 

selected from the eigenvectors corresponding to the first d maximum eigenvalues of 
eigenequations (5) and (6) 

αλα 2=yxxy SS (5)

βλβ 2=xyyxSS (6)

and satisfying 

),,2,1,( dji
S ijijxyi

ijjiji =
=

==
Τ

ΤΤ

δλβα

δββαα
(7)

Where 2
iλ  is the non-zero eigenvalue corresponding to eigenvectors iα  and iβ , and  

≠
=

=
ji

ji
ij 0

1
δ

Proof.  Using Lagrange Multiplier Method to Transform Eq.(1):  

)1(
2

)1(
2

),( 21 −−−−= ΤΤΤ ββλααλβαβα xySL (8)

where 1λ  and 2λ  are Lagrange multipliers. Let  

0/),( 1 =−=∂∂ αλβαβα xySL (9)

0/),( 2 =−=∂∂ βλααβα yxSL (10)

Multiplying both side of Eq.(9) and (10) by α Τ and β Τ respectively, considering the 

constraint in Eq.(1), we obtain 11 λααλβα == ΤΤ
xyS and 22 λββλαβ == ΤΤ

yxS .

Since xyyx SS =Τ , so 211 )( λαββαλλ ==== ΤΤΤΤ
yxxy SS . We can infer that to obtain 

the maximum value of λ  is the same as to maximize the criterion function (1) under 
constraint (4). Let λλλ == 21 , then eigenequations (5) and (6) can inferred via 

Eq.(9) and Eq.(10). Since both yxxySS and xyyxSS are symmetric matrices, 

and =)( yxxySSrank  )( xyyxSSrank  )( xySrank≤ , so that the two eigenequations (5) and 

(6) have the same non-zero eigenvalues. Let 022
2

2
1 >≥≥≥ rλλλ ))(( xySrankr ≤ ,

then the r pairs of eigenvectors corresponding to them are orthonormal, respectively, 
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namely =Τ
ii αα ijii δββ =Τ .Due to )( 1

jyxjxyijxyi SSS αλαβα −ΤΤ = = =Τ− )( 21
jjij αλαλ

ijjδλ , then conclusion (7) is true.              

The above theorem gives out a laconic algorithm that can solve the orthogonal 

weight vectors. Supposing all d pairs of weight vectors are { }d
iii 1; =βα , which make up 

of two projection matrices ),,( 21 dxW ααα= and ),,( 21 dyW βββ= . By two 

linear transformations xWz x
Τ=1  and yWz y

Τ=2 , we can obtain two sets of PLS 

components from the same pattern so as to achieve the goal of dimensionality  
reduction. 

From Eq.(9) and (10), we know that we only need to solve one among each pair of 
weight vectors, the other one can be solved by Eq.(9) or Eq. (10). Generally, we can 
choose the low-order matrix yxxy SS or xyyxSS  to find its eigenvalues and eigenvectors, 

such that the computational complexity can be lowered.  

2.3   The Algorithm Analysis  

As mentioned above, two algorithms are based on the constraints of orthogonal 
weight vectors. The NI-PLS can't assure that the extracted PLS components are un-
correlated; but it are uncorrelated that the PLS components are extracted by the clas-
sical PLS in Section 2.1. Theoretically, from the angle of pattern classification, the 
performance of the latter classification is better than that of the former one; but in 
terms of the angle of algorithm’s complexity, the former one is better. We could say 
that both of them have its own advantage over the other, so we should use either one 
of them depending on the nature of problems in real situation. 

Moreover, from the process of solving the above weight vectors, we could see that 
it is valid for either big sample size or small sample size to adapt the PLS modeling 
method in reducing the dimension. Since no matter the PLS model is singular or not, 
it cannot be affected whether for the total scatter matrix of the training sample. Due to 
this property, the PLS model has better performance in general. It overcomes some 
modeling difficulties which will appear when the high-dimensional small sample size 
problems are processed with those methods such as the Fisher discrimination analy-
sis[15], CCA and MLR. 

3   Feature Fusion Strategy and Design of Classifier 

3.1  Classification Based on Correlation Feature Matrix 

Through the above PLS algorithms, we can acquire two sets of PLS components on 
sample space A and sample space B respectively. Each a pair of PLS components 
constitute the following matrix: 

2
21 R],[],[ ×ΤΤ ∈== d

yx yWxWzzM (11)
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Where matrix M is called the correlation feature matrix of feature vectors x and y (or 
pattern sample ξ ). The distance between any two correlation feature matrices 

],[ )(
2

)(
1

ii
i zzM = � ],[ )(

2
)(

1
jj

j zzM =  is defined as 

=
−=

2

1
2

)()( ||||),(
k

j
k

i
kji zzMMd (12)

where |||| ⋅  represents the vector’s Euclidean distance. 

Let cωωω ,,, 21  be the c known pattern classes, and assume that nξξξ ,,, 21  are 

the all training samples and their corresponding correlation feature matrixes are 

nMMM ,,, 21 . For any testing sample ξ , its correlation feature ma-

trix ],[ 21 zzM = . If ),(min),( j
j

l MMdMMd =  and kj ωξ ∈ �then kωξ ∈ .

3.2   The Quadratic Bayesian Classifier 

By the following linear transformation (13), we can extract a new d-dimension com-
bination feature of each a pair of PLS components, and is used in classification. 

=
Τ

y

x

W

W
z

y

x

(13)

In d-dimension combination feature space, we use the quadratic Bayesian classifier 
to classification. The quadratic Bayesian function is defined as: 

)(()(
2

1
ln

2

1
)( 1

lllli xxxg μμ −−+= −Τ
(14)

where lμ  and l  denote the mean vector and the covariance matrix of class l , re-

spectively. The classifying decision-making based on the discriminant function will 
be kx ω∈ if sample x satisfies )(min( xgxg l

l
k = .

4   Experiments and Analysis 

4.1   Experiment on ORL Face Image Database 

Experiment is performed on the ORL face image database (http://www.cam-
orl.co.uk). There are 10 different images for 40 individuals. For some people, images 
were taken at different times. And the facial expression (open/closed eyes, smiling/ 
nonsmiling) and facial details (glasses/no glasses) are variables. The images were 
taken against a dark homogeneous background and the people are in upright, frontal 
position with tolerance for some tilting and rotation of up to 200. Moreover, there is 
some variation in scale of up to about 10%. All images are grayscale and normalized 
with a resolution of 112×92. Some images in ORL are shown in Fig.1. 
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Fig. 1. Ten images of one person in ORL face database  

In this experiment, we use the five images of random extraction of each person for 
training and the remaining five for testing. Thus, the total amount of training samples 
and testing samples are both 200. 

We use the original face images to make the first training sample space |{xA =

}R10304∈x . Performing the cubic wavelet transformation on each original image, 

low-frequency sub-images with 28×23 resolution are obtained, and the second train-

ing sample space }R|{ 168∈= yyB  are constructed; then, combining those two 

groups of features, and using the two PLS algorithm in Section 2, we can obtain the d

pairs of weight vectors, respectively. By using the linear transformation xWz x
Τ=1

and yWz y
Τ=2 , the feature vectors of the two sets can be reduced to d-dimensional(d

varies from 1 to 168) discrimination feature vectors; finally, we proceed to classify 
according to the feature fusion strategy and classifier in Section 3.1, and the classifi-
cation results and once time(s) in ten experiments are shown in Table 1. 

Table 1 shows that the two kinds of PLS methods all reach the better classification 
result, and their average recognition rates is above 95%. But seeing from the feature 
and classification, the computational time for C-PLS is 2.7 multiple one for NI-PLS. 
This matches the result of complexity analyzes of the algorithm in Section 2.3. Com-
pared with the C-PLS, adopting the NI- PLS algorithm, not only dose it not reduce the 
recognition rate, but also the feature extraction speed is raised consumedly. 

Table 1. Comparison of the recognition accuracy (%) of two PLS methods at ten experiments  

Methods 1 2 3 4 5 6 7 8 9 10 Average time(s) 

NI-PLS 95.5 95.5 96.5 92.5 95.0 94.0 96.5 94.5 96.0 94.5 95.0 189 

C-PLS 95.0 95.5 92.0 97.0 96.0 94.0 96.5 95.0 94.5 95.5 95.1 516 

Note: in this table, the recognition rates are obtained when the number the PLS component all 
are chosen to 50. The time mean that once experiment is accomplished as the number of PLS 
component varying from 1 to 168, and without taking into account of wavelet transformation. 
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4.2   Experiment on CENPARMI Handwritten Numerals Database 

The goal of this experiment is to test the validity of the algorithm with the big sample 
proposed in this paper. The Concordia University CENPARMI database of handwrit-
ten Arabic numerals, popular in the world, is adopted. In this database, there are 10 
class, i.e. 10 digits (from 0 to 9), and 600 sample for each. Some images of original 
samples are shown in Fig. 2. Hu et al.[16] had done some preprocessing work and 
extracted four kinds of features as follows: 
− XG: 256-dimensional Gabor transformation feature, 
− XL: 21- dimensional Legendre moment feature, 
− XP: 36-dimensional Pseudo-Zernike moment feature, 
− XZ: 30-dimensional Zernike moment feature. 

 

Fig. 2. Some images of digits in CENPARMI handwritten numeral database 

In this experiment, we use the first 300 images of each class for training and the 
remaining 300 for testing. Thus, the total amount of training samples and testing sam-
ples are both 3000. Combine any two features of the above four features in the origi-
nal feature space, using two algorithms described in Section 2 and according to the 
feature fusion strategy and classifier in Section 3.2, we can obtain classification re-
sults that is shown in Table 2. For the sake of further comparing algorithm’s perform-
ance, in Table 3, as the combination feature’s dimension varies form 1 to 40, we also 
list the classification error rates and the classification time of two kinds of algorithms 
when we combine Gabor feature and the Legendre feature. 

Table 2. Comparison of classification error rates of two methods under different feature  
combination 

Methods XG-XL XG-XP XG-XZ XL-XP XL-XZ XP-XZ 

NI-PLS 0.0403(31) 0.0863(33) 0.0850(30) 0.0857(33) 0.0863(30) 0.1910(27) 

C-PLS 0.0407(30) 0.0870(34) 0.0847(30) 0.0857(35) 0.0857(30) 0.1853(27) 

Note: the value in ( ) denotes the dimension of combination feature(i.e. the number the PLS 
component) as the optimal result is achieved. 
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Table 3. Comparison of classification error rates and time(s) of two methods on the Gabor 
feature and the Legendre feature 

Dimension 1 5 10 15 20 25 30 35 40 Time(s) 

NI-PLS 0.755 0.204 0.110 0.060 0.045 0.043 0.040 0.043 0.044 256 

C-PLS 0.757 0.264 0.113 0.063 0.045 0.041 0.040 0.043 0.043 587 

From Table 1 and Table 2, we can see that, the two kinds of algorithm all take the 
similar classification results when the four sets of features are combined differently. 
Among them the classification error rate by combining the Gabor feature and the 
Legendre feature is lower than those of others, and the optimal recognition rate is up 
to 96%. Moreover, from Table 2 we can also see the classification error rate drops 
quickly when we use the PLS modeling method proposed in this paper. As the feature 
vector dimension varies from 20 to 40, the two kinds of algorithm’s recognition rate 
are all stable above 95%. While the advantage using the NI-PLS algorithm in the time 
of the feature extraction is much obvious.  

5   Conclusion 

In this paper, we put PLS model and the idea of feature fusion together, and create a 
new framework for image recognition. Experimental results on two image databases 
show that the proposed framework is efficient. Because of the property that PLS 
works no matter whether the total covariance matrix of the training samples is singu-
lar or not, the proposed method is more suitable for processing small sample size 
classification problems in high dimensional spaces. From the comparison of the two 
PLS modeling methods mentioned in this paper, the proposed non-iterative PLS(NI-
PLS) is superior to the classical PLS algorithm(C-PLS) at the complexity of algorithm 
and the speed of feature extraction. 
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Abstract. The number of vertical search engines and portals has rapidly in-
creased over the last years, making the importance of a topic-driven (focused)
crawler evident. In this paper, we develop a latent semantic indexing classifier
that combines link analysis with text content in order to retrieve and index do-
main specific web documents. We compare its efficiency with other well-known
web information retrieval techniques. Our implementation presents a different ap-
proach to focused crawling and aims to overcome the limitations of the necessity
to provide initial training data while maintaining a high recall/precision ratio.

1 Introduction

In contrast with large-scale engines such as Google [1], a search engine with a spe-
cialised index is more appropriate to services catering for specialty markets and target
groups since it has more structured content and offers a high precision [2]. The main
goal of this work is to provide an efficient topical information resource discovery al-
gorithm when no previous knowledge of link structure is available except that found
in web pages already fetched during a crawling phase. We propose a new method for
further improving targeted web information retrieval (IR) by combining text with link
analysis and make novelty comparisons against existing methods.

2 Web Information Retrieval – Text and Link Based Techniques

The expansion of a search engine using a web crawler is seen as a task of classification
requiring automatic categorisation of text documents into specific and predefined cate-
gories. The visiting strategy of new web pages usually characterises the purpose of the
system. Generalised search engines that seek to cover as much proportion of the web as
possible usually implement a breadth-first (BRFS) algorithm [3]. The BRFS policy uses
a simple FIFO queue for the unvisited documents and provides a fairly good bias to-
wards high quality pages without the computational cost of keeping the queue ordered
[4]. Systems on the other hand that require high precision and targeted information
must seek new pages in a more intelligent way. The crawler of such a system focused or
topic-driven crawler is assigned the task of automatically classifying crawled pages to
existing category structures and simultaneously discovering web information related to
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the specified domain while avoiding irrelevant regions of the web. A popular approach
for focused resource discovery is the best-first search (BSFS) algorithm where two URL
queues are maintained; one containing the already visited links (from here on AF) and
another having the, yet unvisited, references of the first queue, also called crawl frontier
(from here on CF) [5]. The challenging task is periodically reordering the links in the
CF efficiently. The importance metrics can be either interest driven where the classifier
for document similarity checks the text content and popularity/location driven where
the importance of a page depends on the hyperlink structure of the crawled document.

Although the physical characteristics of web information is distributed and decen-
tralized, the web can be viewed as one big virtual text document collection. In this
regard, the fundamental questions and approaches of traditional IR research (e.g. term
weighting, query expansion) are likely to be relevant in web IR [6]. The language inde-
pendent vector space model (VSM) representation of documents has proved effective
for text classification [7]. This model is described with indexing terms that are consid-
ered to be coordinates in a multidimensional space where documents and queries are
represented as binary vectors of terms resulting to a term-document two-dimensional
m × n matrix A where m is the number of terms and n is the number of documents in
the collection.

Contrary to text-based techniques, the main target of link analysis is to identify the
importance or popularity of web pages. This task is clearly derived from earlier work
in bibliometrics academic citation data analysis where impact factor is the measure of
importance and influence. More recently, link and social network analysis have been
applied to web IR to identify authoritative information sources [8]. Here, the impact
factor corresponds to the ranking of a page simply by a tally of the number of links that
point to it, also known as backlink (BL) count or in-degree. But BL can only serve as
a rough, heuristic-based, quality measure of a document, because it can favour univer-
sally popular locations regardless of the specific query topic. PageRank (PR) is a more
intelligent connectivity-based page quality metric with an algorithm that recursively
defines the importance of a page to be the weighted sum of its backlinks’ importance
values [9]. An alternative but equally influential algorithm of modern hypertext IR is
HITS, which categorises web pages to two different classes; pages rich and relevant
in text content to the user’s query (authorities) and pages that might not have relevant
textual information but can lead to relevant documents (hubs) [10]. Hubs may not be
indexed in a vertical engine as they are of little interest to the end user, however both
kind of pages can collaborate in determining the visit path of a focused crawler.

Latent semantic indexing (LSI) is a concept-based automatic indexing method that
models the semantics of the domain in order to suggest additional relevant keywords
and to reveal the “hidden” concepts of a given corpus while eliminating high order
noise [11]. The attractive point of LSI is that it captures the higher order “latent” struc-
ture of word usage across the documents rather than just surface level word choice.
The dimensionality reduction is typically computed with the help of Singular Value
Decomposition (SVD), where the eigenvectors with the largest eigenvalues capture the
axes of the largest variation in the data. In LSI, an approximated version of A, denoted
as Ak = UkSkV T

k , is computed by truncating its singular values, keeping only the
k = rank(Ak) < k0 = rank(A) larger singular values. Unfortunately, for matrix de-
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compositions such as SVD in dynamic collections, once an index is created it will be
obsolete when new data (terms and documents) is inserted to the system. Adding new
pages or modifying existing ones also means that the corpus index has to be regener-
ated for both the recall and the crawling phase. Depending on the indexing technique
followed, this can be a computationally intensive procedure. But there are well-known
relatively inexpensive methods that avoid the full reconstruction of the term-document
matrix [12]. Folding-in is based on the existing latent semantic structure and hence new
terms and documents have no effect on the representation of the pre-existing terms and
documents. Furthermore, the orthogonality in the reduced k-dimensional basis for the
column or row space of A (depending on inserting terms or documents) is corrupted.
SVD-updating, while more complex, maintains the orthogonality and the latent struc-
ture of the original matrix.

3 Focused Crawling

3.1 Related Works in Focused Crawling

Numerous techniques that try to combine textual and linking information for efficient
URL ordering exist in the literature. Many of these are extensions to PageRank and
HITS. An extension to HITS where nodes have additional properties and make use of
web page content in addition to its graph structure is proposed in [13] as a remedy
to the problem of nepotism. An improvement to HITS is probabilistic HITS (PHITS),
a model that has clear statistical representations [14]. An application of PageRank to
target seeking crawlers improves the original method by employing a combination of
PageRank and similarity to the topic keywords [15]. The URLs at the frontier are first
sorted by the number of topic keywords present in their parent pages, then by their esti-
mated PageRanks. A BSFS crawler using PageRank as the heuristic is discussed in [16].
In [17] an interesting extension to probabilistic LSI (PLSI) is introduced where exist-
ing links between the documents are used as features in addition to word terms. [18]
proposes supervised learning on the structure of paths leading to relevant pages to en-
hance target seeking crawling. A link-based ontology is required in the training phase.
Another similar technique is reinforcement learning [19] where a focused crawler is
trained using paths leading to relevant goal nodes. The effect of exploiting hypertext
features such as segmenting Document Object Model (DOM) tag-trees of a web docu-
ment and combining this information with HITS is studied in [20]. Keyword-sensitive
crawling strategies such as URL string analysis and other location metrics are inves-
tigated in [21]. An intelligent crawler that can adapt online the queue link-extraction
strategy using a self-learning mechanism is discussed in [22]. Work on assessing dif-
ferent crawling strategies regarding the ability to remain in the vicinity of the topic
in vector space over time is described in [23]. Various approaches to combine linkage
metrics with content-based classifiers have been proposed in [24] and [25]. [26] uses
tunnelling to overcome some of the limitations of a pure BSFS approach.

3.2 Hypertext Combined Latent Analysis (HCLA)

The problem studied in this paper is the implementation of a focused crawler for tar-
get topic discovery, given unlabeled (but known to contain relevant sample documents)
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textual data, a set of keywords describing the topics and no other data resources. Tak-
ing into account these limitations many sophisticated algorithms of the Sect. 2, such
as HITS and context graphs, cannot be easily applied. We evaluate a novel algorithm
called Hypertext Content Latent Analysis or HCLA from now onwards that tries to com-
bine text with link analysis using the VSM paradigm. Unlike PageRank, where simple
eigen-analysis on globally weighted adjacency matrix is applied and principal eigenvec-
tors are used, we choose to work with a technique more comparable with HITS. While
the effectiveness of LSI has been demonstrated experimentally in several text collec-
tions yielding an increased average retrieval precision, its success in web connectivity
analysis has not been as direct. There is a close connection between HITS and LSI/SVD
multidimensional scaling [27]. HITS is equivalent to running SVD on the hyperlink re-
lation (source, target) rather than the (term, document) relation to which SVD is usually
applied. Our main assumption is that terms and links in an expanded matrix are both
considered for document relevance. They are seen as relationships. In the new space
introduced, each document is represented by both the terms it contains and the similar
text and hypertext documents. This is an extension of the traditional “bag-of-words”
document representation of the traditional VSM described in Sect. 2. Unlike [17], we
use LSI instead of PLSI. The proposed representation, offers some interesting potential
and a number of benefits. First, text only queries can be applied to the enriched rela-
tionships space so that documents having only linking information, such as those in CF,
can be ordered. Secondly, the method can be easily extended for the case where we also
have estimated content information for the documents in CF. This can be done using the
anchor text or the neighbour textual context of the link tag in the parent’s html source
code, following heuristics to remedy for the problem of context boundaries identifica-
tion [16]. Moreover, we can easily apply local weights to the terms/rows of the matrix,
a common technique in IR that can enhance LSI efficiency. While term weighting in
classic text IR is a kind of linguistic favouritism, here it can also been seen as a method
of emphasizing either the use of linking information or text content. An issue in our
method is the complexity of updating the weights in the expanded matrix, especially
when a global weighting scheme is used. For simplicity, we do not use any weighting
scheme. The steps of our method are described as follows.

Let A be the original term-document representation while

(
L[m×a]

G[a×a]

)
and(

O[m×b]

R[a×b]

)
are the new document vectors projected in the expanded term-space having

both textual (submatrices L[m×a] and O[m×b]) and connectivity components (G[a×a]

and R[a×b]).
- With a given text-only corpus of m documents and a vocabulary of n terms we

first construct a term-document matrix Am×n and perform a truncated SVD Ak =
SV D(A, k) = UkSk(Vk)T . Since this is done during the offline training phase we can
estimate the optimum k.

- After a sufficient user-defined number of pages (a) have been fetched be the
crawler, we analyse the connectivity information of the crawler’s current web graph and
insert a = |AF| new rows as “terms” (i.e. documents from AF) and a+ b = |AF|+ |CF|
web pages from both AF and CF as “documents” to the matrix. The SVD-updating



282 G. Almpanidis and C. Kotropoulos

Fig. 1. Expanded connectivity matrix in HCLA. Matrix C is [(m + a) x (n + a + b)].
AF=Already Visited links, CF=Crawl Frontier docs

technique helps avoiding the reconstruction of the expanded index matrix. Because
G and R in Fig. 1 are typically sparse, the procedure is simplified and the compu-
tation is reduced. For inserting t = a terms and d = a + b documents we append

D[(m+a)×(a+b)] =
(

L[m×a] 0[m×b]

G[a×a] R[a×b]

)
to B[(m+a)×n] =

(
A[m×n]

0[a×n]

)
matrix.

- Since we do not have any information of direct relationship between these web
pages and the text documents {di}of the original corpus, we just add a terms/rows with
zero elements at the bottom of Ak. This allows the recomputing of SVD with minimum
effort, by reconstructing the term-document matrix. If SV D(B) = UBSB(VB)T the
k − SV D of the matrix after inserting a documents, then we have:

UB =
(

U[m×k]

0[a×k]

)
, SB = Sk, VB = Vk (1)

The above step does not follow the SVD-updating technique since the full term-
document matrix is recreated and a k−truncated SVD of the new matrix B is re-
computed. In order to insert fetched and unvisited documents from the AF and CF
queues as columns in the expanded matrix we use an SVD-updating technique to cal-
culate the semantic differences introduced in the column and row space. If we define
SV D(C) = UCSCV T

C , F =
(
Sk|UT

BD
)

and SV D(F ) = UF SF V T
F then, matrices

Uc, Sc and Vc are calculated according to [12]:

VC =
(

VB 0
0 I[a+b]

)
VF , SC = SF , UC = UBVF (2)

Accordingly, we project the driving original query q in the new space that the ex-
panded connectivity matrix C represents. This is done by appending a rows of zeroes

to the bottom of the query vector: qC =
(

q[m×1]

0[a×1]

)
. By applying the driving query qC

of the test topic we can to compute a total ranking of the expanded matrix C. Looking
at Fig. 1 we deduce that we only need to rank the last b=|CF| columns. The scores of
each document in CF are calculated using the cosine similarity measure:
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cos θj =
eT

j VCSC(UT
C qC)

||SCV T
C ej ||2||qC ||2 (3)

where || · ||2 is the L2 norm. Once similarity scores are attributed to documents, we can
reorder the CF, select the most promising candidate and iterate the above steps.

4 Implementation – Experimental Results - Analysis

In this work we evaluate five different algorithms. BRFS is only used as a baseline
since it does not offer any focused resource discovery. The rest are cases of BSFS al-
gorithms with different CF reordering policies. The 2nd algorithm is based on simple
BL count [21]. Here the BL of a document v in CF is the current number of documents
in AF that have v as an outlink. The 3rd algorithm (SS1) is based on the Shark-Search
algorithm [28]. The 4th algorithm (SS2) is similar to SS1 but the relevance scores are
calculated in a pre-trained VSM using a probability ranking based scheme [7]. Since we
work with an unlabelled text corpus, we use the topic query to extract the most relevant
documents and use them as sample examples to train the system. The 5th algorithm
is based on PageRank. Here, no textual information is available, only the connectivity
between documents fetched so far and their outlinks. In order to achieve convergence
we assume that from nodes with no outlinks we can jump with probability one to every
other page in the current web graph. In this application, the exact PR values are not as
important as the ranking they induce on the pages. This means that we can stop the iter-
ations fairly quickly even when the full convergence has not been attained. In practice
we found that no more than 10 iterations were needed. The 6th algorithm (HCLA) is
the one this paper proposes. In the training phase choosing k=50 for the LSI of the text
corpus (matrix A) yielded good results. For our experiments the WebKB corpus was
used [29]. This has 8275 (after eliminating duplicates) web documents collected from
universities and manually classified in 7 categories. For algorithms SS1, SS2, HCLA
we selected each time three universities for training the text classifier and the fourth
for testing. Documents from the “misc” university were also used for HCLA since the
larger size of the initial text corpus can enhance the efficiency of LSI. Although the
WebKB documents have link information we disregarded this fact in the training phase
and choose to treat them only as textual data but for the testing phase we took into ac-
count both textual and linking information. The keyword-based queries that drive the
crawl are also an indicative description of each category. In each case as seeds we con-
sidered the root documents in the “department” category. This entails the possibility of
some documents being unreachable nodes in the vicinity tree by any path starting with
that seed, something that explains the <100% final recall values in Fig. 2. We repeated
the experiments for each category and for every university. Categories having relatively
limited number of documents (e.g. “staff”) were not tested. Evaluation tests measuring
the overall performance were performed by calculating the average ratio of relevant
pages retrieved out of the total ground-truth at different stages of the crawl. Due to
the complexity of PR and HCLA we chose to follow a BSFSN strategy, applying the
reordering policy every N documents fetched for all algorithms (except BRFS). This
is supported by the results of [30] which indicate that explorative crawlers outperform
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their more exploitive counterparts. We experimented with values of N = 10, 25, 50.
The preprocessing involved fixing HTML errors, converting text encoding, filtering out
all external links (outlinks that are not found inside the corpus), stemming and using a
word stoplist for both the train and test text documents. The results in Fig. 2 and Fig. 3
depict the superiority of our method especially at higher recall ranges.

We must also consider that in our implementation we didn’t use term weighting,
which is argued to boost LSI performance [11]. BRFS performance matched or ex-
ceeded in some cases SS1 and BL. This can be attributed to the structure of the WebKB
corpus and the quality of the seed documents. The unimpressive results of PR justify
the assertion that it is too general for use in topic-driven tasks due to its minimal ex-
ploitation of the topic context [16], [23]. In a BSFS strategy it is crucial that the time
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needed for reorganising the crawl frontier is kept at a minimum. In our work, we do
not need to recompute the SVD of the highly dimensional matrix C, but perform calcu-
lations on the reduced matrices of Sect. 2. Also, we follow a BSFSN algorithm where
the reordering of the CF, and consequently the term-document matrix expansion and
SVD computation, are performed every N documents fetched. Naturally, the value N
has a significant influence in the processing time of the algorithm and the efficiency of
the reordering analysis [30]. For the results presented here it is N=50. A parameter not
well documented is the choice of k (number of important factors) in LSI. While trial
and error offline experiments can reveal an optimum value for the text corpus (matrix
A), there is no guarantee this will remain optimal for the expanded matrix C.

5 Conclusions

This work has been concerned with a statistical approach to text and link processing.
We argue that content- and link-based techniques can be used for both the classifier and
the distiller of a focused crawler and propose an alternative document representation
where terms and links are combined in an LSI based algorithm. A positive point in our
method is that its training is not dependent on a web graph using a previous crawl or
an existing generalised search service but only on unlabeled text samples making the
problem a case of unsupervised machine learning. Because LSI performance is sensi-
tive to the size of the trained corpus performance can suffer severely when little data
is available. Therefore, starting a crawl with a small term-document matrix A is not
recommended since at early stages the extra linking-text information from the crawl is
minimal. Appending extra text documents in the training phase, even being less rele-
vant to the topics of the current corpus, can enhance the crawling process. At later stages
when more information is available to the system we can remove these documents and
retrain the model. We also believe that a hybrid strategy where HCLA is facilitated in
the early stages of the crawl by a more explorative algorithm can be a practical alterna-
tive. Both HCLA and PR methods proved significantly slower requiring more processor
power and memory resources. Practically, HCLA was up to 100 times slower than the
simple BRFS on some tests and PR performed similarly, something that has been at-
tested by [16]. The dynamic nature of the crawler means that computational complexity
increases as more documents are inserted in AF and CF. A solution to the problem is to
limit the size of both queues by discarding less authoritative documents at the bottom
of the queues during the reordering phase.
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Abstract. This paper presents a problem independent weighting strat-
egy for weighted support vector machines (SVMs). SVMs can be applied
with a weighting to each training vector to reflect the importance of
different classes or training samples. Weightings are often assigned to
the two classes inversely proportional to the sample count of each class,
or according to a priori knowledge. Such a strategy can be applied to
skewed data sets to balance the importance, error contribution and cost
between the two classes. In this paper we propose a strategy to give each
training pattern a weighting according to their distances to the classi-
fier. The strategy regards the importance of the training patterns to the
training process but not the importance of the data to the problem, thus
it is suitable for general SVM applications. Experiments show that the
performance of the proposed method is competitive to standard SVM
while the training processes are even sped up.

1 Introduction

Support vector machines (SVMs)[1] are designed for binary classifying
problems[2]. It gives promising results in many pattern recognition applications,
such as document categorization, medical diagnosis and prognosis, and so on.
Modern implementations of SVM often incorporate fast training algorithms that
can reduce the computation time and the consumption of memory. Sequential
minimal optimization (SMO)[3] is a widely used technique for the fast train-
ing algorithms. These algorithms make it possible to apply SVM on large scale
problems.

The SVMs are often used without weightings. That is, no knowledge of the
importance of the classes or the data patterns is incorporated. The classes are
equally important, and so do the data. However, for a problem where the data
distribution is skewed, i.e., most outcomes belong to one class, or for a prob-
lem where the cost of miss–classifying is not the same on different classes, it
is beneficial to consider adding weightings to data patterns[4]. The weighting
factor is in fact in the SVM model and can be introduced for these problems.
The weightings for the classes are decided and affect the objective function to be
minimized. Research about the imbalanced cases often concerns the penalties of
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false positives and false negatives that are not equally important[5][6][7]. They
give different classes different weightings according to the sample counts or the
importance of the classes.

The weighting strategy mentioned above is problem dependent. Since the
SVMs find the decision function (or the optimal hyperplane) to separate classes
without making use of any problem domain knowledge, the weightings should
be chosen according to the model or the data itself. In this work we present
a strategy to set the weighting for each training pattern. The strategy gives
weightings to data patterns according to their distances to the optimal hyper-
plane. The concept is based on the observation that a more closer data pattern
to the hyperplane contributes more to the determination of the hyperplane itself.
However, the optimal hyperplane is unknown to us in the training phase. Thus,
we propose using an estimate of the hyperplane to approximate the underlying
concept. The estimate of the hyperplane is computed by using a random subset
of the given training data. We call this phase of training the stage 1 model.
That is, we propose using a small SVM to initialize the whole SVM such that
the training process can converge faster. The proposed weighting strategy is
obviously not for the sample count balance or the cost reasons, but to reflect
the importance of each sample and improve the training process. The remaining
part of the paper is organized as follows. The SVM model is stated in section
2, and the proposed method will be introduced in section 3. Section 4 provides
the experiment results showing that the proposed strategy maintains the testing
performance and improves the training speed.

2 Weighted Support Vector Machine

Given the labeled training patterns (xi, yi) , i = 1, . . . , l, where xi ∈ Rn is the
feature vector and yi ∈ {+1,−1} is the class label of xi, an SVM looks for
the linear discriminant function f (x) = ωT x + b which maximizes the minimal
distance from the data to the function. The maximized minimal distance is called
the margin, and the found function is called the optimal separating hyperplane.
Those data close to the hyperplane are the support vectors. An SVM finds the
hyperplane by solving the following optimization problem:

min
ω,b,ξ

1
2 |ω| + C

l∑
i=1

ξi (1)

subject to yi

(
ωT xi + b

) ≥ 1 − ξi, ξi ≥ 0,

or its dual problem

min
α

1
2αT Qα − eT α (2)

subject to 0 ≤ αi ≤ C, i = 1, . . . , l, yT α = 0,

where e is the vector of all ones, C is the penalty of error which is positive, Qij

is yiyj 〈xi, xj〉 and ξi is the relaxation parameter. The decision function of the
classifier is
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sign

(
l∑

i=1

yiαi 〈xi, x〉 + b

)
. (3)

〈., .〉 indicates the inner product operation.
When the problem is complicate or is linearly non–separable, a mapping φ :

X → F can be applied on the data first, transforming them into a higher dimen-
sional space called the feature space, and then an SVM can look for the hyper-
plane in that space. The discriminant function then becomes f (x) = ωT φ (x)+b,
and the decision function therefore becomes a non-linear classifier

sign

(
l∑

i=1

yiαi 〈φ (x) , φ (y)〉 + b

)
(4)

in the input space. Kernel functions are introduced to eliminate computations
with the mapping function. A kernel function K(x, y) = 〈φ (x) , φ (y)〉 gives the
inner product value of x and y in the feature space. The most often used kernel
functions are radial basis functions: K (x, y) = exp

(
−γ |x − y|d

)
, γ > 0.

For the weighted case, Eq. (1) can be rewritten to

min
ω,b,ξ

1
2 |ω|2 + s+C

∑
i:yi=+1

ξi + s−C
∑

j:yi=−1

ξj (5)

subject to yi

(
ωT xi + b

) ≥ 1 − ξi, ξi ≥ 0 .

And we can combine the class weightings s+, s− with C

min
ω,b,ξ

1
2 |ω|2 + C+

∑
i:yi=+1

ξi + C−
∑

j:yi=−1

ξj (6)

subject to yi

(
ωT xi + b

) ≥ 1 − ξi, ξi ≥ 0 .

A choice of s+, s− can be referred to the ratio between the sample numbers
of the two classes[8]. However, such choice requires knowledge of the problem,
and possibly affects the training results[5].

Rewrite Eq. (5) to

min
ω,b,ξ

1
2 |ω|2 + C

l∑
i=1

siξi (7)

subject to yi

(
ωT xi + b

) ≥ 1 − ξi, ξi ≥ 0,

where the weightings can be applied to the samples separately. Instead of using
a priori knowledge of samples of the problem, we propose a strategy to decide
the weightings by the property of samples in the SVM training process. For a
linearly non–separable problem, a kernel function can be incorporated to the
weighted models similar to the non-weighted case.
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3 Weighting Separate Data

The hyperplane is decided by support vectors. The support vectors are the sam-
ples “near” the hyperplane. They “push” the hyperplane to maximize the mar-
gin. After the training process, the data with non-zero α values are defined as
the support vectors. Therefore, only the support vectors really involve in com-
puting the decision function. If we know a priori which samples would be the
support vectors and train the SVM with only those samples, we still have the
same classifier that trained with all training patterns, as illustrated with Fig. 1.

−4 −2 0 2 4 6
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4

(a)

+1 class
−1 class
support vector
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4

(b)

+1 class
−1 class
support vector

Fig. 1. The hyperplane is decided only with certain samples. (a) An SVM classifier
trained with all samples. (b) An SVM classifier trained with samples to be support
vectors.

As we can see from the above statement, the support vectors and the hyper-
plane is dependent on each other. Once the support vectors are known, to train
an SVM we can set the weightings of samples other than support vectors to zero
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Fig. 2. An example of the proposed training process. (a) In stage 1, a standard SVM
classifier is trained with part of the training samples. (b) In stage 2, the weighted SVM
is trained with all training samples and the information from the model generated in
stage 1.

(or just simply omit them from training). However, the problem is that we do
not know the support vectors beforehand. A possible solution is to use a boot-
straping strategy, that is, train the SVM through itself by stages. We propose
using a two-stage training process as follows:

two-stage training process
stage 1

select a subset Xs of all sample set X
train the standard SVM model S1 with Xs

stage 2
judge the importance of all samples in X by S1
weight the samples in X as W according to their importance
train the weighted SVM model S2 with X and W

An example of the training process is illustrated in Fig. 2.



A Weighting Initialization Strategy for Weighted Support Vector Machines 293

We suggest training the models of the two stages in the same feature space.
That is, use the same kernel function and related parameters. The hyperplanes
found in different feature spaces may be very different, which means the relative
locations or distances of the samples to the hyperplane change. If the two training
processes are held in the same feature space, the two classifiers are possible to
be similar, that is, the samples near the first hyperplane are more possible to be
near the second one. One trick that should be mentioned is about setting the
value of the penalty parameter C. If C is different between training processes,
even using the same sample set and feature space, the resultant classifiers may be
different because the cost of the relaxation term changes. Fig. 3 shows the effects
of different training parameters, where different kernel functions and values of
C are used. Although the training data sets are the same with those of Fig. 1,
Fig. 3 has different resultant SVMS.
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Fig. 3. Effects of different training parameters (a) An SVM classifier trained with
same data set of Fig. 1a but a RBF kernel is used instead of a linear kernel. (b) An
SVM classifier trained in same feature space but with different penalty parameter C.
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Since the training time complexity of the SVMs is experimentally shown
about O(l2)[9][10], we expect reducing the sample size would speed up the train-
ing process significantly running stage 1. When training an SVM with working
set selection methods[9][11], training samples are split into the working set B
which contains q samples and the fix set N contains the rest. Eq. (2) can be
decomposed into

min
α

−αT
B (1 − QBNαN ) + 1

2αT
BQBBαb + 1

2αT
NQNNαN − αT

N1 (8)

subject to 0 ≤ αi ≤ C, i = 1, . . . , l, αT
ByB + αT

NyN = 0,

where α =
∣∣∣∣αB

αN

∣∣∣∣, y =
∣∣∣∣ yB

yN

∣∣∣∣ and Q =
∣∣∣∣QBB QBN

QNB QNN

∣∣∣∣. The optimization process

is iteratively updating the working set B by selecting those samples with non
zero α value. When the number of candidates are larger than the working set
size q, the samples with larger output error and gradient of α are preferred. αi

and the weightings si for ξi have the relation 0 ≤ αi ≤ siC. A larger weighting
would result in a support vector with large α value, and is more likely to be in
the weighting set in practice. The more the support vectors are included in the
working set, the faster the training process converges.

4 Experiments and Results

We use the RBF kernel with γ=5 and d=2 in all SVM training process. The
penalty parameter C is 10. The RBF kernels have been shown helpful in train-
ing the SVMs to generate promising results, while the parameters we used are
decided arbitrary. A grid search technique[12] may be useful to find the bet-
ter combinations of the parameters. Breast-cancer, diabetis, flare-solar, german
and heart data sets from the UCI benchmark repository[13] are tested. Each
dataset is partitioned into the training set and testing set 100 times[14][15], thus
experiments are repeated 100 times for each data set.

As suggested in section 3, we train the stage 1 model with the standard
SVM. The same feature space will be used for the weighted SVM in stage 2.
We randomly select 1/n of the training data to train the SVM in the stage
1. n is 2,3 and 4 in our experiments. After the model being generated, all the
training samples are tested with the model and the distance values D from
samples to the hyperplane are estimated. The minimal value of |D| is zero when
a pattern falls right on the hyperplane, and increases when the pattern locates
away from the hyperplane. Therefore, |D| can be the importance index of a
pattern. We assign the weighting for each training sample as 1

|D|+1 , thus the
weighting belongs to (0,1] and we will not over-weighting a sample. Then the
weightings are incorporated to stage 2 of the SVM training process that uses all
training data. To compare the performances, we also apply the standard SVM
on each data set. To see the effect of choosing samples in stage 1, we also run the
proposed method with first 1/3 samples of each data set. The average testing
rates of the 100 trials are shown in Table 1, and the total training times are
shown in Table 2.
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Table 1. Average testing rate (%)

Data set breast-cancer diabetis flare-solar german heart
standard svm 74.18 75.75 67.61 76.33 82.33

2(random) 74.56 75.83 67.62 76.27 82.69
proposed, 3(random) 74.52 75.78 67.62 76.41 82.55

n= 4(random) 74.82 75.72 67.63 76.36 82.95
3(first 1/3) 74.77 75.72 67.62 76.31 83.10

Table 2. Training time (sec.)

Data set breast-cancer diabetis flare-solar german heart
standard svm 291.79 768.13 653.72 1376 132.2

2 stage 1 106.59 291.94 236.07 438.36 54.723
(random) total 277.66 773.55 676.42 1309.8 145.38
3 stage 1 58.197 171.39 139.99 239.05 32.772

proposed, (random) total 235.79 653.41 599.13 1104.1 122.39
n= 4 stage 1 37.325 119.07 91.116 165.81 23.964

(random) total 216.87 595.94 550.14 1033.3 115.34
3 stage 1 58.623 179.1 133.97 241.63 33.476
(first 1/3) total 237.75 666.07 592.6 1114.2 124.02

The results show that in most cases the testing performance of the proposed
method maintains, while the proposed method is faster than standard, non-
weighted (or, the weighting=1 for each sample) SVM when n > 2. In the case
n = 2, training the stage 1 SVMs may cost more time then which could be saved
in stage 2, and the proposed method performs about the same as standard
SVM does. When n gets larger, more training time can be saved in stage 1,
while training time of stage 2 maintains the same, so the total training time
will reduce. According to our experiments, the options of the sample selection
in stage 1 does not matter. However, it is still possible that an SVM model
generated in stage 1 cannot represent the data well when n is large (too few
samples are chosen) or unrepresentative samples are chose.

5 Conclusion

We have proposed a weighting strategy for weighted support vector machines.
The concept behind the strategy is the observation that a sample closer to the
optimal hyperplane would affect the objective function more than the others.
We find such samples by a simpler classifier that is trained with a subset of
data patterns. Assigning larger weightings to them in the subsequent training
process will emphasize their contribution to the relaxation term of the optimizing
objective function, and makes the training process converging faster. That is,
we propose to initiate the weightings for a weighted SVM by the information
from a previously trained SVM model with a subset of the training samples.
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The experiments show that a random subset selected from training samples
works fine. There exist some other methods that can also generate a subset from
training samples[16][17], which can also be combined with our strategy. The
simulation results show that the proposed weighting strategy is effective both
in keeping the SVM testing performance and in speeding up the SVM training
process.
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Abstract. Time series often exhibit periodical patterns that can be
analysed by conventional statistical techniques. These techniques rely
upon an appropriate choice of model parameters that are often difficult
to determine. Whilst neural networks also require an appropriate param-
eter configuration, they offer a way in which non-linear patterns may
be modelled. However, evidence from a limited number of experiments
has been used to argue that periodical patterns cannot be modelled us-
ing such networks. In this paper, we present a method to overcome the
perceived limitations of this approach by determining the configuration
parameters of a time delayed neural network from the seasonal data it
is being used to model. Our method uses a fast Fourier transform to
calculate the number of input tapped delays, with results demonstrating
improved performance as compared to that of other linear and hybrid
seasonal modelling techniques.

1 Introduction

In time series analysis, the recognition of patterns is important to facilitate the
estimation of future values. This is especially evident for financial time series
forecasting, where techniques such as technical and regression analyses have
been developed that rely upon the identification of different temporal patterns
[1]. In particular, regression analysis, whose application area is not only limited
to financial forecasting [2,3,4], relies on the identification of patterns within the
series, such as trend and seasonality. These patterns can be modelled using sta-
tistical techniques, such as autoregressive (AR) variants, but constructing such
models is often difficult. Whilst the application of neural networks to time series
analysis remains controversial [1,4], they appear to offer improved performance,
for example, when used in hybrid models [5]. In hybrid models applied to sea-
sonal data series, seasonality is first decomposed using techniques such as linear
filters [1]. One such method is the application of the autocorrelation function to
determine the input lags used to build a linear AR model, and in particular only
the significant lags are selected [3]. However there is evidence to suggest that us-
ing just these selected lags does not give optimal linear models [6]. Furthermore,
it is unclear whether the lags obtained from the autocorrelation function are
sufficient for use in a non-linear model, such as a neural network. In this paper
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we describe a method to configure a neural network to model time series that
exhibit cyclic behaviour using a more appropriate selection of input lags. When
applied to a time delayed neural network (TDNN), our method demonstrates
similar performance compared to more complex hybrid modelling techniques.

In statistics, periodical variations are treated in two different ways. First, if
periodical patterns change stochastically during time, one can apply seasonal
differencing to eliminate seasonality. Second, if behaviour of the periodicity is
deterministic, models can be applied by taking into account the type of the vari-
ation, such as whether the changes are in additive or multiplicative form. Linear
processes such as AR models, seasonal AR models and the Holt-Winters method
are among the few seasonal modelling techniques that have proven successful
[1,3]. However, to model non-linear patterns, appropriate non-linear techniques
are required, such as neural networks.

Non-linear neural networks are capable of extracting complex patterns in
time series successfully to some degree [2,7], although identifying whether non-
linear models are required remains difficult [1]. A well-known technique to per-
form temporal processing is to use memory of past input and activation values
within the network to allow it to identify temporal patterns. These TDNN mod-
els [7,8] are widely used because of their simplicity, either on their own [9,10,11],
or in hybrid models such as with an autoregressive integrated moving average
model (ARIMA) [5,12,13]. Nevertheless, it has been reported that such hybrids
do not necessarily outperform single models [11].

The limitations of neural networks are essentially an inability to cope with
changes in mean and variance [9], which can be attributed, for example, to
trend and exponential seasonality. The mean and variance of a series may be
stabilised using techniques such as differencing and the Box-Cox transformation
[14]. Similarly, it has been argued that periodical patterns should be removed
prior to modelling with a neural network [12,13,15,16]. However, it has been
shown that certain periodical patterns can be successfully modelled using neural
networks if the network is configured appropriately, and the time series pre-
processed to stabilise the mean [10].

The studies so far have focused on model selection tools designed for building
linear AR models, which are then used to construct a TDNN for cyclic series
[9,12]. For example, Cottrell [9] used Akaike and Bayesian Information Criteria
to find an optimum TDNN. For the Sunspot data, their results suggested an
architecture with four input delays and four hidden neurons. Despite this, the
Sunspot data exhibits an 11 year cycle, and results suggest that a minimum lag
of 11 is required (for example, [2,17]). In contrast to Cottrell’s approach, Zhang
and Qi [12] used the autocorrelation function to configure a TDNN. First, they
obtained the significant lags within the series based on the an analysis of the
autocorrelation. Then they employed these lags to construct the input delays
of TDNN. In this paper we describe a method, which is an extension of that
described in [10], for selecting the input delays using a fast Fourier transform,
comparing our results with Zhang and Qi’s.
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2 Configuring TDNN for Seasonal Time Series

A TDNN is a variant of the multi-layer perceptron in which the inputs to any
node i can consist of the outputs of the earlier nodes generated between the
current step t and step t − d, where d ∈ Z+ and ∀d < t. Here, the activation
function for node i at time t is:

yi(t) = f

⎛⎝ M∑
j=1

T∑
d=1

wij(t − d)yj(t − d)

⎞⎠ (1)

where yi(t) is the output of node i at time t, wij(t) is the connection weight
between node i and j at time t, T is the number of tapped delays, M is the
number of nodes connected to node i from preceding layer, and f is the activation
function, typically the logistic sigmoid. In this paper, we consider the case when
we have tapped delays in the input layer only: an IDNN.

In order to set the number of delays in the input layer, we obtain the cycle
information from the training data using a fast Fourier transform, which some-
times gives similar results to that of applying the autocorrelation function, but
is more convenient to use within a systematic method. In the choice of the cycle
information, we consider the dominant cycles within the data as determined by
the outliers in the amplitude response. Then we construct the TDNN with the
number of tapped delays IL equal to each of the extracted dominant cycles,
choosing the final configuration based upon the best performing network on the
validation data set. Specifically:

1. Given a time series {xi}K
i=1, create training {xi}TR

i=1, validation {xi}V L
i=TR+1

and test data sets {xi}K
i=V L+1, where i is the time index.

2. Stabilise the mean of the series by computing the first-order difference.

x
′
i+1 = xi+1 − xi (2)

where x
′
is the stabilised time series.

3. Estimate the number of input tapped delays IL using the dominant cycle
information in the differenced series:
(a) Compute the fast Fourier transform of {x′

i}V L
i=1:

Xi =
V L∑
j=1

x
′
jw

(j−1)(i−1)
V L (3)

where wV L = e(−2πi)/V L is a V Lth root of unity.
(b) Let R0

i = |Xi| be the amplitude response of Xi.
(c) Discard the periods that are greater than V L/2.
(d) Set j = 1.

Let S be a set and set S = �.
Let Pi be the set of periods.
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While not finished
Compute the mean μj−1 and standard deviation σj−1 of Rj−1

i

Extract the outliers Pi, where Rj−1
i > μj−1 + 3σj−1

Set S = S ∪ Pi.
Set Rj

i be the amplitude response without the outliers Pi.
Set j = j + 1.
If P = � exit loop.

End while
(e) Set the number of input tapped delays IL to the closest integer value

±2 [12] for each period within S. The best number will be selected ex-
perimentally from these according to the test set performance.

4. Restrict the number of nodes in the output layer to unity and set the hidden
layer size

H ≤ (IL + 1)
2

(4)

5. Normalize the series using the z-score to improve training in the network.

zi =
x

′
i − x̄′

σx′
(5)

Note that the outliers P in Step 3d are rounded integer periods.

3 Experiments and Results

To evaluate this method, we chose four industrial production series (from Fed-
eral Reserve Board [18]): consumer goods (starting January 1970), durable goods
(starting January 1947), fuels (starting January 1954), and total industrial pro-
duction (starting January 1947)and five U.S. Census Bureau series [19] (starting
January 1992): retail, hardware, clothing, furniture, and bookstore, all ending in
December 2001 [12]. Each of these monthly data sets exhibit strong seasonalities
that are difficult to predict.

In order to compare the selected architectures using the method described
with the performance of a TDNN in general, we conducted a number of ex-
periments with network configurations of 2i : 2j : 1, where 1 ≤ i ≤ 33 and
1 ≤ j ≤ 16, a total of 528 networks. Each network was configured to use a hy-
perbolic tangent activation function for the hidden layer and a linear function for
the output layer. Training was performed using the gradient descent algorithm
for a maximum of 20,000 epochs, with initial learning rate parameter λ = 0.1,
increased by 1.05% if the training error decreased, otherwise decreased by 0.7%,
if the training error increased by over 4%. Each configuration was tested with
30 different random initial conditions to provide an average root mean square
error (RMSE). The testing data set was used to determine which was the best
architecture once training was complete.
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3.1 Results

For each of the selected input delay sizes IL per data set, Table 1 shows the
architecture selected by our algorithm and the best performing network within
the trials. In five data sets (FR Fuels, FR Total Production, USBC Bookstore,
USBC Clothing, USBC Retail, USBC Hardware), we obtained the best per-
forming architectures among our trials using our method. In the other four data
sets, the method did not pick up the best performing architecture. However, the
selected architectures were amongst the top ten within the trials.

Table 1. The selected method’s performances compared with the performances of the
best network configuration obtained from the trials. Bold values show the correctly
identified TDNN configurations by the algorithm. Our algorithm finds the best config-
urations on five out of nine data sets.

Data Sets
Selected Model Best Model

Config RMSE Config RMSE
FR Consumer Goods 16:02:01 1.25 ± 0.17 24:02:01 1.07 ± 0.89
FR Durable Goods 14:06:01 3.15 ± 0.51 12:16:01 2.91 ± 0.34
FR Total Production 42:02:01 0.99 ± 0.05 42:02:01 0.99 ± 0.05
FR Fuels 30:02:01 1.73 ± 0.12 32:02:01 1.64 ± 0.13
USBC Bookstore 12:02:01 91.51 ± 10.40 12:02:01 91.51 ± 10.40
USBC Clothing 14:02:01 378.71 ± 68.29 14:02:01 378.71 ± 68.29
USBC Furniture 14:02:01 175.02 ± 10.57 48:02:01 161.09 ± 22.63
USBC Retail 14:02:01 634.72 ± 30.97 14:02:01 634.72 ± 30.97
USBC Hardware 12:04:01 37.97 ± 9.34 12:04:01 37.97 ± 9.34

In order to understand whether the method selects near optimum parameters
for the TDNN, we compared the results given in Table 1 with those for each of
the 528 networks constructed over 30 trials. Figure 1 shows the results for each
of these networks for the FR total production data set. Part (a) shows the
dominant cycles determined by the method, part (b) shows the performance of
each of the 528 networks, with the number of neurons within the hidden layer
on the x-axis, and the number of input tapped delays on the y-axis. The shading
shows the average RMSE, with the dark areas showing the lowest values. Here
we see that the best performing architecture is that with 2 hidden neurons and
approximately 42 input tapped delays. This corresponds well with our method,
which selects 43 as one of the dominant periods, and with the best performing
architecture using 42 input delays, within our bounds of ±2, as suggested by
[12]. Apart from FR durable goods, a TDNN has optimal performance when the
hidden layer size is set between 2 and 4. We can therefore see that our method
provides a way in which the dominant cycle information can be successfully used
to construct a near-optimum TDNN to model seasonal time series.

In Table 2, we compared our best fit results among the selected networks with
the best fit of the hybrid ARIMA models constructed by Zhang and Qi [12].
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Fig. 1. (a) shows the dominant cycles, which are automatically picked up by the algo-
rithm, (b) shows the error surface of the TDNN on ’Total Production’ time series.

Table 2. The best fit selected architectures compared with the performance of TDNN
and hybrid architecture constructed by Zhang and Qi [12]. Bold values indicate the
minimum RMSE obtained per data set. Our TDNN architectures outperform in all
data sets compared to Zhang and Qi’s TDNN architectures. They also outperform on
five out of nine data sets compared to their hybrid architectures.

Data Sets Selected Model RMSE TDNN [13] ARIMA-NN[13]
FR Consumer Goods 18:04:01 0.91 1.48 0.68
FR Durable Goods 12:02:01 2.16 5.98 3.63
FR Total Production 42:02:01 0.77 1.62 0.85
FR Fuels 30:04:01 1.30 1.83 0.81
USBC Bookstore 12:02:01 71.10 170.49 88.74
USBC Clothing 14:02:01 277.34 1117.72 315.43
USBC Furniture 14:06:01 144.32 226.68 99.45
USBC Retail 14:02:01 546.58 1785.77 975.55
USBC Hardware 12:02:01 19.76 105.12 49.17

For the hybrid architecture, our TDNN models outperformed in six data sets
(FR Durable, FR Total Production, USBC Bookstore, USBC Clothing, USBC
Retail, USBC Hardware). Zhang and Qi constructed the networks by taking into
consideration the correlation structure of the series. Based on the outcome of
their analysis, they considered ten time lags: 1-4, 12-14, 24, 25, and 36, where
12, 24, and 36 months apart are highly correlated. The number of hidden nodes
varied between 2 and 14 with an increment of 2. For example, the best neural
network configuration for the USBC retail series was 36:12:1, where 36 shows the
maximal lagged term. Their findings showed that the input layer should comprise
at least a maximal lag of 12 (5 input nodes) for all series. More specifically, they
reported that for the detrended data using polynomial fitting, the maximal lags
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were identified as 13 for USBC retail, 36 for FR consumer goods, and 14 for
durable goods. For the detrended and deseasonalised data, they used a maximal
lag of 1 for USBC retail, 4 for FR consumer goods and 4 for durable goods.
They concluded that they found large discrepancies among the hidden layer
nodes. However, we found that neural networks with a small number of hidden
nodes perform significantly better than ones with a large number of hidden nodes
in our earlier study [11]. We observed that the networks trained with continuous
lag information outperform networks without.

4 Conclusion

We have described an algorithm that can be used to find the optimum TDNN
configuration for modelling seasonal time series. The method described selects a
number of candidate architectures that include those that are the best perform-
ing for this technique compared to existing results. The results also demonstrate
that a TDNN model can produce comparable performance to other hybrid mod-
els. One advantage with this approach is that the performance of an ARIMA
neural network hybrid is likely to degrade due to overfitting [11]. In this case it
therefore appears that using relatively simple models can improve performance.

One restriction to our method is that it can only model stationary seasonal
time series. For example, our method cannot model series in which the amplitude
of the cycle increases constantly over time. To be able to model such a series with
neural networks, first either the series should be stabilised using an appropriate
transformation, or a seasonal AR model should be used. Furthermore, the poorer
performance of our method on three data sets (FR Consumer Goods, FR Fuels
and USBC Furniture) requires further investigation to determine whether there
are any particular characteristics of these that affects our method.

In evaluating the method through comparison of different network configu-
rations, we note that as the number of free parameters increases in the network
(the number of input delays and hidden neurons), that the model is likely to
overfit both to the training and validation data sets giving poor generalisation.
Experimentally this tells us that the input layer size should be set to less than
ten percent of the total data set size in order to achieve improved results, but
further investigation is required to formalise this. Similarly, we also note that
a TDNN generally has optimal performance on the selected data sets when the
hidden layer size is set between 2 and 4, commensurate with our previous work
[10,11].
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Abstract. It is possible to reduce the error rate of a single classifier
using a classifier ensemble. However, any gain in performance is under-
mined by the increased computation of performing classification several
times. Here the AdaboostF S algorithm is proposed which builds on two
popular areas of ensemble research: Adaboost and Ensemble Feature Se-
lection (EFS). The aim of AdaboostF S is to reduce the number of features
used by each base classifer and hence the overall computation required
by the ensemble. To do this the algorithm combines a regularised version
of Boosting AdaboostReg [1] with a floating feature search for each base
classifier.

AdaboostF S is compared using four benchmark data sets to
AdaboostAll, which uses all features and to AdaboostRSM , which uses
a random selection of features. Performance is assessed based on error
rate, ensemble error and diversity, and the total number of features used
for classification. Results show that AdaboostF S achieves a lower error
rate and higher diversity than AdaboostAll, and achieves a lower error
rate and comparable diversity to AdaboostRSM . However, over the other
methods AdaboostF S produces a significant reduction in the number of
features required for classification in each base classifier and the entire
ensemble.

1 Introduction

Adaboost and ensemble feature selection are two active areas of ensemble re-
search. Adaboost [2] commonly known as Boosting is a successful technique for
building ensembles, which influences different classifier decisions using exam-
ple reweighting. Its operation is closely associated with large margin theory [3].
Ensemble feature selection builds an ensemble using different feature subsets for
each base learner. This provides a potentially more active way of promoting deci-
sion diversity in comparison to partitioning or reweighting training examples [4].
Unfortunately, the success of building an ensemble this way is less theoretically
understood.

Combining these two techniques is of interest for two reasons. Firstly, for cases
where Boosting performs poorly or fails. Boosting performs poorly when the
selected data and classifier pairing gives inadequate error diversity for ensembling
to be beneficial [4]. Boosting fails if the training error is zero using the entire
feature description. This happens when training data is small and may not reflect

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3686, pp. 305–314, 2005.
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the true class separation of the dataset given sufficient data. Secondly, to reduce
the number of features used by each base classifier in the ensemble.

The first examples combining Boosting and feature selection were Boosting
Decision Stumps [5] and Domain-Partitioning [6]. In both cases the motivation
was to improve the fitting of the base classifier to match that of a weak learner.
Boosting using different single features [7] has also been undertaken.

Here Boosting with feature selection is proposed which involves integrating
a floating feature search into a soft margin implementation of Boosting. The
paper is organised as follows. Section 2 details the new Boosting algorithm.
Section 3 details experiments, results and discussion on benchmark data. Section
4 concludes the paper.

2 Boosting with Feature Selection

In its simplest form Adaboost drives down the error rate of an ensembled classi-
fier, by concentrating the classifier at each iteration on examples that are partic-
ularly difficult to classify. Control of the learner is achieved by training example
weighting. At each iteration a hypothesis is obtained for the base learner us-
ing the current weighted training set. These are then updated by placing more
weight on training examples that are incorrectly classified. The resulting ensem-
ble decision is then a linear combination of the support for each base hypothesis.
This is an approximate large margin classifier, since Boosting has concentrated
base learners on the class boundary which has training examples with the highest
error.
The success of Boosting depends primarily on the choice of classifier for a given
problem. As the method relies on training example weighting or partitioning,
the classifier selected must be sensitive to changes in training examples. Many
classifiers are relatively stable to training example variation and are unsuitable
for Boosting. Unstable classifiers are more successfully Boosted, where classi-
fiers such as decision trees and neural networks are common choices. Clearly a
classifier which does not change its decision cannot contribute complementary
decisions to an ensemble. Such a condition is know as decision diversity and is
the main incentive for classifier ensemble design [4].

Training classifiers using different feature subsets provides an alternative
method for introducing variation between decisions. Building ensembles this way
has been studied by a number of researchers. Several improvements have been
proposed to the inital Random Subspace Method (RSM) [8] based on accuracy
refinement [9,10]. Genetic and sequential search methods have also been proposed
[11,12,13], but require a careful choice of selection criteria to avoid overfitting.
The objective of these methods was to use feature selection for training each
base classifier as a means of decorrelating errors between them.

Here Boosting and feature selection are combined. In developing such an al-
gorithm, emphasis must be placed on the intrinsic behaviour of both algorithms.
Feature selection is commonly used to identify a set of relevant, non-redundant
features. Boosting focuses on individual training examples. Its aggressive oper-
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ation results in easy to classify examples receiving little weight, the remaining
weight placed on hard examples. Weighted examples of this type make it difficult
to discriminate between a relevant and an irrelevant feature. However, redun-
dant features can be discriminated. To this end Boosting with feature selection
will not perform explicit feature selection and irrelevant features must be re-
moved using pre-processing. A second anticipated problem is overfitting from
either small amounts of training data or from noisy examples. This problem is
approached using soft margins.

2.1 Soft Margins for Boosting

In this study the AdaboostReg algorithm is used [1], the functionality of which
is centred around the theory of training example margins [3]. A training set
is defined by S = {S1, ..., SM}, where Sm = (xm, ym), xm is a pattern vector
x ∈ R

N and ym is a class label ym ∈ {−1, 1}. At each Boosting iteration a
hypothesis ht is created by training a base classifier L according to the training
example weighting w(t) provided by the current Boosting iteration such that ht =
L(S,w(t)). As a result Boosting produces an ensemble of weighted hypotheses
H =

∑
t αtht(x), where αt is the support for each hypothesis. The margin of

each training point is then formally defined by

ρ(t)
m = ρ(Sm, α(t)) = ym

∑
t

αtht(xm)∑
t αt

, (1)

which is positive only if H classifies the example correctly. Boosting effectively
maximises the smallest example margins, i.e. examples which are most difficult
to classify. In turn the smallest training example margin can be used to define
the margin of the training set hyperplane

� = argmin
m=1:M

ρ(t)
m . (2)

Such a definition of a large margin created by Boosting a training set correlates
with the good generalisation performance observed [3].

Boosting creates a hard margin decision as it attempts to reduce the training
error to zero. This can be a problem in cases where training examples are noisy
due to outliers or miss-labelling. These cases can be over emphasised causing
overfitting and poor generalisation. To solve this problem the soft margin has
been developed for Boosting.

A soft margin approach proposed by Rätsch [1] is to monitor the influence
of the training examples based on the hypothesis weighting αr and the example
weighting w

(r)
m , produced over Boosting iterations

μ(t)
m =

t∑
r=1

αr∑t
r′=1 αr′

w(r)
m , (3)

which is the average weight of an example computed during the learning process.
The rationale is that noisy examples that are hard to classify will have a high
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average weight, resulting in a high influence μ
(t)
m . This can then be used to define

the soft margin as follows
ρ̄(t)

m = ρ(t)
m + Cμ(t)

m , (4)

where C is a regularization factor. Outliers with a consistently small margin
receive a high average weighting and influence μ

(t)
m . This is then added to the

examples margin to increase the soft margin, which on subsequent Boosting
iterations decreases the example weight w

(t)
m . Maximising the soft margin on all

examples prevents outliers being forcefully classified by allowing for some errors,
which compensates the tendency of Boosting to overweight outlying examples
by trading margin and influence

Given this definition of Boosting soft margins, a feature selection algorithm
can now be proposed to search for an appropriate set of features on which to
train each Boosting base learner.

2.2 Selection Algorithm

Feature selection has many well established selection criteria and selection algo-
rithms. The key decision of which search to use depends on the tolerable level
of sub-optimality and criteria monotonicity [14].

Here as a selection criterion the Boosting loss parameter (5) is used, which
is based on the exponential sum of individual inverted training margins in their
un-normalised form. This is a non-monotonic function as the feature subset size
bears no direct relation to the magnitude of the cost.

As a search algorithm the floating search method [15] is used which is sim-
plified for non-monotonic cases. This floating feature search is then conducted
for each Boosting iteration to find a hypothesis which best minimises (5).

Using the AdaboostReg algorithm and integrating the stated floating fea-
ture search AdaboostFS takes the form shown in Fig. 1. AdaboostFS begins
by selecting a set of features Ft = F(k) on which to train each base clas-
sifier, where k indicates the feature subset size during the search. Features
are assessed using the minimum of (5) as a selection criterion J(·). To calcu-
late this the base classifier is first trained using the feature partitioned train-
ing set SFt = {(x1,f1 , y1), ..., (xM,fk

, yM )}, to obtain the hypothesis ht,Ft =
L{SFt ,w

(t)}, which is used to calculate ρ(Sm,Ft , α
(t)) and hence (5).

The final feature set for each iteration is chosen by inclusion and conditional
exclusion stages, both of which seek addition and removal respectively of one
feature which minimises the selection criterion (5). Floating search continues
until the selection criterion is no longer improved J(F(k)) < Δ(F(k−1)), where
Δ is an improvement threshold used to control the final accuracy of the search.
The selected hypothesis weighting αt and hypothesis ht,Ft are then included into
the final ensemble. Finally, the new training example weights w

(t)
m are updated.

On repetition of the algorithm a new feature subset Ft is found which minimises
the cost J(·) using the new example weighting w(t). The process then continues
until the required ensemble size is reached t = T .
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Input: training set S = {(x1,1, y1), ..., (xM,N , yM )}, number of iterations T ,
improvement threshold Δ.
Initialise: w

(1)
m = 1/M for all m = {1, ..., M}, empty ensemble H = {∅}.

Do for t = 1, ..., T,

1. Select hypothesis: using the margin loss (5) as a selection criteria J(·)
calculated according to 2.
Initialise: k = 0, feature set F(k) = {∅} and remaining features
F

(k)
= {f1, ..., fN}, where F(k) /∈ F

(k)
.

1.1 Forward Inclusion: of one new feature into the current feature set
F(k) from F

(k)
according to jo = arg minj J({F(k) ∪ F

(k)

j }), where

∀j = {1, ..., (N − k)}. Set F(k+1) = {F(k) ∪ F
(k)

jo }, k = k + 1.

1.2 Conditional Exclusion: of one feature from F(k) according to
jo = argminj J({F(k) \ F(k)

j }), where ∀j = {1, ..., k}.
if(J({F(k) \ F(k)

jo }) < ΔJ(F(k))), then F(k−1) = {F(k) \ F(k)
jo },

k = k − 1, goto 1.2.

1.3 Continue: if (J(F(k)) < ΔJ(F(k−1))), then goto 1.1,else goto 3.

2. Calculate hypothesis: using feature partitioned training set SFt and
example weighting w(t).
2.1 Train: L using Ft = F(k) from 1. to obtain hypothesis ht,Ft =

L(SFt ,w
(t)), where ht : x �→ {−1, 1}.

2.2 Calculate: hypothesis coefficient and corresponding loss

J(Ft) = arg min
αt

M∑
m=1

exp

{
−1

2

[
ρ(Sm,Ft , α

(t)) + Cμ(t)
m

] t∑
r=1

αr

}
.

(5)
if αt ≤ 0, then set T = t − 1 and break.

3. Include: hypothesis weighting αt and hypothesis ht,Ft to ensemble
H = {H ∪ (αtht,Ft)}.

4. Update: training example weights

w(t+1)
m =

1
Zt

exp

{
−1

2

[
ρ(Sm,Ft , α

(t)) + Cμ(t)
m

] t∑
r=1

αr

}
, (6)

where Zt is the normalisation factor
∑M

m=1 w
(t+1)
m = 1.

5. Output: Final hypothesis

HT (x) = sign

(
T∑

t=1

αtht,Ft(x)

)
. (7)

Fig. 1. The AdaboostFS algorithm
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3 Performance Assessment and Discussion

The performance of AdaboostFS was assessed using benchmark data and was
compared against two other Adaboost feature selection options, one which used
all available features and one which used a random selection of features.

Benchmark datasets were selected from the UCI repository [16] for binary
learning problems that contained a large number of features. The datasets Wdbc,
Sonar and Musk met this specification and were selected for experimentation.
Additionally, due to the restricted number of large dimensional binary learning
problems, the multiclass dataset Multiple Features (Mfeat) was reformulated as a
binary learning problem. The binary problem was to classifying the numbers 0-4
from 5-9. All the features were used in this dataset except the profile correlation
and pixel averages. All data was used in the case of Wdbc and Sonar, but
the Musk and Mfeat2 were reduced in size (for computational reasons) to 600
training examples using stratified random sampling. Datasets were pre-processed
by normalising each feature to zero mean and unit standard deviation. The
datasets dimensionalities and class distributions are summarised in Table 1.

AdaboostFS was compared with two other Adaboost feature selection
schemes: AdaboostAll and AdaboostRSM . To compare our method with using
all available feature information at each Boosting iteration AdaboostReg was
used. This method was termed AdaboostAll. To compare our method with an
alternative ensemble feature selection strategy for Boosting the Random Sub-
space Method (RSM) [8] was used. The RSM has no guidance in its choice of
subset leading to variable accuracy. However, this lack of accuracy is compen-
sated by base classifier diversity something which the RSM exploits for high
dimensional datasets. For direct comparison the RSM method was integrated
into AdaboostReg. At each Boosting iteration a randomly size, randomly sam-
pled set of features was sampled without replacement for training the hypothesis.
This method was termed AdaboostRSM .
Each algorithm was used to Boost an RBF base classifier [1], which had 5 cen-
tres, 10 refinement cycles and a regularisation of 10−5. All the algorithms used
regularised Boosting. As a comparison the regularisation values C = {0, 100}
were used for experimentation, the value with lowest test error performance
was finally selected. The upper bound for αt when minimising (5) was 10. For
AdaboostFS the threshold Δ was set to 1 to find the lowest possible cost.

Table 1. Summary of benchmark datasets dimensions after rejecting 3% outliers

Dataset Name Instances Attributes Class distribution [1 -1]

Wdbc 551 30 [35 65]
Sonar 201 60 [53 47]
Musk 581 167 [18 81]
Mfeat2 581 193 [50 50]
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The performance of the three algorithms was found using ensembles sized
T = 1 → 50 using the following measures. The overall performance of each
ensemble was assessed using error rate. To assess ensemble diversity, training
error diversity was calculated using the kappa measure [17], where a smaller value
represents greater diversity. To assess ensemble error the mean base classifier
training error rate was calculated over training decisions. Complexity of the
final ensemble was assessed using the total number of features used by each
base classifier. Performance was estimated for each algorithm on the benchmark
datasets using 10 runs of 2-fold cross validation.
The results ensembling the RBF(5) classifier using AdaboostAll, AdaboostRSM

and AdaboostFS are shown in Figs. 2-5.
Examining the test error for the three methods Fig. 2, AdaboostRSM and

AdaboostFS have performed better than AdaboostAll for all the datasets Fig.
2.a)-d). There has been a variation in the effectiveness of regularisation for each
method. Clearly, regularisation is only necessary if measurements contain out-
liers. AdaboostAll has not performed very well providing only a slight improve-
ment in the performance of a single classifier. AdaboostFS has performed better
than AdaboostRSM for the Sonar and Mfeat2 datasets Fig. 2.b),d). The surpris-
ingly good performance of the RSM method using random feature selections cor-
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Fig. 2. Test error rate for the four benchmark datasets using AdaboostAll,
AdaboostRSM and AdaboostF S to ensemble the RBF(5) base classifer. The dashed
line is the mean test error rate of a single classifier.
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responds to that found by other ensemble feature selection researchers [8,9,10],
which is explained by the increased error diversity.

Examining the training error diversity Fig. 3, AdaboostRSM and AdaboostFS

have created much more diverse ensembles than AdaboostAll Fig. 3.a)-d). The di-
versity of AdaboostRSM and AdaboostFS is approximately zero, from the kappa
measure that expected by chance. This is expected for AdaboostRSM since the
selected feature subsets are completely random. However, it is surprising that
AdaboostFS also has this behaviour using more ordered feature selections.

Examining the mean base classifier error rate Fig. 4, AdaboostRSM and
AdaboostFS have created ensembles with a higher error rate that AdaboostAll

in all cases Fig. 4.a)-d). However, this increased classifier error rate has not lead
to a greater ensemble error. It has been caused by the Boosting process seek-
ing to minimise the loss (5), which has in turn traded base classifier error rate
for increased decision diversity reducing ensemble error. AdaboostAll using all
the features has not been capable of producing much variation in base classifier
accuracy and diversity using weighted examples alone. This explains the poor
improvement in ensemble error rate over a single classifier. AdaboostFS and
AdaboostRSM using feature selection has been better capable of trading error
rate for increased diversity using different features, hence reducing the overall
ensemble error. Interestingly, the weaker hypotheses created using feature selec-
tion have created better ensembles than a stronger classifier using all available
features. This was stated for the original definition of Boosting [2].
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Fig. 3. Training error diversity (Kappa) for the four benchmark datasets using
AdaboostAll, AdaboostRSM and AdaboostF S to ensemble the RBF(5) base classifer
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Fig. 4. Mean base classifier training error rate for the four benchmark datasets using
AdaboostAll, AdaboostRSM and AdaboostF S to ensemble the RBF(5) base classifer
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Fig. 5. Total number of features used for classification for the four benchmark datasets
using AdaboostAll, AdaboostRSM and AdaboostF S to ensemble the RBF(5) base
classifer.

Examining the total number of features used for classification Fig. 5,
AdaboostRSM and AdaboostFS have created ensembles with a smaller num-
ber of features Fig. 5.a)-d). This is approximately half that of AdaboostAll for
AdaboostRSM due to the mean random subset size. AdaboostFS has created en-
sembles considerably smaller than both AdaboostRSM and AdaboostAll 5.a)-d).

AdaboostFS using a floating feature search to select suitable features for
Boosting has been most effective at reducing ensemble feature dimensionality.
Feature selection has removed redundant features focusing each base classifier
on feature subsets suitable for reducing the current contribution to the margin
loss. Hence, fewer features are required for classification in each base classifier
and for the final trained ensemble. The ensemble error rate of AdaboostFS has
been slightly higher than AdaboostRSM in two cases, as it has been difficult to
improve on this characteristically diverse method. However, AdaboostRSM has
produced ensembles with a much larger total number of features. Where appli-
cable, regularisation has improved the performance of the Boosting algorithms
by preventing overfitting which has lowered the ensemble error rate, but has
slightly increased the total number of features selected for AdaboostFS .

4 Conclusion

We have presented AdaboostFS , an algorithm which combines Adaboost and
feature selection, with the motivation of reducing the number of features used
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by classifiers in the resulting ensemble. We have shown the algorithm to have an
error rate lower than using all features, to compete or improve on the powerful
random subset ensemble, and to require significantly less feature information for
each base classifier and for the resulting ensemble. AdaboostFS therefore pro-
vides a means of reducing the total number of features used for classification by
an ensemble. In cases where ensemble test speed is important the extra compu-
tation required for training the ensemble using feature selection is justifiable.
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Abstract. When the organization of images in a database is well de-
scribed with pre-defined semantic categories, it can be useful for category
specific searching. In this work, we investigate a supervised learning ap-
proach to associate low-dimensional image features with their high level
semantic categories and utilize the category specific feature distribution
information in statistical similarity matching. A multi-class support vec-
tor classifier (SVC) is trained to predict the categories of query and
database images. Based on the online prediction, pre-computed cate-
gory specific first and second order statistical parameters are utilized in
similarity measure functions on the assumption that, distributions are
multivariate Gaussian. A high dimensional feature vector would increase
the computational complexity, logical database size and moreover, in-
corporate inaccuracy in parameter estimation. We also propose a fusion
(early, late, and no fusion) based principal component analysis (PCA) to
reduce the dimensionality based on both independent and dependent as-
sumptions of image features. Experimental results on the reduced feature
dimensions are reported on a generic image database with ground-truth
or known categories. Performances of two statistical distance measures
(e.g., Bhattacharyya & Mahalanobis) are evaluated and compared with
commonly used Euclidean distance, which show the effectiveness of the
proposed technique.

1 Introduction

In recent years, rapid advances in software and hardware technology, availability
of the World Wide Web and moreover, digital imaging revolution facilitate the
generation, storage and retrieval of large collections of digital images for profes-
sional archives to personal use. Effectively and efficiently searching these large
image collections poses significant technical challenges. During the last decade,
there have been an overwhelming research interests in content-based image re-
trieval (CBIR) from different communities [7,13]. In a typical CBIR system, a
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user can search the image databases with a visual example image (query-by-
example) and the system will return an ordered list of images that are percep-
tually similar to the query image. Currently, most CBIR systems are similarity-
based, where similarity between query and target images in a database is mea-
sured by some form of distance metrics in feature space [13]. However, CBIR
systems generally conduct this similarity matching on a very high-dimensional
feature space without any semantic interpretation [7] or paying enough attention
about the underlying distribution of the feature space [12]. High-dimensional fea-
ture vectors not only increase the computational complexity in similarity match-
ing and indexing, but also increase the logical database size. In the context of
image classification, recently supervised machine learning approaches have been
applied to classify collection of images into distinguishable perceptual or seman-
tic categories (e.g., indoor-vs.-outdoor, textured-vs.-nontextured etc.) [4]. For
many frequently used visual features in CBIR, often their category specific dis-
tributions are also available in a database whose perceptual and/or semantic
description is reasonably well defined (such as Personal photo collection, Med-
ical images with different modalities etc.). In this case, it is possible to extract
a set of low-level features (e.g., colour, texture, shape, etc.) to predict semantic
categories of each image by identifying its class assignment using a classifier.
Feature descriptors along with their attributes may vary substantially from one
category to another. Thus, an image can be best characterized by its feature
vector and by exploiting the information of feature distribution from its seman-
tic category. In commonly used geometric similarity measures (e.g., Euclidean),
no assumption is made about the distribution of the features and its effective-
ness depends on the assumption of a sphere shape distribution of similar images
around the query image point in feature space [1]. However, this assumption is
not always true in reality. Similarity measures based on empirical estimates of
the distributions of features have been proposed in recent years [12]. However,
the comparison is most often point wise or statistics of the first order (i.e., mean
vector) of the distribution is considered only [6].

This paper is primarily concerned about a principal component analysis
(PCA) based dimension reduction and a category based statistical similarity
measure technique on the low-dimensional feature space. There are mainly two
major contributions in this paper. The first one is to propose a fusion based
(early, late and no fusion) PCA for dimension reduction of high-dimensional
feature vectors on both independent and dependent assumptions of several im-
age features. Secondly, we propose an adaptive statistical similarity matching
function based on parameterization (first and second order) of underlying prob-
abilistic distribution of feature space in different image categories. For this, we
utilized a multi-class support vector machine (SVM) for online category predic-
tion of query and database images. Hence, category specific statistical param-
eters in low-dimensional feature space can be exploited by statistical distance
measures in real time similarity matching. Feature representation in reduced di-
mension with different fusion based techniques may affect retrieval performences,
which we evaluated through experimantation on a generic image database with
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known categoreis and ground-truth. We have also evaluated objective compar-
ison results of our adaptive statistical distance measures with precision/recall
curves. It showed the effectiveness of our proposed approach through perfor-
mence improvment compare to commonly used Euclidean distance.

2 Feature Extraction and Representation in PCA Space

The performance of a CBIR system mainly depends on the particular image
representation and similarity matching function employed. We have extracted
colour, texture and edge features for our image representation at global level.
Colour is the most useful low-level feature and its histogram based representa-
tion is one of the earliest descriptors, which is widely used in CBIR [13]. For
colour feature, a 108 dimensional color histogram is created in vector form on
HSV (Hue, Saturation, Value) colour space. In HSV space, the colours correlates
well and can be matched in a way that is consistent with human perception. In
this work, we uniformly quantized HSV space into 12 bins for hue(each bin con-
sisting of a range of 30◦), 3 bins for saturation and 3 bins for value, which results
in 108 bins for color histogram. Many natural images of different categories can
be distinguished via their homogeneousness or texture characteristics. We ex-
tracted texture features from the gray level co-occurrence matrix. A gray level
co-occurrence matrix is defined as a sample of the joint probability density of the
gray levels of two pixels separated by a given displacement d and angle θ [2]. We
obtained four co-occurrence matrices for four different orientations (horizontal
0◦,vertical 90 ◦, and two diagonals 45 ◦ and 135 ◦) and normalize the entries [0,1]
by dividing each entry by total number of pixels. Higher order features, such as
energy, maximum probability, entropy, contrast and inverse difference moment
are measured based on each gray level co-occurrence matrix to form a five dimen-
sional feature vector and finally obtained a twenty dimensional feature vector by
concatenating the feature vector of each co-occurrence matrix. To reperesent the
shape feature on a global level, a histogram of edge direction is constructed. The
edge information contained in the images is processed and generated by using
the Canny edge detection (with σ = 1, Gaussian masks of size = 9, low threshold
= 1, and high threshold = 255) algorithm [3].The corresponding edge directions
are quantized into 72 bins of 5◦ each. Scale invariance is achieved by normaliz-
ing this histograms with respect to the number of edge points in the image. As
the dimensions of colour, texture and edge (108+20+72 = 220) feature vectors
are high, we need to apply some dimension reduction technique to reduce the
computational complexity and logical database size. Moreover, if the training
samples used to estimate the statistical parameters are smaller compare to the
size of feature dimension, then inaccuracy or singularity may arise for second
order (co-variance matrix) parameter estimation.

The problem of selecting most representative feature attributes commonly
known as dimension reduction, has been examined by principal component anal-
ysis (PCA) [10] in some CBIR systems [13]. The basic idea of PCA is to find m
linearly transformed components so that they explain the maximum amount of
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variances in the input data and mathmetical steps used to describe the method
is as follows:
given a set of N feature vectors (training samples) xi ∈ IRd|i = (1 · · ·N), where
the mean vector(μ) and covariance matrix (C) is estimated as

μ =
1
N

N∑
i=1

xi & C =
1
N

N∑
i=1

(xi − μ)(xi − μ)T (1)

Let νi and λi be the eigenvectors and the eigenvalues of C, then they satisfy the
following:

λi =
N∑

i=1

(νT
i (xi − μ))2 (2)

Here,
∑N

i=1 λi accounts for the total variance of the original feature vectors set.
Now, PCA method tries to approximate the original feature space using an m
dimensional feature vector, that is using m largest eigenvalues account for a large
percentage of variance, where typically m << min(d, N). These m eigenvectors
span a subspace, where V = [v1, v2, · · · , vm] is the d × m-dimensional matrix
that contains orthogonal basis vectors of the feature space in its columns. The
m×d transformation V T transforms the original feature vector from IRd → IRm

ones. That is
V T (xi − μ) = yi, i = 1 · · ·N (3)

where yi ∈ IRm and kth component of the yi vector is called the kth principal
component (PC) of the original feature vector xi. So, the feature vector in the
original IRd space for query and database images can be projected on to the IRm

space via the transformation of V T [10].
In CBIR, PCA has been mainly employed to reduce the dimensions of a

single feature vector or a composite feature vector combined with various fea-
tures. In this work, we take a fusion based approach of PCA to account for all
types of combinations based on both independent and dependent assumptions
of feature space. Here, we describe it as early fusion, late fusion & no fu-
sion. In case of early fusion, we consider to form a composite feature vector
from the three feature types described above before applying any PCA based
dimension reduction technique. Let fc, ft, and fe be the global colour, texture
and edge feature vector respectively of an image. Now the composite feature
vector is formed by simple concatenation of each individual feature vector as
Fearlyfusion = (fc + ft + fe), where the dimension of Fearlyfusion is the sum of in-
dividual feature vector dimension. Now we apply PCA to this high-dimensional
composite feature vector to convert it in a low-dimensional feature vector in PCA
space and called it FPCA

earlyfusion. After getting this reduced feature vector, we will
use it in consequent parameter estimation and similarity matching functions. In
case of late fusion, we assume independent assumption of feature space for PCA
and apply it in each feature space seperately to lower the dimension first. So,
here we reduce dimension of each color, texture, and edge feature seperately as
fc → fPCA

c , ft → fPCA
t , and fe → fPCA

e and finally combine them to form a
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joint feature vector as FPCA
latefusion = (fPCA

c + fPCA
t + fPCA

e ) for subsequent anal-
ysis. We took a totally independent assumption of feature space in case of no
fusion. Instead of combining the feature vectors lately as in late fusion strategy,
the reduced features will be used seperately as FPCA

nofusion = (fPCA
c , fPCA

t , fPCA
e )

in subsequent parameter esimations and similarity matching functions described
in later sections.

3 Statistical Distance Measures

Statistical distance measure, defined as the distances between two probability
distributions, finds its uses in many research areas in pattern recognition, in-
formation theory, and communication. It captures correlations or variations be-
tween attributes of the feature vectors and provides bounds for probability of
retrieval error of a two way classification problem. Recently, CBIR community
also adopted statistical distance measures for similarity matching [1,12]. In this
scheme query image q and target image t are assumed to be in different classes
and their respective density as pq(x) and pt(x), both defined on IRd. When these
densities are multivariate normal, they can be approximated by mean vector μ
and covariance matrix C as pq(x) = N(x; μq, Cq) & pt(x) = N(x; μt, Ct)
where,

N(x; μ, C) =
1√

(2π)d|C| exp− 1
2 (x−μ)T C−1(x−μ) (4)

here, x ∈ IRd and | · | is matrix determinant [9]. A popular measure of similar-
ity between two Gaussian distributions is the Bhattacharyya distance, which is
equivalent to an upper bound of the optimal Bayesian classification error prob-
ability [9] [11]. Bhattacharyya distance (DBhatt) between query image q and
target image t in the database is given by:

DBhatt(q, t) =
1
8
(μq − μt)T

[
(Cq + Ct)

2

]−1

(μq − μt) +
1
2

ln

∣∣∣ (Cq+Ct)
2

∣∣∣√|Cq||Ct|
(5)

where μq and μt are the mean vectors, and Cq and Ct are the covariance matrices
of query image q and target image t respectively. Equation (5) is composed of
two terms, the first one being the distance between mean vectors of images,
while the second term gives the class separability due to the difference between
class covariance matrices. When all classes have the same covariance matrices,
the Bhattacharyya distance reduce to the Mahalanobis distance, a widely used
similarity measure in CBIR literatures [6,9].

DMaha(q, t) = (μq − μt)T C−1(μq − μt) (6)

However, if inclusion of both query and target covariance matrices is useful,
Bhattacharyya distance will outperform Mahalanobis distance [6] as will be
shown in observation section.
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The above distance measures will work fine for a single feature or combined
feature vector as obtained from early or late fusion based techniques. However,
for no fusion based technique, we have to calculate the distance measure for each
feature seperately and combine them with appropriate weight for a final distance
value. For Bhattacharyya distance it will be as follows:

DBhatt(q, t) = w1 ∗ Dcolor
Bhatt(q, t) + w2 ∗ Dtexture

Bhatt (q, t) + w3 ∗ Dedge
Bhatt(q, t) (7)

whereas same will apply for Mahalanobis distance. Here, w1, w2, and w3 are
non-negative weighting factor with normalization (w1 + w2 + w3 = 1), which
need to be selected experimentally as described in section 6.

4 Category Prediction with Multi-class SVM

Statistical distance measures described in previous section, are not adaptive
in nature and assume individual feature distributions of query and database
images always belong to seperate classes. However, to utilize category specific
distribution information in similarity matching, we need some form of classifier
based on supervised machine learning technique to predict the categories online.
Support vector machine (SVM) is an emerging machine learning technology
which has been successfully used in content based image retrieval [4]. Given
training data (x1, . . . ,xn) that are vectors in some space xi ∈ IRn and their
labels (y1, . . . , yn) where yi ∈ (+1,−1)n, the general form of the binary linear
classification function is

g(x) = w · x + b (8)

which corresponds to a separating hyper plane

w · x + b = 0 (9)

where x is an input vector, w is a weight vector, and b is a bias. The goal of
SVM is to find the parameters w and b for the optimal hyper plane to maximize
the geometric margin 2

||w|| between the hyper planes, subject to the solution of
the following optimization problem:

min

w, b, ξ

1
2
wT w + C

n∑
i=1

ξi (10)

subject to
yi(wT φ(xi) + b) ≥ 1 − ξi (11)

where ξi ≥ 0 and C > 0 is the penalty parameter of the error term. Here training
vectors xi are mapped into a high dimensional space by the non linear mapping
function φ : IRn → IRf , where f > n or f could even be infinite. Optimization
problem and its solution can be represented by the inner product. Hence,

xi.xj → φ(xi)T φ(xj) = K(xi, xj) (12)

where K is a kernel function. The SVM classification function is given by [4]:
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f(x) = sign

(
n∑

i=1

αiyiK(xi, x) + b

)
(13)

A number of methods have been proposed for extension to multi-class problem
to separate L mutually exclusive classes essentially by solving many two-class
problems and combining their predictions in various ways [4]. One technique,
commonly known as “one-vs.-one”is to construct SVMs between all possible
pairs of classes. During testing, each of the L ∗ (L − 1)/2 classifier votes for one
class. The winning class is the one with the largest number of accumulated votes.
We use this technique for the implementation of our multi-class SVM by using
the LIBSVM software package [5].

5 Parameter Estimation and Online Similarity Matching

To estimate the parameters of the category specific distributions, feature vectors
with early, late and no fusion based techniques are extracted from N selected
training image samples. It is assumed that feature of each category will have dis-
tinguishable normal distribution, which is very natural in many specific purpose
and natural image databases with predefined categories. Computing the statis-
tical distance measures between two multivariate normal distributions requires
first and second order statistics in the form of mean (μ) and covariance matrix
(C) or parameter vector θ = (μ, C) as described in previous section. Suppose
that there are L different semantic categories in the database, each assumed to
have a multivariate normal distribution with mean vector μi and covariance ma-
trix Ci, for i ∈ L. However, the true values of μ and C of each category usually
are not known in advance and must be estimated from a set of training samples
N [9]. The μi and Ci of each category are estimated as

μi =
1
Ni

Ni∑
j=1

xi,j & Ci =
1

Ni − 1

Ni∑
j=1

(xi,j − μi)(xi,j − μi)T (14)

where xi,j is sample j from category i, Ni is the number of training sam-
ples from category i and N = (N1 + N2 + . . . + NL). As we estimate the
parameters after applying the PCA based dimension reduction technique, the
dimension of x will vary based on early, late, and no fusion techniques. More-
over, as no fusion based technique assumes totally independent assumption,
the parameter vector θ will have seperate μ and C for each feature as θ =
(μcolor

i , Ccolor
i , μtexture

i , Ctexture
i , μedge

i , Cedge
i ) for i ∈ L. Later these parameters

will be used independently for each feature in statistical similarity matching.
Similarity measure based on the above statistical parameters would perform bet-
ter if the right categories of query and database images are predicted in real time.
Hence, we utilized the multi-class SVM classifier to predict the categories and
based on the online prediction, similarity measure functions will be adjusted to
accommodate category specific parameters for query and database images. Fig-
ure 1, shows the functional process diagram of the proposed similarity matching
technique from a query image view point.
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Fig. 1. Process diagram of the proposed similarity matching technique

6 Experimental Setup and Observation

For statistical parameter estimation, PCA and SVM training, we used a labeled
database of generic images as training samples. We experimentally selected 15
semantically different categories (Mountain, Beach, Flower, Food, Architecture,
etc.) each with 100 images for generating the training samples. However, for
actual evaluation of similarity measure functions, we conducted our experiments
on the entire database (3000 generic images from the Corel color photo collection)
without any labeling. It should be pointed out that some images in one category
can have visual features that are very similar to those found in images belong to
other categories, hence making image classification and retrieval more difficult.

For SVM training, we used the original feature vector with radial basis kernel
function K(xi, xj) = exp(−γ||xi−xj ||2), γ > 0. After 10 fold cross validation, we
found the best parameters C = 30 and γ = .01 with an accuracy of 80.15% in our
current setting and finally trained the whole training set with these parameters.
The dimensionality of the feature vector is reduced to (220 → 20) for FPCA

earlyfusion,
(220 → 35) for FPCA

latefusion where, (fPCA
c ∈ IR16, fPCA

t ∈ IR5, fPCA
e ∈ IR14) for

FPCA
nofusion and accounted for 90.0% of the total variances. In simililariy matching

based on no fusion technique, we used w1 = .6, w2 = .2, and w3 = .2 for the
colour, texture and edge feature which gave the best performance.

For evaluation of the retrieval performance, we used precision-recall metrics.
Recall is the ratio of the number of relevant images returned to the total number
of relevant images. Precision is the ratio of the number of relevant images returned
to the total number of images returned. For experimentation, we selected a set of
10 bench mark queries for each category not included in the database and used
query-by-example as the search method. Performances of two statistical distance
measures, one which utilizes both query and target image category specific param-
eters (Bhattacharyya) and the other which only utilizes parameters for query cate-
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(a) Early Fusion (b) Late Fusion

(c) No Fusion (d) Bhattacharyya distance

Fig. 2. Precision-recall curves for distance measures

gory (Mahalanobis), are evaluated and comparedwithEuclidiandistancemeasure.
Figure 2(a), 2(b) & 2(c) presents precision-recall curves of these distance measures
basedondifferent fusion techniques.As shown,bestperformance is always achieved
byBhattacharyya distancemeasure,whereasEuclideandistance performedpoorly
in all cases. The result is expected as Euclidean distance does not take into account
the variations of its feature attributes in semantic categories. Based on the above
observation, we can conclude that distance measures which utilze both the param-
eters of query and database image categories performed better in a semantically
organizeddatabase.We obtainedbetter performances in early and late fusion com-
pare to no fusion, as shown in Figure 2(d) for Bhattacharyya distance measure.
Hence, it concluded that, features may have some form of dependency in feature
space for our generic image database.

7 Conclusion

This paper has examined an image retrieval approach with supervised machine
learning and fusion based dimension reduction techniques. High-dimensional fea-
ture vectors are projected to a PCA subspace to reduce the dimensionality on
both independent and dependent feature space assumptions. Category specific
statistical parameters are computed from the feature distributions in reduced
feature space on Gaussian assumption and utilized in statistical similarity mea-
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sure functions based on online SVM prediction. Overall, the assumptions are
reasonable, given the constraint that, online similarity matching need to be per-
formed in real time and database is semantically well organized. Performances
of different distance measures with three fusion based techniques were evaluated
in a generic image database. Experimental results were promising and showed
the effectiveness of the proposed approach.
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Abstract. A new deterministic method to determine primality of any
given number is presented in this paper. The underlying principle in-
volves the use of a special series that generates lesser prime numbers
till the root of the number under scrutiny. Subsequently, divisibility is
performed to check whether the number is prime or not. Such a series
characteristically produces all the successive prime numbers along with
a few composite numbers as well, the proportion of latter increasing as
one moves to higher numbers. This technique is provably more efficient
than other deterministic methods that employ division by primes till the
root of the number, either by generating those smaller primes or storing
them or by simply taking all odd numbers till the square root.

1 Introduction

1.1 Related Work

A Prime number sequence is considered to be a confounded mystery of the most
unpredictable nature. Many researchers believe that an algorithm to determine
the sequence certainly does not exist. Even primality testing of an integer is a
computationally tough problem. Prime numbers are tested to be prime based
upon the divisibility by lesser numbers. It is a well known fact that divisibility
tests till

√
n can deterministically establish the prime character of a number

n. Many other relations, like 2n − 1 being prime for all primes n existed but
have been contradicted because they failed to satisfy for certain values of n
(In 1536 Hudalricus Regius showed that 211 − 1 = 2047 is not prime. It is
23× 89. Since then, many others have proved this for other values of n). Lucas-
Lehmer Test actually checks successfully for the 2n −1 being prime or not. Still,
it provides for very few prime numbers. Not all numbers can be tested to be
prime or not depending on the above check. So, fundamentally, to generate a
prime number or to check for a number to be prime or not without having any
knowledge about all the smaller prime numbers, we, inevitably have to perform
those divisibility tests. In the year 2002, Agrawal et. al. [AS1] presented the
first deterministic algorithm that is polynomial in log2n to check the primality
of a number. It performs with a complexity O((log2n)10.5) which is not feasible
� Part of this work was done while the first author was a project trainee at Tata

Research Development and Design Centre, Pune-411013, Maharashtra, India.
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for the present size of numbers. However, the first of its kind, a deterministic
polynomial algorithm is historically the most important development in this field.
State of the art algorithms are the probabilistic ones like Solovay-Strassen [SS1]
and Miller-Rabin[Ra1] that are used today in cryptographic applications like the
RSA. How ever, due to the probabilistic nature, a composite number may very
well be reported to be prime. So, to assure a good probability (typically more
than 99.99 %), the algorithm is run many times which makes it slow for practical
purposes. For e.g., the probability of an erroneous result in the Solovay-Strassen
algorithm is (1

2 )k, where k is the number of iterations.

1.2 Motivation

It is known that all prime numbers p, with the exception of 2 and 3 always
exist in the form p = 6n ± 1 [We1]. Taking inspiration from the fact, we tried
to find sequences in occurrences of prime numbers. In this paper, we present
certain experimentally generated sequences [KK2] that are periodic in nature
and determine successive ”possible” prime numbers with a definite efficiency.
Later, we use these sequences to check for large prime numbers and hence we
obtain reduction in the number of required divisibility tests (by prime numbers
till root of n). Every sequence performs to 100 % efficiency till a certain value
(also presented) after which the efficiency goes down gradually but still serves
the practical utility. We also argue that storing such sequences is far better (in
terms of computation cost) than computing lesser prime numbers (up till

√
n)

and then to establish the prime character of n. It is also better than storing the
entire lot of prime numbers (till

√
n) because of two reasons. The sequence takes

lesser space and can be compressed very effectively. The determination and use
of such sequences provides a new field for engineering with prime numbers and
indeed leaves a good scope for scientific research.

2 Patterns

2.1 Definition of a Pattern Sequence

The nature of patterns in the text hereon is based upon the difference between
successive prime numbers. A pattern sequence h for a prime h, would consist
of differences between successive prime numbers that exist between h (actually
starting from the prime number next to h) and the product of all prime number
less than equal to h which is also the LCM of all the numbers from one to
h. For e.g., a pattern sequence 7 consists of differences of all successive prime
numbers that are greater than or equal to 11 and less than 221 i.e. 11 + 210
where 210(= 2 × 3 × 5 × 7) is actually the LCM of all integers from 1 to 7 or
more simply the product of all prime numbers from 1 to 7. Pattern sequence
7 is:

PS7 = 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, 8, 6,
4, 6, 2, 4, 6, 2, 6, 6, 4, 2, 4, 6, 2, 6, 4, 2, 4, 2, 10, 2, 10 (1)
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The sum of above series is of course 210. In general, sum of PSh is prime product
of h. The prime product of k is defined as the product of all prime numbers less
than or equal to h. The pattern sequence and prime product are defined only for
prime numbers. Table 1 gives certain prime numbers versus their prime products.

Table 1. Prime Products versus prime numbers

Prime number (h) Prime Product
3 6
5 30
7 210
11 2310
13 30030
17 510510
19 9699690
23 223092870

2.2 Algorithm to Generate Pattern Sequence h

1. I = h , J = 1, P = 1, sum = 0
2. I = I + 1
3. IF I is Prime, Then GOTO 4 else GOTO 2
4. Last = I
5. I = I + 1
6. IF I is prime, Then GOTO 7 else GOTO 5
7. J = J + 1
8. IF J is prime, GOTO 9 else GOTO 7
9. P = P × J

10. IF J is equal to h, Then GOTO 11 else GOTO 7
11. IF I % 6 = 1, Then GOTO 12 else GOTO 19
12. IF I is Prime, Then GOTO 13 else GOTO 18
13. Diff = I - Last
14. Print Diff
15. Last = I
16. Sum = Sum + Diff
17. IF Sum < P, Then GOTO 18 else GOTO 26
18. I = I + 4
19. IF I is Prime, Then GOTO 20 else GOTO 24
20. Diff = I - Last
21. Print Diff
22. Last = I
23. Sum = Sum + Diff
24. I = I + 2
25. IF Sum < P, Then GOTO 12 else GOTO 26
26. STOP
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3 Utility of a Pattern Sequence

3.1 Predicting a Prime Number

Predicting successive prime numbers from Pattern Sequences is like adding the
next term in the PS to the present prime number in hand and moving on till
requirements are met. For e.g., for Pattern Sequence 7, starting from 11, to
obtain the next prime number, we add the first term of the sequence, i.e. 2 to
get 13. To get the next prime number, we add the next term i.e. 4 to get 17 and
so on until the sequence’s last term is added. Then we move back to the first
term and carry on in a periodic manner. The sequence is periodic, since after all
the terms have been added, the next term to be added is again the first one and
the procedure continues repeatedly (cyclic).
For Pattern Sequence 7, i.e. {2, 4, 2, 4, 6, 2, 6 · · ·10, 2, 10}
First prime number = 11,
The next one = 11 + 2 = 13, The next= 13 + 4 = 17, The next = 17 + 2 = 19,
The next= 19 + 4 = 23 and so on · · · up till the last term is added and then
back to the first one.

3.2 Usefulness of Pattern Sequences

A Pattern Sequence h is actually a periodic sequence with the period being
the length of the particular pattern, which encompasses all the prime numbers
that are greater than h. i.e. every big prime number should appear in the list
of numbers generated by a pattern sequence by passing through the series pe-
riodically. This does not guarantee that every number that is generated by a
Pattern Sequence is prime but does guarantee that no prime number is missed
from the sequence. Hence, it all comes down to the efficiency of various Pat-
tern Sequences. We define Efficiency(h, N) as the percentage of numbers that
are prime from h up to N among the all the numbers generated by the Pattern
Sequence h. Greater efficiency is hence desirable from each Pattern Sequence.
Efficiency(h, N) for every Pattern Sequence h is 100 % for N less than equal
to the square of prime number next to h. For e.g. for the Pattern Sequence 7,
efficiency is 100% until N = 121(= 11 × 11 and 11 is the next prime number to
7). In fact the square is the first prime number to appear in a Pattern Sequence
h is the square of prime number next to h. There on, the efficiency gradually de-
creases for increasing N . Table 2 shows the efficiency of some Pattern Sequence
for N = 100, 1000, 10000, 100000.

We may infer that, ”for the same N , the efficiency is greater for Pattern
Sequence h1 than Pattern Sequence h2 if h1 > h2”.

4 Application in Determining Prime Numbers

To determine whether a number n is prime or not, one needs to make divisibil-
ity tests by all prime numbers till the root of n. So, to check whether a large
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Table 2. Efficiency for various values of h and N . It can be seen that N can be scaled
in proportion of h.

EFFICIENCY

FOR h Upto N

h,N 100 300 700 1000 3000 7000 10000 100000
3 73.53 60.40 53.41 50.00 42.96 38.56 36.83 28.72
5 89.28 74.39 66.49 62.31 62.31 48.18 46.02 35.96
7 100.00 86.11 76.69 72.29 62.40 56.14 53.67 41.95

11 100.00 92.54 83.89 79.15 68.58 61.69 59.01 46.15
13 100.00 98.41 90.58 85.64 74.18 66.72 63.89 49.99
17 100.00 100.00 95.42 90.27 78.75 70.81 67.77 53.11
19 100.00 100.00 98.42 94.91 83.33 74.75 71.48 56.06
23 100.00 100.00 100.00 98.25 87.22 78.26 74.79 58.60

number is prime or not, provided a Pattern Sequence h which has a workable
Efficiency(h,

√
n) will suit the purpose of obtaining primes till root of n. What is

a workable efficiency and what not, is discussed in the next section. For example,
determining the prime character of a number of the order of 108 (100 million),
should require all prime numbers till 10, 000 and using the Pattern Sequence 19,
we see from Table 2, up till N = 361, the efficiency is 100 %. Till 1000 it remains
almost 95% and even till 10,000 it is 71 % (There is of course a more gradual
decrease). Hence, by making 1.3 times the optimal number of divisions (number
of prime numbers till

√
n), we are able to determine the primality of n in lesser

steps than the usual method of dividing by all numbers (odd) till the
√

n. Ta-
ble 3 shows a comparison of the steps taken by the usual method and those by
using various Pattern Sequences. So, checking for divisibility of the number n,
by every number generated from a suitable Pattern Sequence makes a good way
of generating or checking whether a number is prime or not. In the following
section we argue how much efficiency is good enough in practice. After that it
is argued why is this one a possible alternative to other methods of generating
prime numbers.

4.1 How Efficient Is Workable?

We have defined efficiency of a Pattern Sequence till a number N . What figure of
the efficiency can be good enough to adopt this method is the natural question
that follows. It is also established by now that with increasing value of h, the
efficiency also increases for the same value of N . So, greater the value of h, lesser
is the time required. An optimal value of h, can be determined experimentally.
For example, from Table 3, we see that for a number n of the order 109, using
even h = 5, we obtain results that are twice as good as the normal method. And
from Table 2, for values of N (of the order of

√
n), the efficiency is still about

38% only. So, even at 40% efficiency we provide results better than twice as good
(i.e. half the time taken). It can be seen that for greater values of h, efficiency is
much better and hence the time taken is much lesser. A definite value of h (or
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efficiency) can be chosen for a definite range of numbers (order of the number)
for suitable requirements.

4.2 Usefulness over Others

We now discuss the performance of this technique in comparison to other deter-
ministic ones. We shall provide arguments with respect to the two fundamental
and rather nave methods: First, performing divisibility tests by all the odd num-
bers till

√
n and second, prior storage of prime numbers till the

√
n and then per-

forming divisibility tests by all those prime numbers. Comparisons with respect
to probabilistic algorithms is not done here as this algorithm is deterministic in
nature and provides the results with 100% accuracy, whereas the other category
of algorithms ([Ra1],[SS1]) produce the output only with some probability of
correctness of the result. Table 3 shows the relative number of steps required
by the First one and by our method to test for a number of the order of 109 (1
billion). Table 4 actually shows the relative number of steps employed by both
the methods. It is clear that our method always outperforms the First one.

Considering the second Method that requires the knowledge of all existing
prime numbers till

√
n is quite impractical in real situations because of two

reasons. Firstly, because to test for big prime numbers, lets say, of the order of,
1016, number of primes to be stored is enormously huge (of the order of 108 i.e.
100 million) and impossible to always carry along. Also, while running such a
program on the computer, the amount of memory required would be too high.
That would, in fact require regular swapping in and swapping out which retards
the purpose of efficient generation. Also, the limit of n would not known and it
is very likely that a prior supposition may fail to perform in all cases (i.e. fall
short). The sequence used by our method is in fact much lesser in size and can
even be compressed (next subsection) to provide still lesser storage and memory
requirements. In such conditions, the method described in this paper moves on
the lines of giving a better alternative.

4.3 Performance Analysis

The time complexity of the method can be expressed as the number of divisions
performed in the worst case. Hence, maximum number of divisions will be the
number of terms generated by the Pattern Sequence till

√
n. If e be the efficiency

of the pattern sequence being used and d(n) be the prime density till n,

T imeComplexity = O(
√

e × d(n) × n) (2)

The prime number density is a debatable issue for n is general and e is a constant
term for a particular pattern sequence being used. For large values of n, d(n) =

1
log(n) (see Appendix 6.4) reduces (2) to,

T imeComplexity = O(
√

n

log(n)
) (3)
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Table 3. Comparison of method First to that of ours using various h for determining
a prime number (429467291). Time reported is in milliseconds and the experiment was
performed on an IBM R51 Thinkpad with Pentium M and Windows XP as the OS.

Sequence Time Required (ms)

Odd till
√

n 14.55

Our Method (h)

5 7.74
7 6.48
11 5.99
13 5.6

Table 4. Comparison of method First to that of ours using various h for determining
a prime number (429467291) in terms of the number of required comparison steps

Sequence No. of Comparisons

Odd till
√

n 32767

Our Method (h)

5 17477
7 14981
11 13619
13 12573
17 11832
19 11213
23 10730

4.4 Compressing the Sequence

If sequences like those defined in this paper are used for very big values of h,
we may have sequences that are indeed large. In, this section we briefly describe
a scheme for compression of such sequences. In a typical Pattern Sequence, in
most of the sequence, we have combinations of 2, 4, 6 and 8 and also 10 and 12.
Let us decide to refer the most frequently occurring combinations like:
2, 4, 2, 4 4, 2, 4, 6 2, 4, 2, 6 4, 2, 4, 2, 4, 6 etc. by some
odd integers or any other alias. So, once such a sequence is generated, we can
compress the Pattern Sequence in linear time by replacing largest subsequences
with the corresponding alias (preferably an odd number) quite in the same man-
ner as general Text Compression by [KK1]. Also, while the prime number testing
algorithm is running, it takes care of those few aliases inherently. In fact, on find-
ing an alias control may be shifted over to another function (specific to each alias)
that takes as parameter the number and performs the required comparisons. We
have only presented the scheme, which should be easy to implement [Ha1].
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5 Conclusion and Further Scope

In this paper, a sequential pattern has been used for the fist time to actually
deterministically test the prime characteristic of higher numbers. Though there
exist It is believed to be a new direction to how we engineer and how we look
at prime numbers. Prime numbers are indeed unpredictable in absolute sense,
but we have shown that regular patterns exist absolutely for small intervals and
work with a slightly decreasing efficiency for values exceeding the particular in-
terval. This should invite interest from applicability as well as scientific needs.
The further challenge lies in merging sequence patterns of more than one prime
number and coming out with more efficient and in one sense more generic (at
least, in the domain of human use) sequences. Another field of research is devel-
oping (or extrapolating) higher sequences by using lower ones for the dynamic
and automatic growth of sequences. Finally, challenge lies in better utilization
and better implementation of such sequences to suit commercial needs.
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6 Appendix
6.1 More About Sequences and Their Origin

The following text is a direct quote from [KK2], to elucidate more upon the
concept and generation of such pattern sequences: With the exception of 2 and
3, all primes are of the form p = 6n ± 1, i.e., p = 1, 5(mod6). The difference
in elements in the same row is 2 while that in consecutive diagonal elements is
4, thus forming the sequence 2 4 2 4 2 4 2 4 which is repetitive in nature. The
length of this sequence is 2. In this case, the repetitive unit is ’2 4’ (Sequence I).

2 4 2 4 6 2 6 4 2 4 2 4 6 2 6 4 2 4 2 4 6 2 6 4

where the repeating sequence is 2 4 2 4 6 2 6 4 (Sequence II). This sequence is
of the length 8. Extending this concept further by crossing out all numbers > 7
which are divisible by 7. Close observations of the differences between any two
consecutive numbers generate the following sequence, which has 48 elements:

2 4 2 4 6 2 6 4 2 4 6 6 2 6 4 2 6 4 6 8 4 2 4 2 4
8 6 4 6 2 4 6 2 6 6 4 2 4 6 2 6 4 2 4 2 10 2 10

The elements of the sequence keep repeating periodically after every 48 elements.

6.2 Few Pattern Sequences

Pattern Sequence 5: 4 2 4 2 4 6 2 6.

Pattern Sequence 7 appears in the main text.

Pattern Sequence 11: 4 2 4 6 2 6 4 2 4 6 6 2 6 4 2 6 4 6 8 4 2 4 2 4 14 4 6
2 10 2 6 6 4 2 4 6 2 10 2 4 2 12 10 2 4 2 4 6 2 6 4 6 6 6 2 6 4 2 6 4 6 8 4 2 4 6 8
6 10 2 4 6 2 6 6 4 2 4 6 2 6 4 2 6 10 2 10 2 4 2 4 6 8 4 2 4 12 2 6 4 2 6 4 6 12 2
4 2 4 8 6 4 6 2 4 6 2 6 10 2 4 6 2 6 4 2 4 2 10 2 10 2 4 6 6 2 6 6 4 6 6 2 6 4 2 6 4
6 8 4 2 6 4 8 6 4 6 2 4 6 8 6 4 2 10 2 6 4 2 4 2 10 2 10 2 4 2 4 8 6 4 2 4 6 6 2 6 4
8 4 6 8 4 2 4 2 4 8 6 4 6 6 6 2 6 6 4 2 4 6 2 6 4 2 4 2 10 2 10 2 6 4 6 2 6 4 2 4 6
6 8 4 2 6 10 8 4 2 4 2 4 8 10 6 2 4 8 6 6 4 2 4 6 2 6 4 6 2 10 2 10 2 4 2 4 6 2 6 4
2 4 6 6 2 6 6 6 4 6 8 4 2 4 2 4 8 6 4 8 4 6 2 6 6 4 2 4 6 8 4 2 4 2 10 2 10 2 4 2 4
6 2 10 2 4 6 8 6 4 2 6 4 6 8 4 6 2 4 8 6 4 6 2 4 6 2 6 6 4 6 6 2 6 6 4 2 10 2 10 2 4
2 4 6 2 6 4 2 10 6 2 6 4 2 6 4 6 8 4 2 4 2 12 6 4 6 2 4 6 2 12 4 2 4 8 6 4 2 4 2 10
2 10 6 2 4 6 2 6 4 2 4 6 6 2 6 4 2 10 6 8 6 4 2 4 8 6 4 6 2 4 6 2 6 6 6 4 6 2 6 4 2
4 2 10 12 2 4 2 10 2 6 4 2 4 6 6 2 10 2 6 4 14 4 2 4 2 4 8 6 4 6 2 4 6 2 6 6 4 2 4
6 2 6 4 2 4 12 2 12.

6.3 Recursive Formulae for Size of Patterns

Consider two Pattern Sequences of successive Prime Numbers h1 and h2. Let
the number of terms in these sequences be T1 and T2 with sum of terms S1 and
S2 respectively
Number of terms in S2,

T2 = (h2 − 1) × T1 (4)
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Sum of terms for Sequence S2,

S2 = h2 × S1 (5)

6.4 Prime Number Density

Prime number density for n is defined as the fraction of primes till n over n.
The unpredictable nature of Prime Numbers has invited a lot of debate on the
issue prime of density. However, for very large primes, it is believed to be of the
order of 1

log(n) as proposed by Adrian-Marie Legendre and Carl F.Gauss.
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Abstract. Combining multiple classifiers is expected to increase clas-
sification accuracy. Research on combination strategies of multiple clas-
sifiers becomes a popular topic. For a crisp classifier, which returns a
discrete class label instead of a set of real-valued probabilities respecting
to every classes, the often used combination method is majority voting.
Both majority and weighted majority voting are classifier-based voting
schemes, which provide a certain base classifier with an identical con-
fidence in voting. However, each classifier should have different voting
priorities with respect to its learning space. This differences can not be
reflected by classifier-based voting strategy. In this paper, we propose
another two voting strategies in an effort to take such differences into
consideration. We apply the AdaBoost algorithm to generate multiple
classifiers and vary its voting strategy. Then, the prediction ability of
each voting strategy is tested and compared on 8 datasets taken from UCI
Machine Learning Repository. The experimental results show that one
of the proposed voting strategies, namely sample-based voting scheme,
achieves better performance in view of classification accuracy.

1 Research Motivation

Combining multiple classifiers is expected to increase classification accuracy [2,7].
Research on combination schemes of multiple classifiers becomes a popular topic.
Most reported works in this area focus on classifier fusion with the output of
each classifier is scaled to the [0 1] interval [1,9]. In this case, the combining of
classifiers is often done using linear combinations of classifier outputs, rank-based
combining and voting-based combination. For a crisp classifier, which returns
a discrete class label instead of a real-valued probabilities respecting to every
classes in a data set, the often used combination method is majority voting,
either simple majority or weighted majority voting. Both majority voting and
weighted voting are classifier-based voting schemes, which mean that a certain
base classifier will provide an identical confidence in classifying a set of objects
via voting.

By manipulating the training data, such as Bootstrap aggregating (bagging)
[3] and AdaBoost [4,6], a set of classifiers are learned with each one concentrating
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on a specific data space. Hence, each base classifier should have different voting
priorities with respect to its specific learning space. However, classifier-based
weighting scheme overlooks this difference. Two other weighting strategies for
voting can be: 1)class-based weighting scheme: for each class label in the data
set, a certain base classifier will provide a specific weight, which denotes the
prediction confidence respecting to this class label; and 2)sample-based weighting
scheme: for each sample, a certain base classifier will provide a set of weights
with each one indicating the prediction confidence in classifying the sample to a
specific class. Given a base classifier, classifier-based weighting scheme provides
only one voting weight; class-based weighting scheme provides a vector of voting
weights, with each one representing the voting confidence for classifying samples
to a specific class; and sample-based weighting scheme provides each testing
sample with a vector of voting weights, with each one denoting the predictive
confidence for classifying this sample to a particular class.

The learning objective of voting multiple classifiers is to achieve more accu-
rate prediction results. Among these weighting schemes, which one is superior in
obtaining the better classification results? In this study, we concentrate on crisp
classifier, whose output is a discrete class label instead of a set of real-valued
probabilities respecting to every classes in a data set. We adopt AdaBoost algo-
rithm to generate multiple classifiers and vary its voting strategy. Two classifi-
cation learning algorithms, Näıve-Bayes and an associative classification system,
are employed as the base learners in our experiments. The prediction ability
of each voting strategy is tested and compared on a representative collection
of 8 datasets taken from UCI Machine Learning Repository[10]. This paper is
organized as: following the introduction in Section 1, Section 2 introduces re-
lated learning algorithms: AdaBoost algorithm; Section 3 presents weighting
schemes for voting multiple classifiers; Section 4 explains the two base classi-
fication learning systems; Section 5 shows the experiment settings and results;
Section 6 highlights the conclusion.

2 AdaBoost Algorithm

AdaBoost (Adaptive Boosting) algorithm introduced by Freund and Schapire
[5,6,13,12] is generally considered as an effective boosting algorithm. It weighs
each sample reflecting its importance and places most weights on those examples
which are most often misclassified by the preceding classifiers. This forces the
following learning process to concentrate on those samples which are hard to be
correctly classified. The final classification is based on a weighted majority vote
of each individual classifier. The weight assigned to each classifier is determined
according to classifier’s performance on its training set.

AdaBoost algorithm takes as input a training set {(x1, y1), · · ·, (xm, ym)}
where each xi is an n-tuple of attribute values belonging to a certain domain
or instance space X , and yi is a label in a label set Y = {c1, c2, · · ·, cK}. The
Pseudocode for AdaBoost is given as below:
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Given:(x1, y1), · · ·, (xm, ym) where xi ∈ X , yi ∈ Y = {c1, c2, · · ·, cK}
Initialize D1(i) = 1/m.
For t = 1, · · ·, T :
1.Train base learner ht using distribution Dt

2.Choose weight updating parameter: αt

3.Update and normalize sample weights:

D(t+1)(i) =
D(t)(i)exp(−αtI[ht(xi) �= yi])

Zt
Where, Zt is a normalization factor.
Output the final classifier: H(x) = sign(

∑T
t=1 βtht(x))

where, for any predicate π, I[π] equals 1 if π holds, Otherwise 0. In this study,
we apply AdaBoost algorithm to the base classification learning systems whose
outputs are discrete class labels.

3 Weighting Schemes for Voting Multiple Classifiers

We vary the weighted voting strategy of AdaBoost algorithm with another three
types of voting schemes: majority voting, class-based and sample-based voting
schemes.

3.1 Classifier-Based Weighting Schemes

AdaBoost Weighting: In AdaBoost algorithm, the classifier weighting factor
βt is calculated as:

βt = αt =
1
2
log

1 − errt

errt
(1)

where, errt denoting the weighted training error of the tth classifier:

errt =

∑
i,yi 
=ht(xi)

D(i)(t)

∑
i

D(i)(t)
(2)

β is used as the strength measure respecting to each classifier. This weighted
voting scheme is denoted as Stra1. The weighted combination of the output of
each classifier then becomes:

H(x) = arg max
ck,k=1··K

(
T∑

t=1

βtI[ht(x) = ck]) (3)
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Majority Voting: When we set βt = 1, the weighted majority voting scheme of
Adaboost algorithm becomes to majority voting. Each classifier obtains identical
voting weight irrelative to its performance. Majority voting is denoted as Stra2
in this paper. The output of Equation 3 turns to

H(x) = arg max
ck,k=1··K

(
T∑

t=1

I[ht(x) = ck]) (4)

3.2 Class-Based Weighting Scheme

Class-based weighting scheme is to provide a classifier with a vector of prediction
confidences corresponding to its performances on different classes. The weight
associated with each class label is calculated by the training error of this class.
Let errkt denote the training error of the tth classifier on class ck, where k = 1··K:

errkt =

∑
i,yi 
=ht(xi)&yi=ck

D(i)(t)

∑
i,yi=ck

D(i)(t)
(5)

then, βkt is the weight of the tth classifier when it predicts an object belonging
to class ck

βkt =
1
2
log

1 − errkt

errkt
(6)

When voting multiple classifier, according to the class label assignment, a spe-
cific weight is used for voting. The weighted combination of the output of each
classifier then becomes:

H(x) = arg max
ck,k=1··K

(
T∑

t=1

βktI[ht(x) = ck]) (7)

In the following sections, this class-based weighting scheme will be referred as
Stra3.

3.3 Sample-Based Weighting Scheme

When a new observation x is given, the amount of evidence provided by x for
ck being a plausible value of Y can be quantitatively estimated by an evidence
measure which is derived from an information-theoretic measure known as the
mutual information[11]:

I(Y = ck : x) = log
P (Y = ck|x)
P (Y = ck)

Based on the mutual information, the difference in the gain of information
when Y takes on the value ck and when it takes on some other values, given x,



Empirical Study on Weighted Voting Multiple Classifiers 339

is a measure of evidence provided by x in favor of ck being a plausible value of
Y as opposed to other values. This difference, denoted by W (Y = ck/y �= ck|x),
is defined as the weight of evidence[11], which has the following form:

W (Y = ck/Y �= ck|x) = I(Y = ck : x) − I(Y �= ck : x)

= log
P (Y = ck|x)
P (Y = ck)

− log
P (Y �= ck|x)
P (Y �= ck)

(8)

By applying Bayes formula, Equation (8) can be rewritten equivalently as:

W (Y = ck/Y �= ck|x) = log
P (x|Y = ck)

P (x)
− log

P (x|Y �= ck)
P (x)

= log
P (x|Y = ck)
P (x|Y �= ck)

(9)

The most plausible value of Y is the one with the highest weight of evidence pro-
vided by the observation. When weight of evidence is employed as the prediction
confidence measure, each classifier will provide a specific prediction confidence
for each sample:

ht(x) → ck, with confidence rkt 1 ≤ k ≤ K

where rkt denotes the weight of evidence of the tth classifier in predicting the
class ck given the object x. Then, the weighted combination of the output of
each classifier becomes:

H(x) = arg max
ck,k=1··K

(
T∑

t=1

rktI[ht(x) = ck]) (10)

In view that each base classifier provides a specific prediction confidence in
classifying each object to a particular class, this weighting scheme is sample-
based, which will be referred as Stra4 in the following sections.

4 The Base Classifier Learning Systems

To test and compare these voting strategies, two distinct kinds of classification
systems are specially selected as the base classifiers. One is the well-known and
widely used Näıve Bayes classifier which assumes strong independencies among
attributes. Another one is a new classification approach in data mining, called
Associative classification. In this paper, a mathematically well-developed as-
sociative classifier, namely High-Order Pattern and Weight of Evidence Rule
(HPWR)[14,15] based classification system is selected. The common point of
these two classification systems is they both calculate the weight of evidence as
the prediction support for classification.



340 Y. Sun, M.S. Kamel, and A.K.C. Wong

4.1 Näıve Bayes

Näıve Bayesian classification is based on Bayesian Theory assuming independen-
cies among attributes. Given an unlabelled instance x containing n attributes
[A1, · · ·, An] and target label value ck, the assumption yields the following model:

P (x|Y = ck) =
n∏

m=1

P (Am|Y = ck) (11)

Weight of evidence in favor of class label ck against other values can be
formulated as:

W (Y = ck/Y �= ck|x) = log
P (x|Y = ck)
P (x|Y �= ck)

=
n∑

m=1

log
P (Am|Y = ck)
P (Am|Y �= ck)

=
n∑

m=1

W (Y = ck/Y �= ck|Am) (12)

4.2 Associative Classification—HPWR

Employing residual analysis and mutual information for decision support, HPWR
generates classification patterns and rules in two stages: 1) discovering high-order
significant events associations using residual analysis in statistics to test the sig-
nificance of the occurrence of a pattern candidate against its default expecta-
tion[15], and 2) generating classification rules with weight of evidence attached
to them to quantify the evidence of significant event associations in support of,
or against a certain class membership[14].

Suppose xl is a subset of events, and (xl, Y = ck) is a significant event
association of x and satisfies xp ∩ xq = Φ, p �= q, 1 ≤ p, q ≤ n and ∪n

l=1x
l = x.

The Equation (9) can therefore be written as:

W (Y = ck/Y �= ck|x) = log
P (x1|Y = ck)
P (x1|Y �= ck)

+ ... + log
P (xn|Y = ck)
P (xn|Y �= ck)

= W (Y = ck/Y �= ck|x1) + ... + W (Y = ck/Y �= ci|xn)

=
n∑

l=1

W (Y = ck/Y �= ck|xl) (13)

Thus, the calculation of weight of evidence is to find a proper set of disjoint
significant event associations from x and to sum each individual weight of evi-
dence provided by the subset of events. For more detail information, please refer
to [14].

5 Experimental Evaluation

In this section, we carry on experiments to test and compare their voting accu-
racies of every voting strategies as described in Section 3.
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5.1 Experiment Setups

A representative collection of 8 datasets taken from UCI Machine Learning
Repository [10] are used for such evaluation. The description of these datasets
are summarized in Table 1. For each data set with missing values, the missing
values are treated as having the value “?”. The continue attributes of each data
set are discretized through the commonly used discretization utility of MLC++
[8] with the default settings. The parameter T governing the number of classifiers
generated is set at 10 for these experiments. 5-fold cross-validations are carried
out with each data set.

Table 1. Description of Datasets

Data set #attr #Cate. #rec
1 Auto 25 7 205
2 Chess 36 2 3196
3 Cleve 13 2 303
4 Diabetes 8 2 768
5 Horse 22 2 368
6 Iono 34 2 351
7 Sonar 60 2 208
8 Waveform 21 3 5000

5.2 Experiment Results

Results for Näıve Bayes are reported in Table 2. The results in column
labelled NB are the average accuracies of the original Näıve Bayes classifiers.
Stra1 stands for the voting strategy of AdaBoost, Stra2 for majority voting,
and Stra3 for class-based voting, and Stra4 for sample-based voting. Results
in these columns show the average accuracies of the voted classifications, as well
as the improvements when the results is compared with those of the original
Näıve Bayes classifiers. The best classification result on each data set is marked
in bold.

Viewing these experimental results, we find that over these 8 datasets, in
most cases the voting results from all these four classifier weighting strategies
are better than the original Näıve Bayes classifiers in different degrees. When
four voting strategies are compared, Stra1 achieves the best results on 1 dataset,
Stra2 on 1 dataset, and Stra4 on 6 datasets. For average classification accuracy,
Stra1 improves the performance of Näıve Bayes classifier by 3.9%, Stra2 by 2.9%,
Stra3 by 2.7% and Stra4 by 4.3%. For both comparisons, Stra4 gains the best
results. When Stra1 is compared with Stra4, i.e., voting strategy of AdaBoost
is compared with the sample-based voting strategy, Stra4 slightly over performs
Stra1 in viewing of the average classification accuracy.

Results for HPWR are reported in Table 3. The number in column labelled
Order is the order limitation of association patterns respecting to each dataset.
It is stated in [14], high order associations are more complex than the low order
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Table 2. Voting Results of Different Weighting Schemes Taking Näıve Bayes as the
Base Inducer

Data NB Stra1 Stra2 Stra3 Stra4
set Acc% Acc% ↑% Acc % ↑% Acc% ↑% Acc% ↑%

Auto 74.1 83.8 9.7 84.0 9.9 79.5 5.4 82.4 8.3
Chess 87.6 94.5 6.9 93.9 6.3 94.3 6.7 95.2 7.6
Cleve 83.1 84.5 1.4 84.6 1.5 84.6 1.5 85.3 2.2

Diabetes 70.9 74.6 3.7 70.3 -0.6 71.8 0.9 74.7 3.8
Horse 78.5 83.0 4.5 81.1 2.6 80.7 2.2 81.4 2.9
Iono 91.4 93.8 2.4 92.6 1.2 93.8 2.4 95.5 4.1
Sonar 84.7 85.7 1.0 85.5 0.8 85.3 0.6 87.7 3.0

Waveform 81.4 83.5 2.1 83.3 1.9 83.1 1.7 84.0 2.6

Average 81.5 85.4 3.9 84.4 2.9 84.2 2.7 85.8 4.3

Table 3. Voting Results of Different Weighting Schemes Taking HPWR as the Base
Inducer

Data Order HWRC Stra1 Stra2 Stra3 Stra4
set Acc% Acc% ↑% Acc % ↑% Acc% ↑% Acc% ↑%

Auto 3 67.9 72.4 4.5 76.8 8.9 71.4 3.5 80.4 12.5
Chess 3 87.8 98.2 10.4 95.0 7.2 97.5 9.7 98.6 11.8
Cleve 4 78.8 86.6 7.8 83.0 4.2 82.0 3.2 88.7 9.9

Diabetes 3 75.8 76.2 0.4 76.6 0.8 76.0 0.2 77.4 1.6
Horse 3 82.9 87.8 4.9 88.3 5.4 85.8 2.9 88.4 5.5
Iono 2 92.6 95.7 3.1 93.5 0.9 93.3 0.7 95.1 2.5
Sonar 3 79.0 83.9 4.9 85.0 6.0 82.6 3.6 83.5 4.5

Waveform 2 75.3 84.6 9.3 86.6 11.3 83.3 8.0 84.4 9.1
Average 80.0 85.7 5.7 85.6 5.6 84.0 4.0 87.1 7.1

ones as they describe the properties of the domain more accurately and more
specifically than the low order events. The objective of boosting is to generate
a more accurate composite classifier by combining moderately inaccurate, or
simply “weaker” classifiers. Thus, in order to build “weaker” classifiers, this
parameter is set low to ensure the use of low order patterns in this part of
experiments. The results in column labelled HPWR are the average accuracies
of the original HPWR classifiers. Experiment results of various voting strategies
are reported using the same template as described for Table 2.

In most cases the voting results from all these four classifier weighting strate-
gies are better than the original HPWR classifiers over these 8 datasets. When
four voting strategies are compared, Stra1 achieves the best results on 1 datasets,
Stra2 on 2 datasets, and Stra4 on 5 datasets. For average classification accuracy,
Stra1 improves HPWR’s accuracy by 5.7%, Stra2 by 5.6%, Stra3 by 4.0% and
Stra4 by 7.1%. Again, for both comparisons, Stra4 gains the best results. When
Stra1 is compared with Stra4, Stra4 performs Stra1 by 1.4% in viewing of the
average classification accuracy.
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5.3 Sample-Based Weighting Strategy vs. Classifier-Based
Weighting Strategy

Traditionally, weighting scheme for weighted voting multiple classifier is classifier-
based. It means that a certain component classifier will provide an identical
confidence in classifying a set of objects via voting. However, the intention of a
boosting algorithm is to force each learning iteration to concentrate on a specific
part of the data space by changing the data distribution. It is quite possible
that a classifier has different prediction confidences in different data spaces.
When classifier-based weighting scheme is adopted, this difference is overlooked
in voting.

Strat4 uses the weight of evidence as the voting factor in the final classifica-
tion. Weight of evidence provides a confidence measure of a classifier in predict-
ing the class label of a particular object. As each classifier will provide a specific
prediction confidence for each sample, this weighting scheme is sample-based.
Consider that the significant character of a boosting algorithm is that a set of
classifiers are learned with each concentrating on a specific data space. Then, it
is quite understandable that each classifier should have different voting priori-
ties in respect to its learning space. The sample-based voting strategy reflects
the uneven learning concentration across the whole data space of each classifier.
The obvious advantage of sample-based weighting scheme takes into account
such differences. The overall better experimental result of Stra4 in comparison
with that of Stra1 is an convincing empirical support of this advantage.

6 Conclusion

Combining multiple classifiers is expected to increase classification performance
evaluated by prediction accuracy. Multiple classifiers are usually combined by
majority voting when the outputs of every classifiers are discrete class labels.
Both majority voting and weighted majority voting are classifier-based voting
schemes. In this paper, we propose another two voting schemes, class-based
voting scheme and sample-based voting scheme respectively.

The prediction ability of each voting strategy is then experimentally stud-
ied. We adopt AdaBoost algorithm to generate multiple classifiers and vary its
weighted voting strategy. Two distinct kinds of classification systems are spe-
cially selected as the base inducers as they provide the weight of evidence as
the measure of their prediction strength. Experimental results on a representa-
tive collection of 8 data sets show that sample-based weighting strategy offers
the following advantages: 1) when the weights of evidence furnished by the base
learning systems respecting to each classification object are used as prediction
confidence measures, this sample-based weighting scheme reflects the distinct
learning focus of each classifier on the data space; and 2) experimental results
indicate this sample-based weighting scheme is better than that of AdaBoost in
view of classification accuracy.
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Abstract. This paper presents a general framework for time series clus-
tering based on spectral decomposition of the affinity matrix. We use the
Gaussian function to construct the affinity matrix and develop a gradient
based method for self-tuning the variance of the Gaussian function. The
feasibility of our method is guaranteed by the theoretical inference in
this paper. And our approach can be used to cluster both constant and
variable length time series. Further our analysis shows that the cluster
number is governed by the eigenstructure of the normalized affinity ma-
trix. Thus our algorithm is able to discover the optimal number of clus-
ters automatically. Finally experimental results are presented to show
the effectiveness of our method.

1 Introduction

The recent years have seen a surge of interest in time series clustering. The
high dimensionality and irregular lengths of the time sequence data pose many
challenges to the traditional clustering algorithms. For example, it is hard for
the application of the k-means algorithm [1] since we cannot define the ”mean”
of time series with different length. Many researchers propose to use hierarchical
agglomerative clustering (HAC) for time series clustering [2][3], but there are two
main drawbacks of these methods. On one hand, it is difficult for us to choose
a proper distance measure when we merge two clusters; on the other hand, it is
hard to decide when to stop the clustering procedure, that is, to decide the final
cluster number.

Recently Porikli [4] proposed to use HMM parameter space and eigenvector
decomposition to cluster time series, however, they didn’t give us the theoretical
basis of their method, and the variance of the Gaussian function they used to
construct the affinity matrix was set empirically, which is usually not desirable.

To overcome the above problems, this paper presents a more efficient spectral
decomposition based framework for time series clustering. Our method has four
main advantages: (1) it is based on the similarity matrix of the dataset, that
is, all it needs are just the pairwise similarities of the time series, so the high
dimensionality of time series will not affect the efficiency of our approach; (2)
it can be used to clustering time series with arbitrary length as long as the
similarity measure between them is properly defined; (3) it can determine the
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optimal cluster number automatically; (4) it can self-tune the variance of the
Gaussian kernel. The feasibility of our method has been proved theoretically in
this paper, and many experiments are presented to show its effectiveness.

The remainder of this paper is organized as follows: we analyze and present
our clustering framework in Section 2 in detail. In section 3 we will give a set of
experiments, followed by the conclusions and discussions in section 4.

2 Spectral Clustering for Time Series

2.1 Theoretical Background

We will introduce the theoretical background of our spectral decomposition
based clustering framework in this subsection. Given a set of time series {xi}M

i=1

with the same length d, we form the data matrix A = [x1,x2, · · · ,xM ]. A clus-
tering process to A can result in B = AE = [A1,A2, · · · ,AK ], where E is a
permutation matrix, Ai = [xi1,xi2, · · · ,xisi ] represents the i-th cluster, xij is
the jth data in cluster i, and si is the number of data in the i-th cluster.

Now let’s introduce some notes. The within-cluster scatter matrix of cluster
k is Sk

w = 1
sk

∑
si∈k (xsi − mk)(xsi − mk)T , where mk is the mean vector of the

k-th cluster. The total within-cluster scatter matrix is Sw =
∑K

k=1 skSk
w. The

total between-cluster scatter matrix is Sb =
∑K

k=1 sk(mk − m)(mk − m)T and
the total data scatter matrix is T = Sb +Sw =

∑M
i=1 (xi − m)(xi − m)T , where

m is the sample mean of the whole dataset.
The goal of clustering is to achieve high within-cluster similarity and low

between-cluster similarity, that is, we should minimize trace(Sw) and maximize
trace(Sb). Since T is independent on the clustering results, then the maximiza-
tion of trace(Sb) is equivalent to the minimization of trace(Sw). So our opti-
mization object becomes

min trace(Sw) (1)

Since mk = Akek/sk, where ek is the column vector containing sk ones, then

Sk
w = 1

sk

(
Ak − Akek

sk
eT

k

)(
Ak − Akek

sk
eT

k

)T

= 1
sk

Ak

(
Ik − ekeT

k

sk

)
AT

k , where Ik

is the identity matrix of order sk.
Let Jk = trace(Sk

w) = trace
(

1
sk

AkAT
k

)
− trace

(
1
sk

eT
k√
sk

AT
k Ak

ek√
sk

)
. Define

J = trace(Sw) =
∑K

k=1 sktrace(Sk
w) and the block-diagonal matrix

Q =

⎛⎜⎜⎜⎝
e1/

√
s1 0 · · · 0

0 e1/
√

s1 · · · 0
...

...
. . .

...
0 0 · · · eK/

√
sK

⎞⎟⎟⎟⎠ (2)

then J = trace
(
BBT

)
− trace

(
QT BT BQ

)
. Since B = AE and E is a permu-

tation matrix, it’s straight forward to show that trace
(
BBT

)
= trace(AT A),
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trace(QT BT BQ) = trace(Q̃
T
AT AQ̃), where Q̃ = EQ, that is, Q̃ is equal to

Q with some rows exchanged. Now we relax the constraint of Q̃ to Q̃
T
Q̃ = I as

in [5]. Then optimizer (1) is equivalent to

max
Q̃

T
Q̃=I

H = trace
(
Q̃

T
AT AQ̃

)
(3)

which is a constrained optimization problem. It turns out the above optimization
problem has a closed-form solution according to the following theorem[5].

Theorem(Ky Fan). Let H be a symmetric matrix with eigenvalues

λ1 � λ2 � · · · � λn

and the corresponding eigenvectors U = [u1,u2, · · · ,un]. Then

λ1 + λ2 + · · · + λk = max
XT X=I

trace(XT HX)

Moreover, the optimal X∗ is given by X∗ = U = [u1,u2, · · · ,uk]R, with R an
arbitrary orthogonal matrix.

From the above theorem we can easily derive the solution to (3). The optimal
Q̃ can be obtained by taking the top K eigenvectors of S = AT A, and the sum
of the corresponding largest K eigenvalues of S gives the optimal H .

The matrix S can be expanded as

S = AT A = [x1,x2, · · · ,xM ]T [x1,x2, · · · ,xM ] =

⎛⎜⎜⎜⎝
xT

1 x1 xT
1 x2 · · · xT

1 xM

xT
2 x1 xT

2 x2 · · · xT
2 xM

...
...

. . .
...

xT
Mx1 xT

Mx2 · · · xT
MxM

⎞⎟⎟⎟⎠
Thus the (i, j)-th entry of S is the inner product of xi and xj, which can be
used to measure the similarity between them. Then S can be treated as the
similarity matrix of the dataset A. Moreover, we can generalize this idea and
let the entries of S be some other similarity measure, as long as it satisfies the
symmetry and positive semidefinite properties. Since there has been so many
methods for measuring the similarities between time series with different length
(for a comprehensive study, see [7]), we can drop the assumption at the beginning
of this section that all the time series have the same length d and let the entries
in S be some similarity measure that can measure the similarity of time series
with arbitrary length. Then our method can be used to cluster time series with
any length.

2.2 Estimating the Number of Clusters Automatically

In order to estimate the optimal number of the clusters, we first normalize the
rows of S, that is, define U = diag(u11, u22, · · · , uMM ), where uii =

∑M
j=1 Sij ,

then our normalization makes S′ = U−1S.
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In the ideal case, S(i, j) = 0 if xi and xj belong to different clusters. We
assume that the data objects are ordered by clusters, that is A = [A1, · · · ,AK ],
where Ai represents the data in cluster i. Thus the similarity matrix S and
normalized similarity matrix S′ will become block-diagonal. It can be easily
inferred that each diagonal block in S′ has the largest eigenvalue 1 [8]. Therefore
we can use the number of repeated eigenvalue 1 to estimate the number of
clusters in the dataset. Moreover, Ng et al [9] told us that this conclusion can
also be extended to the general cases through matrix perturbation theory.

In practice, since the similarity matrix may not be block-diagonal, we can
choose the number of eigenvalues which are most close to 1. Therefore we can
predefine a small threshold δ ∈ [0, 1], and determine the number of clusters by
count the eigenvalues λi which satisfy |λi − 1| < δ.

2.3 Constructing the Affinity Matrix

Now the only problem remained for us is to construct a ”good” similarity matrix

which is almost block-diagonal. We use the Gaussian function Sij = exp
(
− d2

ij

2σ2

)
to construct it like in [4], where dij is some similarity measure between xi and
xj . To distinguish the transformed matrix S from the previously constructed
similarity matrix D, we will call S affinity matrix throughout the paper. The
diagonal elements of the affinity matrix are set to zero as in [9]. A gradient ascent
method is used to determine the parameter σ2.

More precisely, assume the solution of the optimizer (3) is Q̃
∗

= [q1, · · · ,qK ],
and qi = (q1

i , · · · ,qM
i )T ∈ R

M , where qj
i represents the j-th element of the

column vector qi. Then H = trace
(
Q̃

∗T
SQ̃

∗)
=

K∑
i=1

qT
i Sqi, hence

H =
K∑

i=1

M∑
j=1

M∑
k=1

qj
iq

k
i Sjk =

K∑
i=1

M∑
j=1

M∑
k=1

qj
iq

k
i exp

(
− d2

jk

2σ2

)

where Sjk is the (j, k)-th entry of the affinity matrix S. If we treat H as a
function of σ, then the gradient of H is

G =
∂H

∂σ
=

K∑
i=1

M∑
j=1

M∑
k=1

qj
iq

k
j

∂Sjk

∂σ
=

K∑
i=1

M∑
j=1

M∑
k=1

qj
iq

k
i

d2
jk

σ3
exp

(
− d2

jk

2σ2

)
(4)

Inspired by the work in [10], we propose a gradient based method to tune
the variance of the Gaussian function. More precisely, we can first give an initial
guess of σ, then use G to adjust it iteratively until ‖G‖ < ε. The detailed
algorithm is shown in Table 1.

3 Experiments

In this section, we will give two experiments where we used our spectral de-
composition based clustering framework to cluster time series. First we used a
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Table 1. Clustering Time Series via Spectral Decomposition

Input: Dataset X, Precision ε, Max iteration T, Initialize σ to σ0, Learning rate α
Output: Clustering results.
1. Choose some similarity metric to construct the similarity matrix D.
2. Initialize σ to σ0, construct the affinity matrix S;
3. Calculate S′ by normalizing S, do spectral decomposition on it and find the
number of eigenvalues which are closest to 1, which corresponds to the optimal
number of clusters K
4. For i=1:T

(a).Solve (3) to achieve Q̃
∗

(b).Compute the gradient according to (4) Gi

(c).If ‖G‖ < ε, break; else let σ = σ + αGi

5. Treat each column of the final Q̃
∗

as a new point in R
K and cluster them into

K clusters via kmeans algorithm
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Fig. 1. Samples generated from different HMMs

synthetic dataset generated in the same way as in [2]. This is a two-class clus-
tering problem. In our experiments, 40 time series are generated from each of
the 2 HMMs. The length of these time series vary from 200 to 300. We use Both
HMMs have two hidden states and use the same priors and observation param-
eters. The priors are uniform and the observation distribution is a univariate
Gaussian with μ = 3 and variance σ2 = 1 for hidden state 1, and with mean
μ = 0 and variance σ2 = 1 for hidden state 2. The transition matrices of them

are A1 =
(

0.6 0.4
0.4 0.6

)
and A2 =

(
0.4 0.6
0.6 0.4

)
. Fig.1 shows us two samples gener-

ated from these two HMMs, the left figure is a time series generated by the first
HMM, and the right is generated by the second HMM.

From Fig.1 we cannot easily infer which sample is generated from which
HMM. We measure the pairwise similarity of the time series by the BP metric
[11] which is defined as follows.

Definition 1 (BP metric). Suppose we train two HMMs λi and λj for time
series xi and xj respectively. Let Lij = P (xj |λi) and Lii = P (xi|λi). Then the
BP metric between xi and xj is defined as

Lij
BP =

1
2

[
Lij − Lii

Lii
+

Lji − Ljj

Ljj

]
(5)
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The reason why we used the BP metric here is because that it not only
considers the likelihood of xi under λj as usual[2], but also take into account the
modeling goodness of xi and xj themselves. Thus it can be viewed as a relative
normalized difference between the sequence and the training likelihoods[11].

After the similarity matrix D having been constructed by the BP metric, we
will come to step 2 in Table 1. The initial variance σ0 of the Gaussian function
is set to 0.1. Fig. 2 shows the normalized affinity matrix and the corresponding
top ten eigenvalues, from which we can see that our method is able to discover
the correct cluster number 2 automatically.

Similarity Matrix 

0 2 4 6 8 10
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Top 10 Eigenvalues of the Similarity Matrix

Fig. 2. Affinity matrix and the corresponding top 10 eigenvalues

We use clustering accuracy to evaluate the final clustering results as in [12].
More precisely, if we treat the cluster problem as a classification problem, then
the clustering accuracy can be defined as follows.

Definition 2 (Clustering Accuracy). Let {ti} denote the true classes and
{cj}denote the clusters found by a cluster algorithm. We then label all the
data incluster cj as ti if they share the most data objects. Note that the
number of clusters need not be the same as the number of classes. Then we
can calculate the clustering accuracy η as :

η =
∑

x I(ci(x) = tj(x))
M

(6)

where I(·) is the indicator function, ci(x) is the label of the cluster which x
belongs to, tj(x) is the true class of x, and M is the size of the dataset.

Fig. 3 provides the results of our algorithm after 50 iterations (We don’t
use the termination condition in Table 1 step 4 (c)). In all these figures the
horizontal axis corresponds to the iteration number. The vertical axis of these
figures represents the clustering accuracy η in Eq.(6), gradient G in Eq.(4), and
the object function value H in Eq.(3).

From Fig.3 we can see that as the iteration procedure goes deeply, the gra-
dient G will become smaller while the the clustering accuracy and the object
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Fig. 3. Experimental results for Smyth’s dataset

Table 2. Clustering accuracies on the synthetic dataset

CHAC SHAC AHAC Our method
BP 0.9500 0.5125 0.9625 0.9725

function value H are increasing. And our algorithm will converge after only two
steps in this experiment.

We have compared the clustering accuracies resulted from our approach with
the results achieved from hierarchical agglomerative clustering (HAC ) methods,
since most of the developed time series clustering approaches have adopted an
HAC framework[2][3]. In an agglomerative fashion, the HAC method starts with
M different clusters, each containing exactly one time sequence. Then the al-
gorithm will merge the clusters continuously based on some similarity measure
until the stopping condition is met. There are three kinds of HAC approaches
according to the different similarity measure they use to merge clusters[1]. They
are Complete-linkage HAC (CHAC ), Single-linkage HAC (SHAC ) and Average-
linkage HAC (AHAC ), which adopt furthest-neighbor distance, nearest-neighbor
distance and average-neighbor distance to measure the similarity between two
clusters respectively. In our experiments, the final cluster number of all these
HAC methods is set to 2 manually. The final clustering accuracies are shown
in Table 2. From which we can see that our algorithm can perform better than
HAC methods in this case study.

In the second experiment we use a real EEG dataset which is extracted from
the 2nd Wadsworth BCI dataset in BCI2003 competition [13]. According to [13],
the data objects can be generated from 3 classes: the EEG signals evoked by
flashes containing targets,the EEG signals evoked by flashes adjacent to targets,
and other EEG signals. All the data objects have an equal length 144. All the
data objects have an equal length 144. Fig. 4 shows an example for each class.

We randomly choose 50 EEG signals from each class. As all the time series
have the same length, therefore we can use the Euclidean distance to measure
the pairwise distances of the time series. The Euclidean distance between two
time series can be defined as follows[14].

Definition 3 (Euclidean distance). Assume time series xi and xj have the
same length l, then the Euclidean distance between them is simply
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Fig. 4. EEG signals from the 2nd Wadsworth BCI Dataset
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Fig. 5. Experimental results for EEG dataset

DEuc
ij =

√√√√ l∑
k=1

(xk
i − xk

j )2 (7)

where xk
i refers to the k − th element of xi.

In our experiments, we adopt both the Euclidean distance (7) and the BP
metric (5)to construct the similarity matrix D. And apply the Gaussian function
to transform them to the affinity matrices. The initial variance of the Gaussian
function is set to 600. The final experimental results of our method after 50 iter-
ations are presented in Fig. 5, where the first row shows the trends of clustering
accuracy, gradient, and object function value achieved based on the Euclidean
distance (ED) versus iteration, and the second row shows the trends of these
indexes achieved based on the BP metric (BP) versus iteration.

Fig.5 shows us that the trend of these indexes are very similar with that in
Fig.3. The clustering accuracy and objective function value are increasing and
more and more stable with the decreasing of gradient.
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We also compared the clustering accuracies achieved from HAC methods
and our approach, the final cluster number of the HAC methods is also set to 3
manually. Table 3 gives us the final results. Each column in Table 3 shows the
results of a method. The second and third rows are the final clustering accuracies
when we use the Euclidean distance and the BP metric respectively to measure
the similarity of pairwise time series in these methods.

Table 3. Clustering results on EEG dataset

CHAC SHAC AHAC Our method
Euclidean 0.4778 0.3556 0.3556 0.5222

BP 0.4556 0.3556 0.4222 0.5444

From the above experiments we can see that for HAC methods, if we adopt
different distance measures (nearest, furthest, average neighbor distance), the fi-
nal clustering results may become dramatically different. Moreover, these meth-
ods may always fail to find the correct cluster number, which makes us to set
this number manually. On the contrary, our spectral decomposition based clus-
tering method can discover the right cluster number automatically, and in most
cases the final performance achieved by our approach will be better than HAC
methods.

4 Conclusion and Discussion

In this paper we present a new spectral decomposition based time series clus-
tering framework. The theoretical analysis guarantees the feasibility of our ap-
proach, and the effectiveness of which has been shown by experiments.

The problem remained for us is that the spectral decomposition is time con-
suming. Fortunately the affinity matrix is Hermitian, and usually sparse. Thus
we can use the subspace method like the Lanczos method, Arnoldi method to
solve the large eigenproblems [6]. We believe that our approach will be promising
and it may have potential usage in many data mining problems.
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Abstract. Clustering usually assumes that the number of clusters is known or 
given. No knowledge of such a priori information is needed to find an appropri-
ate number of clusters. This paper introduces an elliptical clustering algorithm 
with incremental growth of clusters, which is derived from the batch EM algo-
rithm with a decay factor and a novelty criterion. The proposed algorithm can 
start with no or a small number of clusters. Whenever unusual data is presented, 
the algorithm adds a new cluster and finally the number of clusters in the data is 
obtained after clustering. The usefulness of the proposed algorithm is demon-
strated for texture image segmentation and skin image segmentation. 

1   Introduction 

Given a set of N data, nx , the objective of clustering is to assign one of a set of J 
clusters, 

jc , such that data within the same cluster has a high degree of similarity, 

while data belonging to different clusters exhibits a high degree of dissimilarity. Each 
cluster 

jc  contains 
jN  data and can be represented by two parameters: a center, 

jμ , 

and a covariance matrix, 
jΣ . 

When applied as a clustering algorithm, however, this leads to several practical 
problems. First of all, these algorithms usually require an assumption that the number 
of clusters, J, is known. In general, this approach is useful only when the number of 
clusters is chosen in a correct manner. When no priori information regarding J is 
available it is desirable that the algorithms be capable of automatically finding an 
appropriate number of clusters automatically. Another problem is that the choice of 
distance measures can produce substantial differences in clustering results. Many 
clustering algorithms using a Euclidean distance are suitable for detecting spherical-
shaped clusters; most clusters in real data sets, however, are non-spherical in shape. 
Therefore, clustering algorithms with Euclidean distance are inappropriate for large 
and elongated clusters. The third problem is regularization; covariance matrices can 
become singular or near-singular causing, numerical problems in their inversion. In 
this paper, we propose a new elliptical clustering algorithm with incremental growth 
of clusters, by incorporating both a decay factor and a novelty criterion into the EM 
algorithm. This technique is effective for proper probabilistic and elliptical clustering. 
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2   Elliptical Clustering 

The batch EM algorithm starts with an initial guess at the maximum likelihood pa-
rameters of clusters, { }jj Σ≡ ,μθ , and then proceeds to generate successive estimates 

by iteratively applying the E(Expectation)-step and M(Maximization)-step [3]. As-
sume that the joint probability for an input data, nx , and a cluster, 

jc , using θ  is 

( )θ|, jxP n . Let θ  be the present estimator. The E-step calculates the posterior prob-

ability of 
jc  according to the Bayes rule, 
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The M-step updates the parameters as follows: 

( )

( )
∈=

∈==
j

j
n

j

j
n

N

cxn

n

n
N

cxn

n

j

xjP

xjPx

,1

,1

,|

,|

θ

θ
μ     and    

( )

( )
∈=

∈=

′

=Σ
j

j
n

j

j
n

N

cxn

n

N

cxn

n
jj

j

xjP

xjPmm

,1

,1

,|

,|

θ

θ
        (2) and  (3) 

where 
j

nn
j xm μ−≡  and the prime (′) denotes a transpose. 

Another method uses on-line or sequential updating of the parameters each time new 
data nx  is presented [14]. Let { }n

j
n
j

n Σ≡ ,μθ  be the estimator after nx . Using the 

step-wise equation in the on-line EM algorithm, Eq. (2) and (3) can be modified  

( ) ( )[ ]
( ) ( )[ ]11 11

11

−−

−−

−+
−+

=
n
j

n
j

nn
j

n
j

n
j

nnn
jn

j
fPf

xfPxxf

η
η

μ                        and                (4) 

( ) ( )[ ]11 11

11

−−

−−

−+

′−′+′

=Σ
n
j

n
j

nn
j

jj
n
j

n
j

n
j

n
j

n
jj

n
j

n
j fPf

mmfPmmmmf

η

η
                   (5) 

where n
j

nn
j xm μ−≡  and ( )1,| −≡ nnn

j xjPP θ . Since a decay factor nλ  is 10 ≤≤ nλ , 

a learning parameter 
1

11
−

−+= n

nn

η
λη  is 11 ≤≤ n

n η . 

Suppose that the same input data is repeatedly presented, i.e., ( ) nNtn xx =−+ 1  , and θ is 
updated at the end of the whole data set iteration, i.e., n = N.  If nλ  is defined as 0 at n 

= (t-1)N+1 and 1 in all other cases, then nη  is defined by ( )
n

nNtn 11 == +−ηη . At the 

beginning of each iteration, ( )xf n
j

1−  is set to ( ) ( )[ ] 1101110
jjjj PxxfPxxf =−+η . At the 

end of the whole data set iteration, ( ) ( ) ( )xfxf N
j

Nt
j =−1  is satisfied for 1−= tθθ . 
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Therefore, these will become ( )11−n
jf  and ′−

jj
n
j mmf 1 . This shows that the on-line 

EM algorithm with an appropriate choice of nλ  is equivalent to the batch EM algo-
rithm [6]. 

3   Elliptical Clustering with Incremental Growth 

3.1   Proposed Algorithm 

To select an appropriate number of clusters in EM, we incorporated resource alloca-
tions found to be suitable for on-line modeling of non-stationary processes [4]. The 
proposed algorithm may start either with a small number of clusters ( JJ ≤0

) or with 

no clusters ( 00 =J ). If the number of clusters is given, the algorithm initializes 
0J  

clusters in the same way as the EM or the on-line EM algorithm does. A center, 0
jμ , 

is set randomly and an initial covariance matrix, 0
jΣ , is set as the unit matrix. If no 

knowledge of the data is assumed, then the algorithm includes no clusters. 
When a new data nx  is incoming, the proposed algorithm first compares it to the 

centers of existing clusters and finds the nearest cluster using Eq. (1). According to 
the novelty criterion, the algorithm computes the posterior probability on the nearest 
cluster, which should be greater than the threshold, nε , 

( ) nnxnearestP εθ >,| .                                               (6) 

The threshold starts with the largest value, i.e., 
max

0 εε = , and is multiplied by a de-

cay factor γ for nε , 10 << γ , until it reaches the smallest value, 
minε . As more data 

is presented, nε  is reduced which allows the refinement of the overall clustering. This 
also provides stability to the overall clustering. 

Eq. (6) confirms that the data nx  is not similar to any existing clusters and is cur-
rently not appropriately represented by existing clusters. Thus, if Eq. (6) is satisfied, a 
new cluster is created with nx  and the number of clusters J is increased. The center of 
the newly allocated cluster is set to the input data and the covariance matrix propor-
tionally is set to the posterior probability on the nearest existing cluster to the new 
data. A new cluster is set as the following [4]: 

nn
J x=+1μ ,    and 

( )( )′−−=Σ +
n
nearest

nn
nearest

nn
J xx μμκ1

 
(7) 

where n
nearestμ  is the center of the nearest existing cluster from nx  and κ is a constant 

for a overlap factor which determines the smoothness of the function. This makes the 
new data more likely to match the newly-created cluster. Thus, after clustering on a 
set of data, each cluster represents a cluster of data that are near one another in the 
data space. Eventually, the proposed algorithm finds the desired number of clusters 
more closely as the data is clustered. This is referred to as an Allocation (A-step). 
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If the data nx  is similar to one of existing clusters, the M-step updates the center and 
the covariance matrix using Eq. (4) and (5), respectively. However, updating works 

only if ( ) 1−Σ n
j

 exists. In real world applications, unfortunately, the inverse matrix can 

become singular. To guarantee non-singularity of ( ) 1−Σ n
j

 in the d-dimensional space, 

the regularized covariance matrix can be defined by the step-wise equation 

d

n
jn

j
n
jR I

d

′Σ
+Σ=Σ β  

where β  is a constant ( 10 << β ) and 
dI  is a d-dimensional identity matrix. Since 

computing the inverse formula for ( ) 1−Σ n
jR

 with each iteration is impractical, the in-

verse matrix needs to be updated directly. Direct updating can be accomplished by the 

step-wise equation. The detailed derivation on direct updating of ( ) 1−Σ n
jR

 is in [7]. The 

proposed EAM algorithm is summarized in Algorithm I. Note that after adding a new 
cluster, it is suitable to incorporate some time steps just to update existing parameters 
and to disallow another allocation. 

 
For some clusters 

0,,1 Jj = , 

Initialize 0
jμ  randomly. 

Initialize 0
jΣ  to be a unit matrix. 

max
0 εε = , 

0JJ = , and n = 0. 

For each data nx  
E-step: Find the nearest cluster 

jc  using Eq. (1). 

If Eq. (6) is satisfied, (A-step) 
Allocate a new cluster using Eq. (7). 

111 += ++ JJ NN  and J = J + 1. 

else (M-step) 

Update n
jμ  and n

jΣ  using Eq. (4) and ( ) 1−Σ n
jR

, respectively. 

1+= jj NN . 

If 
minεε >n , nn γεε =+1 . 

n =n + 1.

Algorithm I. The proposed EAM algorithm 

3.2   Discussion 

Note that Algorithm I is equivalent to an online EM algorithm with the appropriate 
choice of J and 

maxε . Assume 
maxε  is defined as the largest posterior probability on 

any cluster as long as 1≈γ . If the number of initial clusters provided is optimal 

( JJ =0
), this shows that, by simply neglecting the A-step, the proposed EAM algo-
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rithm is equivalent to the on-line EM algorithm. If 
0J  is a smaller number 

( JJ <≤ 00 ), some 
jμ  can be initialized to the first similar data to the cluster, 

jc , 

while the on-line EM algorithm initializes all clusters randomly at the beginning of 
the algorithm. Consequently, the estimator of the EAM algorithm converges to the 
maximum likelihood estimator. 

4   Results 

Clustering can be used for image segmentation. In this section, the proposed algo-
rithm is applied to texture image segmentation and skin color region segmentation, 
and proven more appropriate when compared to the batch EM algorithm. 

4.1   Texture Segmentation 

The proposed algorithm was tested on Brodatz textures [1] with the pixel spatial reso-
lution set at N =256×256. Fig.1 shows two composite texture images, containing four 
(the top row in Fig.1) and five (the bottom row in Fig. 1). For texture representation, 
we used Gabor filters [2] which have optimal localization properties in both the spa-
tial and frequency domains. Each pixel in the image is represented using d =24 Gabor 
filters (four radial frequencies and six different orientations per frequency).  The val-
ues used for this experiment were: 7.0max =ε , 07.0min =ε , γ = 0.999, κ = 0.9, and  

β = 0.3. 

 

   

   

(a)  (b) (c) 

Fig. 1. Segmentation results of texture images (top: four textures, bottom: five texture): (a) 
original composite textured images, (b) using the batch EM, and (c) using the EAM algorithm 
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In Fig. 1, segmentation results are shown using the EM (Fig. 1(b)) and the EAM (Fig. 
1(c)) algorithm. The EM algorithm assumes a desired number, J, is given, i.e., Fig 1. 
(b) was obtained with J = 4 and J = 5, respectively. On the other hand, the EAM algo-
rithm starts without any clusters ( 00 =J ), finds an optimal number of clusters, and 

distinguishes all textures (Fig. 1 (c)). Compared to the EM algorithm in segmentation, 
the EAM algorithm achieved less segmentation errors with some noisy patches. Since 
both algorithms depend on the order in which the data is presented, results may differ 
from one data set to another. Therefore two test images with 20 differently-ordered 
pixel sets were applied to the algorithms and the images were correctly segmented; on 
average, at 91.13% using the EAM algorithm and 83.46% using the EM algorithm. In 
addition, we tested 11 more composite texture images used in Randen’s experiments 
[5]. After all images were repeatedly applied to both algorithms with 20 differently-
ordered pixel sets, we achieved averaged results: 71.26% using the EAM algorithm 
and 67.92% using the EM algorithm. 

4.2   Skin-Region Segmentation 

In this section, we applied the proposed algorithm to skin-region segmentation. First, 
an input image was smoothed in the RGB color space by a median filter. Each pixel in
 the smoothed image was then transferred to 6 features (H, S, V, Y, Cb, and Cr) in the 
HSV and YCbCr color spaces. At a pixel-level, the EAM algorithm was applied to the
 6-featured space. Each pixel in clustered regions could be tested using a skin filter [8]
 to determine whether it was a skin pixel or not. Generally, segmentation at the pixel-l
evel is simple to achieve using a probability model, regardless of complexity in  
images. Because of pixel independence, however, this type of pixel-level segmentatio
n is incomplete to classify pixels in skin-like color environments. 

(a)                                              (b)                                            (c) 

Fig. 2.  Skin-region segmentation: (a) input images, (b) segmented images using the EAM 
algorithm, and (c) skin regions segmented by a skin-likelihood model
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Table 1.  Segmentation results using Eq.(10) on test images 

 Using the batch EM Using the EAM 
Region segmentation 84.65% 90.45% 
Skin-region segmentation 86.15% 92.35% 

To overcome this problem, we can segment an image at a region-level. A condi-
tional probability of a segmented region R is calculated by averaging probabilities of 
pixels in the image: 

)(

)|(
)|(

RArea

skinxP
skinRP Rx∈=                                       (8) 

where Area(R) is the area of the region R, as a number of pixels in the region R, and P
(skin|x) the probability of a pixel x in the region R.  

Fig. 2 shows the results of the EAM algorithm and skin-region segmentation. We 
tested 200 images with 20 differently-ordered pixel sets (Table I). The rate of region 
segmentation is a percentage of correctly clustered pixels and that of skin-region 
segmentation a percentage of pixels in correctly detected skin-regions. Table I shows 
that the EAM algorithm with Eq. (8) has better results than the EM algorithm. 

5   Conclusion 

Clustering is an established method of exploratory data analysis. When the clustering 
trend has been established for given data, choosing the correct number of clusters 
becomes important. Regarding the identification of the number of clusters, we pro-
posed an elliptical clustering algorithm with incremental growth of clusters, called the 
EAM algorithm, and applied this algorithm to texture image segmentation tasks. This 
paper demonstrated that the proposed algorithm provides better segmentation than the 
batch EM algorithm. 

The proposed algorithm may be improved by adding a pruning strategy for existing 
clusters whose center is an outlier in the input space and/or whose probability is be-
coming negligible. This can solve over-clustering problems ( JJ >0

). 
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Abstract. Web filtering is an inductive process which automatically
builds a filter by learning the description of user interest from a set
of pre-assigned web pages, and uses the filter to assign unprocessed web
pages. In web filtering, content similarity analysis is the core problem, the
automatic-learning and relativity-analysis abilities of machine learning
algorithms help solve the above problems and make ML useful in web
filtering. While in practical applications, different filtering task implies
different userinterest and thus implies different filtering result. This work
studies how to adjust the web filtering results to be more fit for the user
interest. The web filtering result are divided into three categories: relative
pages, similar pages and homologous pages according to different user
interest. A Biased Support Vector Machine (BSVM) algorithm, which
imports a stimulant function, uses training examples distribution n+/n−
and a user-adaptable parameter k to deal imbalancedly different classes
of the pre-assigned pages, is introduced to adjust the filtering result to be
best fit for the user interest. Experiments show that BSVM can greatly
improve the web filtering performance.

1 Introduction

The increasing of Internet resources brings up the problem of information over-
load, quality enhancement, which means that people want to read the most inter-
esting messages, and avoid having to read low-quality or uninteresting messages.
Web filtering is the activity of classifying a stream of incoming web pages dis-
patched in an asynchronous way by an information producer to an information
consumer[1], which helps people find the most interesting and valuable informa-
tion and saves Internet users from drowned in information flood.

Recent years, the machine learning (ML) paradigm, instead of knowledge
engineering and domain experts, becomes more popular in solving the above
problem because of its automatically-learning and relativity-analysis abilities.
The typical procedure of applying machine learning algorithm to web filtering
can be described as follows: a general inductive process automatically builds a
web pages filter by learning from a set of pre-assigned pages, namely the char-
acteristics of different categories of user interest, and use this filter to decided

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3686, pp. 363–370, 2005.
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whether the web pages is in accord with the user interest. The accurate de-
scription of the user interest is the critical precondition of web filtering and the
precision and recall ability of the page filter is the main problem of web filtering.

Practically, different web filtering task stands for different user interest. For
example, for the task of searching engine, all the web pages with the key words
are of the user interest. For the task of harmful information filtering, only the web
pages with the user-specified orientation should be selected for the user, though
quite a lot more of web pages may be relative to the user interest. Thus, for
different filtering tasks which implies different user interest, the filtering result
sets are of different size and all these results sets are subsets of the relative web
pages set.

This paper studies how to adjust the web filtering results to be more fit for
the user interest. The web filtering results are divided into three categories: rel-
ative pages, similar pages and homologous pages, each of which is correspondent
with a kind of user interest. To achieve more precisely the filtering result, the
inductive process is improved so that it can get better precision and recall abil-
ity according to the user interest. The improved machine learning algorithm in
this paper is based on the Support Vector Machine (SVM) algorithm because
that of all the generic machine learning algorithms (Decision Tree, Rule Induc-
tion, Bayesian algorithm and SVM ), SVM algorithm has shown to be superior
to other machine learning algorithms with the solid foundation of Statistical
Learning Theory (SLT ). The improved algorithm is called Biased Support Vec-
tor Machine (BSVM), which imports a stimulant function, uses training exam-
ples distribution n+/n− and a user-adaptable parameter k to deal imbalancedly
different classes of the pre-assigned pages so as to adjust the filtering result to be
best fit for the user interest. The remainder of the paper is organized as follows:
In Section 2 we briefly examine the work of web filtering and previous machine
learning approaches. Section 3 states the problem of user interest, put forward
the model of Biased Support Vector Machine and analyzes its efficiency in web
filtering. Section 4 closes the paper with our conclusions and future work.

2 Web Filtering and Inductive Constructions

2.1 Web Filtering

Web filtering is the task of assigning a boolean value to each web page vector
di ∈ D, where D is a domain of web pages. A value of TRUE assigned to
di indicates a decision to page di relative to the user interest, while FALSE
indicates not. More formally, the task is to approximate the unknown target
function Ψ : D → {TRUE, FALSE} (which describes how web pages ought to
be assigned) by means of a function Φ : D → {TRUE, FALSE} called the filter.
How to improve the precision and recall of the filter Φ are the core problems of
web filtering, which are also what this paper concentrates on.

The general process of web filtering includes five steps:

1. user interest acquiring: acquire many user-assigned web pages as training
set
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2. web pages pre-processing : translate the assigned pages into a set of compact
representations of page content. Usually a page di is represented as a vector
of term weights di = {w1i, w2i, · · · , w|F |i}, where F is the set of features
that occur at least once in at least one document of D, and 0 < wki < 1
represents how much feature fk contributes to the semantics of page di

3. dimensionality reduction: select feature of high contribution to reduce the
size of feature set F

4. construction of web filters: build a filter to describe user interest automati-
cally

5. predict unfiltered web pages : use the filter to predict an unmarked web page
is relative or not

Representation of web pages is the basic step of the process, while the degree
of dimensionality reduction is the key infecting factor. What decides the effec-
tiveness of web filters is that the generalization and description ability of web
filtering algorithm. The dominant approach is to use ML algorithm as filtering
algorithms with its high effectiveness.

2.2 Inductive Constructions of Web Filter

The inductive construction of web filter usually consists in the definition of a
function Φ : D → {TRUE, FALSE} which gives each web page di a decision
value. General speaking, four general algorithms are often chosen to construct
web filter because of their simplicity, flexibility and robustness. A brief analysis
of each algorithm is as follows:

– Decision Trees (C4.5): A decision tree[2,3,4] is a graph of nodes connected
by arcs with each internal node corresponding to a feature and each arc to a
possible value of that feature. Decision tree is easily interpretable by humans
and has low computational complexity, which is a quite simple and practical
idea in the field of ML.

– Rules Induction (CN2): Rule induction methods[5,6] try to find a proper set
of DNF rules for filtering task such that the error rate on training set is
minimal. By use of local optimization techniques, rule induction methods
dynamically evaluate rules and revise the covering rule set.

– Näıve Bayes Algorithms (NB): Näıve Bayes algorithm[7] views Φ(di) in terms
of P (cj |di) (the probability that the web page di belongs to the class cj) and
compute this probability using Bayes’ theorem. Näıve Bayes, as a represen-
tative probabilistic algorithm, acts well in many applications.

Pr(cj |di ) =
p(cj)

∏ |F |
k=1p(wki|cj)
p(di)

(1)

– Support Vector Machines (SVM): Support Vector Machines[8] is a process
of finding a surface which separates the positives from the negatives with
the widest possible margin among all the surfaces in |F |-dimensional space,
which is strongly supported by the Statistical Learning Theory. SVM acts
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well in dealing with large scale training set and it has no need of human and
machine efforts in parameter tuning.

As is compared in [9], SVM acts well in filtering task with strong robustness and
acceptable efficiency and the latter is CN2. While the precondition of NB that
omitting the feature dependence reduces its web content analysis ability and
the over-fitting problem occurring in the procedure of user interest description
makes C4.5 not satisfied.

3 Biased Support Vector Machine for Web Filtering

In this section, we will firstly give a detail analysis of the user interest and
filtering result. Then we introduce the model of BSVM and its implementation.
At last, we will prove the effect of BSVM in web filtering with experiments and
analysis.

3.1 Analysis of User Interest

In practical web filtering applications, the web pages set related to user interest
is considerable large. But the users may be interested in only several homologous
pages or all the related ones based on the difference of page subjects, writer’s
viewpoints and expression orientations. So we can divide web filtering tasks into
three levels according to the user interest:

– relativity-filter : the filtering result contains all the web pages with the same
key phrases or key sentences. These web pages express the same subject,
but may be not consistent in viewpoint or orientation. Typical applications
of relativity-filtering include erotic web pages filtering and hot topic tracing
which expect to collect all the web pages related to the topic, regardless of
approval or not.

– similarity-filter : the filtering result contains all the web pages that hold the
same subject, viewpoint and orientation with the user. Typical applications
of similarity-filtering include filtering of web pages on racialism or splittism.
The similarity-filtering is more strict than relativity-filtering as not only key
words or sentences but also orientation is taken into consideration.

– homology-filter : the filtering result contains only the web pages with quite
a lot of same sentences or paragraphs. The filtering results are almost the
same as the user interest, and always this is because that the articles from the
official or authoritative website are redistributed by other websites with little
modification. An examples of homology-filtering is counting which article is
the most reprinted one on the Bulletin Board Systems.

We can define the all the filtering results acquired by ML algorithms as relative
results(R1) and the filtering results which the ML algorithms assign TRUE with
probability near-to-1 as homologous results(Rk). So the results of similarity-
filtering Ri ∈ {Rk ⊆ Ri ⊆ R1}. As is illustrated in the left of Fig.1, most
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filtering tasks can be described as application of similarity-filtering with differ-
ent similarity degrees between the web pages acquired and the user interest. To
fit the user interest better, we must import adjusting ability into the ML algo-
rithms. So the approach proposed in this paper imports a stimulant function,
uses training examples distribution n+/n− and a user-adaptable parameter k to
deals imbalancedly different classes of the pre-assigned pages, so as to be best
fit for the user interest. The approach is called Biased Support Vector Machine,
and a detailed description and analysis are in the next sections.

Internet (U)

User interest (U )

General Filtering Result 

(R )

User interest of 

high similarity 

(R )

Adaptable filtering result 

(R )

R RR

U

U

Fig. 1. Analysis and demonstration of filtering result estimation. In the left figure, out-
side the biggest circles means filtering scope U, the smallest circle means user interest
Uk, the biggest circle R1 is the filtering result of general ML algorithms as content
relativity, the smaller one Rk is the filtering result as content homology. The middle
circle Ri means the biased filtering result according to user demand as content simi-
larity. The right is a corresponding demonstration of Biased Support Vector Machine
based on the left figure.

3.2 Biased Support Vector Machine Algorithm

In the classical SVM, a penalty function F = C ·∑ ξi is introduced as additional
capacity control function, where the non-negative variable ξi is a measure of the
misclassification errors and the coefficient C emphasizes the tolerant degree of
misclassification error. Consequently the width of the margin decreases with C
increasing.

BSVM introduces a stimulant function, F = C · [(k − 1) · n−
∑

yi=1 ξi −
n+

∑
yi=−1 ξi]/n, as the extension of penalty function. In the right figure of Fig.1,

the rectangles mean the examples of yi = +1, the circles mean the examples of
yi = −1, and those with black dot in them stand for support vectors. Thus we
define n+ = |{yi = +1}| and n− = |{yi = −1}|. The stimulant function uses
both training examples distribution n+/n− and an user-adaptable parameter k
to express the user bias degree of different classes. Together with the effect of
penalty function, the bias is described in Equation 2. The width of the margin
to the positive side decreases with n+/n− or k increasing. Thus BSVM can find
a proper separating hyperplane with filtering result Ri between R1 and Rk.

bias=
C+C ·(k−1)·n−/n

C − C · n+/n
=

1+(k−1)·n−/n

1 − n+/n
=

n+/n+k·n−/n
n−/n

=k+n+/n (2)
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BSVM is shown as follows. The generalized optimal separating hyperplane is
determined by the vector w, that minimizes the functional,

min
w,b,ξ

1
2
‖w‖2 + C

∑
ξi + C1

∑
yi=1

ξi − C2

∑
yi=−1

ξi

where C1 = C · (k − 1) · n−/n , C2 = C · n+/n, k ≥ 0 (3)

subject to the constraints of:

yi (w · xi − b) ≥ 1 − ξi where ξi ≥ 0, ∀i (4)

Here C1 and C2 are the classification errors stimulant coefficients, k ≥ 0 is an
adaptable parameter. The solution to the optimization problem of Equation 3
under the constraints of Equation 4 is given by the saddle point of the La-
grangian:

L(w, b, ξ, α, β) =
1
2
||w||2 + (C + C1)

∑
yi=1

ξi + (C − C2)
∑

yi=−1

ξi

−
∑

αi(yi[wT xi − b] − 1 + ξi) −
∑

βiξi (5)

where α, β are the Lagrange multipliers. The Lagrangian has to be minimized
with respect to w, b, ξ and maximized with respect to α, β. The minimum with
respect to w, b, ξ of the Lagrangian L is given by

∂L(w, b, ξ, α, β)
∂w

= w −
∑

i

αiyixi = 0 (6)

∂L(w, b, ξ, α, β)
∂b

= −
∑

i

αiyi = 0 (7)

∂L(w, b, ξ, α, β)
∂ξi

=
{

C + C1 − αi − βi if yi = 1
C − C2 − αi − βi if yi = −1 = 0 (8)

And hence the solution to the problem is given by:

min Q(α) =
1
2

n∑
i,j=1

αiαjyiyjK(xi,xj) −
n∑

i=1

αi (9)

with constraints of:
n∑

i=1

yiαi = 0 (10)

and

0 ≤ αi ≤ C + C1 if yi = 1
0 ≤ αi ≤ C − C2 if yi = −1 (11)
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Bias=10  (n+/n-=4, k=6) Bias=4  (n+/n-=4, k=0) No bias

Fig. 2. The simulative training result with different biases. Black spots mean examples
of yi = +1, white spots mean those of yi = −1, and spots with circle in them mean
support vectors.

Fig. 3. BSVM filtering efficiency on different k and n+/n−. The left figure shows the
influence of paramater d=n+/n− on the positive sentences filtering precision (k=1).
The right figure shows the influence of parameter k on the positive sentences filtering
precision (n+/n−=1).

3.3 Experiments and Analysis

For easy comprehension of BSVM, we choose Linear function (C=100) as kernel
and simulate the training result of different biases under the environment of
Matlab. As is shown in Fig.2, the separating surface shifts with the parameters
of d = n+/n− and k changing.

To show the efficiency of BSVM in practical applications, we experiment
on benchmark collections of Chinese web pages 1 prepared by FuDan Univer-
sity. The collections include 9804 training examples and 9833 evaluating doc-
uments, which consist of a set of Chinese newswire stories classified under 20
categories. In this paper, we experiment on a document set made of two related
categories(history and politics) of the benchmark. The document set contains
totally 2800 web pages(2000 pages about politics as positives, 800 pages about
history as negatives and 1/10 of each as training examples). We compute the

1 The benchmark and a detailed description(in Chinese) are available at http://www.
nlp.org.cn/docs/doclist.php?cat id=16\&type=15.
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positive sentences filtering precision under different C, and exhibit the influence
of d = n+/n− and k in Fig.3. Concluded from the result, the positive sentences
filtering precision increases with n+/n− and k increasing.

4 Conclusion and Future Work

In this paper, we give a study on different scopes of filtering result according
to different filtering task and user interest. We find that the web filtering result
can be divided three sets of relative pages set(R1), similar pages set(Ri) and
homologous pages set(Rk) with the relationship of Rk ⊆ Ri ⊆ R1. To adjust the
web filtering result to be more fit for the user interest, a Biased Support Vector
Machine (BSVM) algorithm in introduced which imports a stimulant function,
uses training examples distribution n+/n− and a user-adaptable parameter k to
deals imbalanced different classes of the pre-assigned pages. Experiments show
that BSVM can greatly improve the web filtering performance. But problems of
user bias description and parameter self-adaptable are still open and we leave
them as future work.
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Abstract. As data mining techniques are explored extensively, incor-
porating discovered knowledge into business leads to superior competi-
tive advantages. Most techniques in mining association rules nowadays
are designed to solve problems based on de-normalized transaction files.
Namely, normalized transaction tables should be transformed before min-
ing methods could be applied, and some previous works have pointed
that such data transformation usually consumes a lot of resources. As
a result, this study proposes a new method which incorporates mining
algorithms with enterprise transaction databases directly.

In addition, in most well-known mining algorithms, the minimum sup-
port threshold is used in deciding whether the pattern is frequent or not,
and it is crucial to define an appropriate threshold before performing
mining tasks. Since setting an appropriate threshold cannot be done
intuitively by domain experts or users, they usually set the threshold
through trial and error. Usually, while setting different minimum support
thresholds, most existing algorithms re-perform all mining procedures.
Consequently, it takes a lot of computations. Our new method explores
such circumstances and provides ways to flexibly adjust support thresh-
olds without re-doing the whole mining task.

1 Introduction

The idea of extracting knowledge from the data has been explored for a long
time. To deem modern data mining and knowledge discovery as scholarly, inter-
disciplinary fields contributes to the IJCAI-89 Workshop on Knowledge Discov-
ery in Real Databases [5]. Since the database system prevails worldwide, large
amounts of data have been accumulating in real-world databases rapidly. Several
researchers have proposed algorithms for handling large amounts of data as well
as extracting implicit, previously unknown and potentially useful information [1].

Data Mining is application-dependent; in short, different applications need
different mining techniques. One of major techniques is mining association rules,
which has attracted many researchers in recent years. It has an essential appli-
cation for Market-Basket Analysis and is used for acquiring strong association

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3686, pp. 371–380, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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rules, shown in the form, ”If one buys x, then he/she buys y” [1]. The first
step in mining association rules is setting the minimum support and confidence
thresholds. After this, based on the predefined support, the frequent patterns
are then searched. Finally, all frequent patterns are used to generate rules. Rules
that have fulfilled the confidence threshold are called ’association rules’.

Although these mining works emphasize on retrieving knowledge from enter-
prise databases, researchers seldom focus on developing mining algorithms based
on enterprise databases directly. Most well-known algorithms mining associa-
tion rules based on the De-Normalized Table(Table 1). In short, the normalized
transaction databases should be transformed into a de-normalized one before
performing mining tasks. This may consume additional computation resources.
The aim of this study is to provide a novel algorithm to mine frequent patterns
based on original enterprise databases.

Table 1. A Denormalized Table

TID Items(pid)
1 f a c d g i m p
2 a b c f l m o
3 b f h j o
4 b c k s p
5 a f c e l p m n

It is crucial to select appropriate thresholds for mining association rules. For
the support threshold, if it is overestimated, the number of frequent patterns
mined may be too few for extracting knowledge. Contrarily, if the support is
underestimated, too many possible rules might be discovered. Consequently, it
may pay too much computation costs and no valuable knowledge can be discov-
ered. In general, support thresholds might be determined by users or domain
experts first, and after, mining algorithms are performed. Based on the mined
results, people will re-adjust thresholds as needed, and the appropriate support
threshold will be obtained through several trials.

Typically, most well-known algorithms perform such trial-and-errors by re-
doing the mining procedures completely. The original database is re-scanned,
the frequent items are re-calculated as well as the rules are re-generated. Hence,
our new method tries not only to integrate the data mining work with enterprise
information systems, but it also provides ways to flexibly adjust the minimum
support threshold without re-doing whole mining procedures.

Our approach(FPN) consists of two main steps: One is to construct a frequent
pattern tree(FPN-tree) containing the complete information for mining frequent
patterns. And next, the most-used mining algorithms, such as [4], which are de-
veloped for mining frequent patterns based on the FP-tree [4], can be applied to
the FPN-tree freely. Hence, this study sets focus on the tree construction phase
and proposes an FPTree-like algorithm, FPNTree, which is used for constructing
frequent pattern trees from normalized databases directly. The remaining pages
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are organized as follows: In Section 2, a brief literature review of mining frequent
patterns is given. Section 3 introduces the FPNTree Algorithm, in detail. Exper-
imental results in Section 4 show that, while re-adjusting the adequate minimum
support thresholds, the FPNTree is more efficient than FPTree(FPGrowth) and
ECLAT in 4 real and 2 synthetic datasets. Finally, the conclusion is drawn.

2 Related Work

The problem of mining association rules over basket data was introduced in [1].
Finding such rules provides useful marketing information for target customer-
buying behavior. Later, in [2], one of the most famous algorithms, named Apriori,
proposes to solve this problem based on the de-normalized table(Table 1).

In addition to association rules, mining frequent patterns can be applied to
other applications, such as causality, sequential patterns, · · ·, etc [4]. There have
been many studies, such as [2] [6], adopt the Apriori-like approach to search
frequent patterns. The Apriori achieves good performance, but however, it is
costly when handling a huge number of candidate sets and becomes tedious
as it repeatedly scans the database and pattern matching. So [4] proposes a
method to search frequent patterns without candidate generation-and-tests. It
first constructs a frequent pattern tree, FP-tree, from de-normalized tables. It is
used to store compact and complete information for mining frequent patterns.
Second, an FP-tree-based pattern-fragment growth mining method is employed.
The FPTree achieves success in an order of magnitude faster than Apriori and is
implemented in DBMiner System. Our work, instead of constructing trees from
de-normalized tables, provides a novel method to construct the FPN-tree, which
is equivalent to the FP-tree, based on normalized transaction databases.

In addition, there are published papers on integrating mining algorithms
with relational database systems during past few years. In [6], the aspects of
integration are discussed in a purely technical way. Alternatives to speed up the
database access of the algorithms are evaluated. [3] presents extended versions of
the SQL that directly support data mining. Instead of handling these technical
issues, our study aims to mine frequent patterns from original transaction tables
of enterprise databases, so it can be further combined with these works.

As pointed in [4], since the support value is usually query-dependent, the
difficulty arises when selecting a good minimum support threshold while con-
structing an FP-tree. [4] recommends selecting a relatively low support, which
can satisfy most initial mining queries, in constructing trees. As long as the
support is re-set to values higher than the initial one, the FP-tree needn’t be
re-constructed, and it’s easy to re-generate frequent patterns based on the upper
portions of the established FP-tree. But however, in case of re-setting to a lower
support value, the computation cost for mining frequent patterns with a low sup-
port threshold explodes exponentially. Aside from this, under such circumstance,
an FP-tree should be re-constructed and the whole mining processes should be
re-performed. Hence, the FPNTree proposes a new method to flexibly adjust the
minimum support threshold without re-doing the whole mining processes.
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3 The FPN Approach

3.1 The Data Preparation

In order to mine frequent patterns directly form normalized enterprize databases,
few modifications should be made. Usually, enterprize databases contain two
normalized tables related to company sales. One is the Transaction Table used
to record products sold of each transaction, and the concatenated primary key
may usually be the ProductId(pid) and TransactionId(tid). The other one is
the Product Table which records all products provided in the company. Next,
modifications required for these two tables are further explained.

1. Add one index constraint on the pid field to the Transaction Table. Therefore,
the Transaction Table will keep a logical sequence based on pid.

2. In the Product Table, one field named count which records the number of
transactions of each sold product should be added. So, when one transaction
happens, information systems will insert new records to the Transaction
Table as well as update the count of the Product Table simultaneously.

3. In order to speed the mining process, an index constraint on the count field
of the Product Table should be added.

4. Another pointer field, represented as pptr, is also required in the Product
Table for enhancing the efficiency. It links each product in the Product Table
to the first tupple of related transaction records. Since the Transaction Table
has indexed on the ProductId in first step, all related transactions containing
the same ProductId can be retrieved efficiently.
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Fig. 1. The modified tables in Enterprize Information Systems

Fig. 1 illustrates these modifications and these two normalized tables are
exactly the data input of the FPN Approach. As mentioned, most nowadays
algorithms for mining frequent patterns require additional steps to transform
original normalized tables(Fig. 1) into the de-normalized flat file(Table 1).
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3.2 Preliminaries and Definitions

Example 1 Let the Transaction and Product Table shown in Fig. 1 be the data
sources for mining frequent patterns, and the minimum support threshold ξ = 3.

Definition 1. A Product Recordset, PR, is define as

a. PR = {〈pid, count〉} defined to be a projected recordset of the PR recoredset.
b. PR is ordered by descending count first and ascending tid secondly.
c. freq(PR)={〈pid, count〉 | count ≥ ξ}.
d. PR(x) = {〈pid, count〉 | pid = x}.
e. f(x) is a function which returns the value of PR(x).count.
f. fo(x) is a function to define the sequence of constructing the FPN-tree.

For instance, in Example 1, because f,c,a,b,m,p are frequent patterns and
f(f) ≥ f(c) ≥ f(a) ≥ f(b) ≥ f(m) ≥ f(p), the order used to construct the
FPN-tree can be defined as fo(f) > fo(c) > fo(a) > fo(b) > fo(m) > fo(p).

Definition 2. A Transaction Recordset, TR, is define as

a. TR = {〈tid, pid〉}, which is a projected recordset of the Transaction Table.
b. TR is ordered by ascending pid first and ascending tid secondly.
c. freq(TR) = {〈tid, pid〉 | pid ∈ freq(PR).pids}.

Definition 3. A FPN-tree, mined from TR and PR, is defined below.

a. It consists of one root, a set of subtrees as the children of the root and a
Transaction-Header-Table termed as ”THT ”.

b. Other than the root, each node contains two fields: (1)pid and (2)cnt.
c. the Transaction-Header-Table consists of two filed: (1)tid and (2)ptr.

The Transaction-Header-Table, THT , of the FPN-tree is used to point the
tree node whose pid contained in the transaction. And the path originated form
the root to current node represents the pids of the current transaction have
been stored in the FPN-tree. Next, it shows the FPN constructs the tree by the
descending fo(pid)s and after completing the FPN-tree, it stores the complete
information for mining frequent patterns. And then, THT can be deleted.

3.3 The FPNTree Construction

In constructing the tree, FPNTree initially retrieves all freq(PR).pids. After
this, it first constructs the root as well as establishes the THT and sets all
THT .ptrs to the root. The initial state of Example 1 is shown in Fig. 2.

Secondly, for each freq(PR).pid, the FPNTree retrieves all transactions con-
taining the current freq(PR).pid from TR, i.e. σfreq(PR).pidTR. After this, FP-
NTree constructs the tree by updating the THT .ptrs of each related transactions
(i.e. σfreq(PR).pidTR.tids). The tree construction principles are summarized as:
for each σfreq(PR).pidTR.tid, FPNTree checks if the current THT .ptr has a child
node marked as freq(PR).pid. If so, then adds ’1’ to THT .cnt as well as updates
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the current THT .ptr to this child node; or else, creates a child node marked as
〈freq(PR).pid, 1〉 as well as updates the current THT .ptr to the newly created
node. Next, FPNTree is further illustrated by Example 1.

In Step 1, the first tuple of freq(PR).pid is f(i.e. 3), the transactions con-
taining the pid = f are retrieved. As shown in Fig. 2, the σpid=fTR contains
fours transactions: tid=1, 2, 3 and 5. Since the first σfTR is tid=1, the FPNTree
checks the THT .ptr with THT .tid = 1. Here, the current THT .ptr points to the
root and of which there is no child node marked with ’f ’, FPNTree creates a
child node with 〈pid = f, cnt = 1〉. At the same time, the current THT .ptr is
updated to point this newly created child node. After this, FPNTree proceeds to
the second transaction record, i.e. σf,tid=2TR. The THT .ptr with THT .tid = 2
also points to the root initially, but however there is already a child node marked
as f , so the FPNTree adds ’1’ to the count of the child node as well as updates
the current THT .ptr to this child node. The same procedures are repeated with
tid = 3 and 5. Finally, this child node is marked as 〈f, 4〉.
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Fig. 2. Initial Step; Step1 pid = f and Step 2 pid = c

Next, the second freq(PR).pid is c, and the σcTR is retrieved(tid=1,2,4 and
5). The current THT .ptr with THT .tid = 1 now points to the node: 〈f, 4〉, we
use (THT .ptr).pid to refer ’f ’ and (THT .ptr).cnt to indicate ’4’. Since there is
no child labeled with c, FPNTree creates a child node and marks it as 〈c, 1〉. The
current THT .ptr with THT .tid = 1 is now changed to this new node. Next, as
σc,tid=2TR, the corresponding THT .ptr points to the 〈f, 4〉. At this time, there
is already a child node named 〈c, 1〉, so we just need to update this child node
to 〈c, 2〉 and re-point the current THT .ptr to this node. When processing the
σc,tid=4TR, the corresponding THT .ptr points to the root originally. Since there
is no child with pid = c linked to the root directly, a new node is created as 〈c, 1〉.
Meanwhile, the current THT .ptr is updated to this node. Finally, σc,tid=5TR
is processed. So all transactions containing c are stored in the FPN-tree. The
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FPNTree algorithm and the constructed FPN-tree is listed in Fig. 3. As reader
might observe that excepting the Header Table of the FP-tree, the FPN-tree is
equivalent to the FP-tree(The proof has been omitted to save sapce).

Fig. 3. The FPNTree Algorithm

Since the tree is constructed by the descending fo(pid)s, the tree path from
the root to the current node shows the frequent pids of the transaction in
the descending order. For example, in Fig. 3, the THT.tid=1 terminated at
the node 〈p, 2〉. Since the tree is constructed by the order: fo(f) > fo(c) >
fo(a) > fo(b) > fo(m) > fo(p), the path from the root to 〈p, 2〉 registers the
transaction(tid=1) containing pid = f, c, a, m, p.

While constructing the tree with ξ, since the PR is ordered by the f(pid)s
and the TR is ordered by the pid and tid, the FPNTree needn’t to scan the whole
PR and TR. During the tree construction, FPNTree navigates the PR.pids in
the descending order of fo(pid)s. As it reaches the PR.pid whose frequency
count lower than ξ, the algorithm will terminate since no frequent items are left.

Property 3.1. Given the TR and PR, as well as ξ, the FPNTree constructs
the FPN-tree without scanning the whole TR and PR.

Based on Property 3.1, if the new minimum support ε > ξ, the FPN-
tree needn’t to be re-constructed. The upper portion, whose f(PR.pid)s ≥ ε,
of the FPN-tree can be used to generate frequent patterns. Contrarily, as the
new ε < ξ, since the PR is ordered by the descending f(PR.pid)s, FPNTree can
continue to construct the FPN-tree with pids whose f(PR.pid)s are between
ε and ξ. Consequently, no matter the minimum support threshold is increased
or decreased, the FPNTree can flexibly construct the tree without re-scan the
whole databases as well as re-construct the FPN-tree.
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4 Simulation Results

To evaluate the efficiency and effectiveness of the FPNTree, several experi-
ments on various kinds of datasets are tested. Experimental results show the
efficiency of the FPNTree for flexibly adjusting the minimum supports without
re-performing all mining tasks. Each dataset is evaluated by three approaches,
FPGrowth [4], Eclat [7] and FPN, with 6 different support thresholds. All Al-
gorithms are coded by C++ and tested on a Centrino 1.4GHZ PC with 767 MB
RAM under WinXP. The FPGrowth1.6 and ECLAT2.9 used are well-known
versions, GNC Lesser General Public License, available at http://fuzzy.cs.uni-
magdeburg.de/b̃orgelt/.

The four real datasets are taken from the UCI Machine Learning Database
Repository and widely tested by other approaches [8]. Typically, they are very
dense. Two synthetic datasets , T10I4D10K and T40I10T100K, commonly used
as benchmarks for testing algorithms are also generated by generator described
in [2]. Usually they are much sparser compared to real datasets.

Experimental Results. In order to show the flexility of adjusting support
thresholds, we first set the initial support to 30%. And after this, we adjust
the thresholds to 25%, 20%, 15%, 10% and 5% in sequence. Fig. 4 shows the
experimental results of FPN, FPGrowth and ECLAT. In most datasets, FPN
outperforms FPGrowth and ECLAT. In general, the computation time used in
FPN is 2 to 4 times faster than FPGrowth and ECLAT in real datasets. And on
the connect dataset, the computation time required are much less than two other
methods. It shows the FPGrowth and ECLAT are 8 to 10 times slower than the
FPN. These real datasets are very dense. Especially in the pumsb, there are only
2k items and 500k transactions, however the number of frequent patterns found
are 28,096,545 with support=10%. For the synthetic datasets: t10 and t40, which
are much sparser than real datasets, the results also present the FPN achieves
good performance on both of them. So the flexility of the FPNTree to adjust
minimum support values do save lots of computation costs especially when the
support value is low.

Comparison with FPTree. As in Example 1, FPTree first reads the Table 1.
And then, FPTree transforms Table 1 into an ordered frequent pid projections.
Since f, c, a, b, m, p are frequent items, the ordered frequent pid projections refer
to the left part of Table 2 and all infrequent l, o, d, e, g, h, i, j, k, n, s are deleted.
As a result, each transaction contains only the ordered frequent items. And based
on the projections, FPTree scans the database by examining one transaction at
a time. On the other hand, the FPNTree examines one frequent pid at a time,
and all tids containing the specific pid are used to construct the tree. Since the
FPTree does not maintain the infrequent pids, as decreasing the support values,
it needs to re-scan entire database as well as re-construct the tree.

Since different mechanisms of infrequent pids recording are embedded in these
two algorithms, FPNTree and FPTree inherit significantly different run time
complexity. Assume existing a database with I items and a total of S copies
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Fig. 4. Comparison of FPN, FPGrowth and ECLAT

Table 2. FPTree vs FPNTree

TID f c a b m p l o d e g h i j k n s
1 f c a m p d g i
2 f c a b m l o
3 f b o h j
4 c b p k s
5 f c a m p l e n

of these items being sold in numerous transactions. And assume the database
is used to build FPN-trees K times with thresholds monotonically decreased.
In each iteration of building the FPN-tree, the method only needs to read the
transactions associated with the items whose counts fall between thresholds of
current and previous iterations. Therefore, the complexity of building the FPN-
trees K times with thresholds monotonically decreased is O(I + S), which is
independent of the K. On the other hand, the algorithm of FP-tree generation
reads the database and decides the counts of items first. And then it sorts the
items of each transaction according to the counts. Suppose s is the length of
the maximum transaction. In the following iterations, the ordered S is re-read
and the FP-trees are re-built with the frequent pids. Hence, the complexity of
constructing K FP-trees with the given database is O(K ∗ S + S ∗ log(s)).

5 Conclusion

Unlike most mining algorithms, the proposed method mines frequent patterns
from normalized tables of enterprise databases directly. The FPNTree constructs



380 Y.-C. Liu and P.-Y. Hsu

an FPN-tree to store the complete information for mining frequent patterns. And
based on Property 3.1, FPNTree only needs to scan the transactions associated
with the frequent items. Only in the rare cases, when the support is extremely
low, do the method need to scan tids associated with every pid in the database.

As mentioned, incorporating mining tasks with enterprise information sys-
tems would be an interesting research topic. The FPN Approach has room for
further research, such as mining sequential data, CLOSET frequent patterns,
and maximum frequent patterns. Based on this study, our interest lies in devel-
oping new algorithms for mining very dense data and further combining our new
method with other well-known algorithms.
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Abstract. This paper presents an analysis of the behaviour of Consolidated 
Trees, CT (classification trees induced from multiple subsamples but without 
loss of explaining capacity). We analyse how CT trees behave when used to 
solve a fraud detection problem in a car insurance company. This domain has 
two important characteristics: the explanation given to the classification made is 
critical to help investigating the received reports or claims, and besides, this is a 
typical example of class imbalance problem due to its skewed class distribution. 
In the results presented in the paper CT and C4.5 trees have been compared, 
from the accuracy and structural stability (explaining capacity) point of view 
and, for both algorithms, the best class distribution has been searched.. Due to 
the  different associated costs of different error types (costs of investigating 
suspicious reports, etc.) a wider analysis of the error has also been done: 
precision/recall, ROC curve, etc. 

1   Introduction 

The application of machine learning to real world problems has to be done 
considering two important aspects: class distribution affects to classifiers’ accuracy 
and the explanation is very important in some domains. 

In real domains such as illness diagnosis, fraud detection in different fields, 
customer’s behaviour analysis (marketing), customer fidelisation, ... it is not enough 
to obtain high accuracy in the classification, comprehensibility in the built classifier is 
also needed [2]. The classifying paradigms used to solve this kind of problems need to 
be able to give an explanation, for example classification trees. 

On the other hand, it is very common to find domains where the number of 
examples for one of the categories (or classes) of the dependent variable is much 
smaller than for the rest of the classes. These situations are named class imbalance or 
skewed class distribution. 

Classifiers do not behave well when they are trained with very unbalanced data 
sets. For example, if 99% of the examples in a data set belong to the same class, for a 
classifier that labels test cases with the majority class, the accuracy will be 99%. 
Since most classifiers are designed to minimise the error rate, the classifiers built 
from this kind of data-sets tend to be very simple and nonsense [3]. 
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Weiss and Provost [8] have shown that each domain has an optimal class 
distribution to be used for training. Their work shows that, in situations where the 
class distribution of the training set can be  chosen, it is often preferable to use a 
different distribution to the one expected in reality. So, in environments with skewed 
class distribution, we can use samples with modified class distribution with the aim of 
building valid classifiers. Undersampling, eliminating some examples, is the most 
common strategy to modify the class distribution of a sample. Even if the direct 
consequence of undersampling is that some examples are ignored, in general, 
undersampling techniques obtain better results than oversampling techniques 
(repeating some examples) [3]. In order to avoid the information loss produced by 
undersampling, multiple classifiers can be built based on subsamples with changed 
distribution. Most of the information in the original sample can be covered by 
choosing adequately the number of generated subsamples. Techniques such as 
bagging and boosting can be a good option in some cases but not in areas where 
explanation is important. It is clear that “while a single decision tree can easily be 
understood by a human as long as it is not too large, fifty such trees, even if 
individually simple, exceed the capacity of even the most patient” [2]. 

We have developed an algorithm, CTC (Consolidated Tree’s Construction 
Algorithm), that is able to face both problems: several subsamples with the desired 
class distribution are created from the original training set, but opposite to other 
algorithms that build multiple trees (bagging, boosting), a single tree is induced, 
therefore the comprehensibility of the base classifier is not lost. 

Fraud detection problems belong to the group of domains where the explanation in 
the classification is important. We will use the CTC algorithm and compare it to C4.5 
[6] in a fraudulent report detection problem from a car insurance company. This is a 
difficult problem because the experts in the company estimate that the fraud average 
is in reality higher than 10% or 15% but the fraud examples are very difficult to 
detect, and, as a consequence, in the data provided by insurance companies this 
percentage is lower. Many of the examples labelled as not fraudulent in the data-set 
are actually fraudulent which makes the problem even harder. It is important to 
provide an insurance company with a tool to know the profile of fraudulent customers 
or the evidences that make a report suspicious of fraud, in order to investigate them 
more deeply, so that the fraud does not suppose great financial loss. 

The paper proceeds describing how a single tree can be built from several 
subsamples, CTC algorithm, in Section 2. In Section 3 we describe the main 
characteristics of the car insurance company’s database for fraud detection, and 
Section 4 contains the methodology used to face the class imbalance problem in the 
described domain. Section 5 is devoted to describe the results obtained for the fraud 
detection problem with both algorithms CTC and C4.5. Finally Section 6 is devoted to 
show the conclusions and further work. 

2   Consolidated Trees’ Construction Algorithm 

Consolidated Trees’ Construction Algorithm (CTC) uses several subsamples to build 
a single tree [4]. The consensus is achieved at each step of the tree’s building process 
and only one tree is built. The different subsamples are used to make proposals about 
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the feature that should be used to split in the current node. The split function used in 
each subsample is the gain ratio criterion (the same used by Quinlan in C4.5). The 
decision about which feature will be used to make the split in a node of the 
Consolidated Tree (CT) is accorded among the different proposals by a voting process 
(not weighted) node by node. Based on this decision, all the subsamples are divided 
using the same feature. The iterative process is described in Algorithm 1. 

Algorithm 1. Consolidated Trees’ Construction Algorithm (CTC) 

    Generate Number_Samples subsamples (Si) from S with Resampling_Mode method. 
CurrentNode := RootNode 
for  i := 1 to Number_Samples 
    LSi := {Si}  
end for  
repeat 
    for  i := 1 to Number_Samples 

CurrentSi := First(LSi) 
  LSi  := LSi - CurrentSi  
          Induce the best split (X,B)i for CurrentSi 
    end for  
    Obtain  the consolidated pair (Xc,Bc), based on (X,B)i, 1  i  Number_Samples 
    if (Xc,Bc)  Not_Split 
       Split CurrentNode based on (Xc,Bc) 
       for i := 1 to Number_Samples 
            Divide CurrentSi based on (Xc,Bc) to obtain n subsamples {S1

i, … Sn
i} 

            LSi  := {S1
i, … Sn

i} ∪ LSi  
        end for 
    else consolidate CurrentNode as a leaf  
     end if 
CurrentNode := NextNode 
 until ∀i, LSi is empty 
 

The algorithm starts extracting a set of subsamples (Number_Samples) from the 
original training set. Based on previous experimentation we find that to use 30 
subsamples can be a good trade-off among efficiency and computational cost . The 
subsamples are obtained based on the desired resampling technique 
(Resampling_Mode). For example, the class distribution of the original training set 
can be changed or not, examples can be drawn with or without replacement, different 
subsample sizes can be chosen, etc. 

Decision tree’s construction algorithms divide the initial sample in several data 
partitions. In our algorithm, LSi contains all the data partitions created from each 
subsample Si. When the process starts, the only existing partitions are the initial 
subsamples. 

The pair (X,B)i is the split proposal for the first data partition in LSi. X is the feature 
selected to split and B indicates the proposed branches or criteria to divide the data in 
the current node. In the consolidation step, Xc is the feature obtained by a voting 
process among all the proposed X. Whereas Bc will be the median of the proposed Cut 
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values when Xc is continuous and all the possible values of the feature when Xc is 
discrete. In the different steps of the algorithm, the default parameters of C4.5 have 
been used as far as possible. 

The process is repeated while LSi is not empty. The Consolidated Tree’s generation 
process finishes when in the last subsample in all the partitions in LSi, most of the 
proposals are not to split it, so, to become a leaf node. When a node is consolidated as 
a leaf node, the a posteriori probabilities associated to it are calculated averaging the a 
posteriori obtained from the data partitions related to that node in all the subsamples. 

Once the consolidated tree has been built, it works the same way a decision tree 
does for testing, pruning, etc. This way the explanation of the classifier is not lost 
even if several subsamples are used to build it. 

3   Car Insurance Database for Fraud Detection 

One of the factors affecting the price of car insurance policies is the large amount of 
fraudulent reports that a company is not able to detect is. The company has to assume 
all the increase in costs produced by this fraud, and, as a consequence, the insurance 
policies become more expensive. The experts in the companies think that at least 10% 
or 15% of the produced reports are fraudulent, and, however, about 5% of them is 
detected. So the databases in insurance companies have the following characteristics: 
the examples labelled as fraudulent belong to the minority class (class imbalance) 
and, on the other hand, they are the only 100% reliable data, because among the 
examples labelled as not fraudulent there are some fraudulent examples that the 
company has not been able to detect. Therefore the information provided to the 
algorithm is not correct which makes the machine learning problem difficult to solve. 

In order to detect fraud, suspicious reports have to be investigated but this has 
associated costs: the costs concerning to the investigation itself (staff, resources, etc.), 
and the cost coming from investigating not fraudulent customers [1]. The company’s 
image can be severely affected by customers that are annoyed when they realise that 
they are being investigated. When evaluating a report, it will be important for the 
insurance broker to know the fraud probability assigned to it by the classification 
system, as well as the factors that have affected to the decision. The explanation given 
by the classifier about the decision made could be used by the broker to investigate 
the case. So, if the aim is to have a tool that will help in the detection of fraudulent 
reports, it is absolutely necessary to use classification paradigms that are able to give 
an explanation, for example, decision trees. This paper analyses the behaviour of 
different classifiers with real data from a car insurance company, the kind of problem 
we have just described. The data-set has 108,000 examples, and just 7.40% of them 
are fraudulent cases. This database is clearly an example of class imbalance problem 
with imprecise information for one of the classes. 

The database has 31 independent variables that contribute to the report with 
information of different nature about the accidents: date of the accident (when  
it happened and when it was communicated), insured person (age, sex, marital 
status,...), insurance policy and vehicle (fully comprehensive insurance or not, driving 
experience, kind and use of the vehicle, power,…). When solving this problem with 



 Consolidated Tree Classifier Learning in a Car Insurance Fraud Detection Domain 385 

supervised classification, the dependent variable or class will have two categories: 
fraud and not fraud. 

4   Experimental Methodology 

The original class distribution of the collected data does not always coincide with the 
best one to build the classifier when a problem with class imbalance has to be faced. 
We will make a sweep with different percentages of fraud examples in order to find 
the class distribution we should use to induce the tree. Based on the methodology 
proposed by Weiss and Provost in [8] the tried percentages will be 2%, 5%, 7.40% 
(original distribution), 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 95%. 
We will use the methodology described in [8] to compare the CTC algorithm (with 
parameters mentioned in Section 2) with the well known C4.5 with default settings 
for the different class distributions. In order to make a fair comparison, the used 
training sets need to have the same size even if the used percentages are changed. The 
size of the training set is fixed to 75% of the minority class examples (6,000 
examples), so that subsamples of all the mentioned percentages can be used in the 
experimentation. The remaining 25% of both, majority and minority classes, will be 
used for test. 

Two trees, one with C4.5 and the other with CTC, have been built for each one of 
the proposed percentages. Even if Weiss and Provost did not prune the trees, the 
results obtained with pruned trees in this database are substantially better for both 
algorithms. Therefore, we will present the results obtained by pruning the trees based 
on the training sample and C4.5 standard pruning. To prune the C4.5 trees we have 
used the corrector proposed by Weiss and Provost for estimating the a posteriori 
probability of the leaf nodes, so that they are adapted to the distribution expected in 
reality. This has to be done because the class distribution of the training set and the 
class distribution existing in reality (test) do not coincide. Nevertheless, the corrector 
needs not to be used when pruning CT trees, because the pruning is done with the 
whole training set (the percentages are the ones expected in reality), and the a 
posteriori probabilities are corrected due to the backfitting process. 

As a validation method, the experimentation has been repeated 10 times. 

5   Experimental Results 

In the problem described in previous sections, the behaviour of classifiers can not be 
analysed based just on the error rate. Other aspects will help us to complete our 
comprehension about the classifier’s behaviour: the structural stability of the 
generated trees and the complexity of the trees will give us information about the 
quality of the explanation, the ratio among True Positive and False Positive examples 
(ROC curve) will give us information about the behaviour of the classifier in different 
environments, etc. 

Table 1 shows, for CT trees built with 30 subsamples and C4.5, the error rates and 
standard deviation (Error and σ columns) and the average complexity, measured as 
the number of internal nodes of the trees (Compl. column). The values in different 
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Table 1. Error, standard deviation and complexity for different class distributions 

 C4.5 CT(30) 
 Error σ Compl. Error σ Compl.

2% 7.40 0.00 0.0 7.30 0.00 3.8 
5% 7.40 0.00 0.0 7.31 0.03 4.8 

7.4% 7.40 0.00 0.0 7.31 0.03 4.3 
10% 7.40 0.00 0.0 7.31 0.03 4.1 
20% 7.57 0.34 12.3 7.30 0.05 5.6 
30% 9.75 0.68 103.6 7.30 0.05 6.6 
40% 11.70 1.06 183.7 7.31 0.03 6.2 
50% 10.87 0.95 141.4 7.29 0.06 7.1 
60% 8.69 0.71 44.6 7.30 0.05 6.9 
70% 8.59 0.60 28.2 7.30 0.05 7.2 
80% 8.27 0.52 17.2 7.29 0.06 6.6 
90% 8.59 0.70 11.2 7.29 0.06 6.0 
95% 7.40 0.00 0.0 7.31 0.07 3.4 

 

rows are related to different class distributions. Results show that in every case the 
error is smaller for CTC than for C4.5. The trees built with C4.5 are not able to reduce 
the error rate of 7.40% that would achieve a trivial classifier that labels all the 
examples with the majority class (no fraud). The values belonging to average 
complexity confirm that when the error for C4.5 trees is 7.40% the built trees are 
trivial classifiers: they are just the root node. For the rest of the percentages, the built 
classifiers do not make sense because of the achieved error rate and complexity. The 
values of standard deviation show that the error rates achieved with CT trees are very 
stable (best values are obtained when class distributions are 50%, 80% and 90%). 
Besides, all of them are under the threshold of 7.40% (7.30% in average) and with 
small complexity in average; therefore, giving a simple explanation. These results 
confirm that CT trees are better situated in the learning curve and also according to 
the principle of parsimony (Occam’s razor). 

If we want to evaluate the stability of the explanation given by CT trees we need to 
measure the structural stability. A structural distance, Common, based on a pair to pair 
comparison among all the trees of the compared set has been defined with this aim. 
Common is calculated starting from the root and covering the tree, level by level. The 
common nodes among two trees are counted if they coincide in the feature used to 
make the split, the proposed branches or stratification and the position in the tree [5]. 
Normalising the Common value with the complexity of the tree (as defined before) 
and making the analysis for the CT trees built for different class distributions, we find 
a maximum value of 74.27% and minimum of 35.19% being the average 49.36%. So 
we can say that in average half of the structure of the trees, and, as a consequence the 
explanation, is maintained. However for C4.5 the %Common is in average 10.31%. 

The division of the error in false positive (FP) and false negative (FN) is important 
in this kind of applications. FP quantifies the amount of unnecessary investigations of 
customers whereas the FN quantifies the fraudulent customers that are not detected. 
Evidently it is of capital importance not to investigate honest customers in order to 
achieve a good company image. Even if the objective is to detect all the fraudulent 
reports, the quantification of the percentage of investigated reports is also important 
due to the costs and the trouble to the customers it implies. We will analyse these 
aspects with results of precision, recall or sensitivity, breakeven point, ROC curve 
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and AUC [7]. To be brief, we will present results for class distribution of 50% (results 
for other distributions are similar). 

Classification trees can work on a more or less conservative way by modifying the 
threshold needed to label a node as fraudulent. Table 2 shows results for a wide range 
of thresholds. When the threshold is 0% (trivial acceptor) all the examples will be 
classified as fraudulent; this would be the most liberal operation mode. On the other 
hand, the most restrictive operation mode will be when the threshold is 100%. Only 
the fraudulent examples belonging to homogeneous nodes would be classified as 
fraudulent. The adequate threshold is usually selected so that the best trade off among 
costs of FP and FN is found. 

Table 2. Results for conservative and liberal operation mode for CTC and C4.5 algorithms 

 CTC C4.5 
Threshold Precision Recall Reports Precision Recall Reports. 

0% 7.41 100.00 27000 7.41 100.00 27000 
5% 11.21 89.66 15995 12.20 76.39 12523 
10% 12.17 66.53 10932 12.60 70.17 11135 
15% 53.98 5.12 190 13.50 41.28 6115 
20% 55.03 5.09 185 14.11 22.87 3241 
25% 57.84 4.89 169 14.52 16.80 2314 
30% 59.92 4.71 157 14.95 14.32 1916 
35% 60.31 4.68 155 15.61 13.33 1708 
40% 60.64 4.62 152 15.78 11.82 1498 
45% 63.23 3.59 113 14.73 10.13 1375 
50% 63.39 3.46 109 14.85 9.91 1335 
55% 63.51 3.42 108 13.88 8.92 1285 
60% 66.43 2.80 84 13.31 8.29 1245 
65% 67.05 2.62 78 12.13 7.28 1199 
70% 70.11 2.24 64 10.69 6.14 1148 
75% 70.39 1.61 46 9.82 5.48 1116 
80% 50.00 0.09 3 9.83 5.38 1094 
85% 50.00 0.09 3 9.83 5.38 1094 
90% 50.00 0.09 3 9.83 5.22 1062 
95% 50.00 0.09 3 9.83 5.22 1062 

100% -- 0.00 0 -- 0.00 0 
 

The precision and recall are two parameters that can be used to measure the 
effectiveness of the classifier on basis of the threshold. Examples of conservative and 
liberal operation mode appear in bold in Table 2. We can observe that if the classifier 
based on CTC would work in a conservative way (threshold 75%), the company 
would revise only 46 reports (reports) and 70.39% of them (precision) would be 
fraudulent (the probability to find a fraudulent report has been increased from 7.4% to 
70.39% and the disturbed customers have been very few). If we would like to detect 
more fraudulent reports, increasing the recall but still without disturbing a lot of not 
fraudulent customers we could decrease the threshold to 15% (liberal example). As a 
consequence 190 reports would be revised and more than half of them would be 
fraudulent. Table 2 shows that the trees induced with C4.5 achieve higher recall 
values, but the amount of reports to investigate and the low precision obtained make 
grow considerably the costs related to investigations and incorrectly revised 
customers. 
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A way to find a balance among precision and recall is to establish a threshold, 
breakeven point, so that both parameters are made equal. Although this is a too 
general measure for the purposes of our study, CTC clearly beats C4.5; the estimated 
values are 34.45% for CTC and 15.25% for C4.5. Evidently being the aim the 
maximisation of precision and recall when larger the breakeven point is, better the 
behaviour of the algorithm is. 

We have also calculated the ROC curves (they are not shown due to lack of space) 
of both classifiers. The aim is to maximize  the TP with a minimum FP, and as a 
consequence, to maximize the Area Under the ROC Curve (AUC). We have 
calculated the average AUC for all the analyzed class distributions and the average 
values obtained are: 68.87% for CTC and 60.71% for C4.5. This indicates that CT 
trees have better global behaviour than C4.5 trees. 

6   Conclusions and Further Work 

This paper presents the analysis of the influence of class distribution in a fraud 
detection problem from a car insurance company for two tree induction algorithms: 
C4.5 and CTC. The behaviour of both algorithms for different class distributions has 
been analysed based on the methodology presented in [8]. Thanks to this 
methodology we have been able to build non trivial C4.5 trees, but results have been 
better for CT trees. Moreover, both algorithms build a single tree, that is to say, they 
maintain the explanation in the classification which is essential in real problems of 
this kind where an explanation added to the classification made is compulsory. The 
results presented in Section 5 confirm that CT trees behave better than C4.5 trees in 
many aspects: accuracy, structural stability or explanation, ROC curve, 
precision/recall, etc. 

The results obtained in this experimentation could be compared to other strategies 
that do not lose the explanation even if they use several subsamples to build the 
classifier. For example the procedure presented in [2], which is able to extract 
explanation to bagging, and our proposal could be compared. As we mentioned when 
describing CTC algorithm many parameters can be varied. CTC algorithm can be 
tested using other base algorithm different to C4.5 such as CHAID, CART, … 

Related to the real application, fraud detection in car insurance companies, the 
difficulty finding fraud examples make us think that the characteristics provided by 
the experts in the company might not be suitable, so the extraction of more 
discriminating information could be studied. 
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Abstract. In this paper, we deal with the problem of partially observed objects. 
These objects are defined by a set of points and their shape variations are 
represented by a statistical model. We present two models in this paper: a linear 
model based on PCA and a non-linear model based on KPCA. The present 
work attempts to localize of non visible parts of an object, from the visible part 
and from the model, using the variability represented by the models. Both are 
applied to synthesis data and to cephalometric data with good results. 

1   Introduction 

DATA compression, reconstruction, estimation and de-noising are common 
applications of linear Principal Component Analysis (PCA) [1,2]  and Kernel PCA 
[3,4]. In the latter case, this is a non-trivial task as the results provided by Kernel PCA 
live in some high dimensional feature space. The main problem of KPCA 
reconstruction and denoising scheme is to retrieve the data in the input space whose 
image in Kernel Space is known : in fact, every point of the kernel space does not 
have a pre image in the input space. This is the pre-image problem [3-6]. 

In this paper, the estimation of a partially observed object in the input space, using a 
model learned in the feature space F.. is addressed. Some part of the observation is 
known. To solve this problem, spatial relationships between the known part of the 
observation and the unknown one are represented in a statistical model and used to 
localize the unknown part. Those relationships are automatically learned in the model. 
Like in KPCA reconstruction problem, there are two possible approaches to solve this 
problem. 

The first one use an explicit mapping function ϕ, the second one use Kernel PCA 
making ϕ implicit. In the first case estimation consists in computing the inverse of ϕ 
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(step 2 in Fig. 1) : a global model (polynomial, sigmoid) of the relations is an a-priori 
knowledge in this case. In the second case the problem is much more complicate (step 
5 in Fig. 1).  

 

Fig. 1. Three different observations space 

The paper is organized as follow : First, the extension of the PCA model to spatial 
relationship representation and partial object recognition is presented. Next, the 
KPCA model is described and the extension to partial object localization is given. 
Polynomial Kernels are detailed and results are illustrated with synthetic and real 
examples.  

2   Linear PCA Model 

The extension of the linear PCA model [7] defined here is an elegant way to take into 
account spatial relations between landmarks and can also estimate the unknown part 
of the partially visible or occulted model. 

Principal Component Analysis is an orthogonal basis transformation, where the 
new basis is found by diagonalizing the covariance matrix of a dataset.  

Let    Ti
= (x

i1
, x

in
,..., y

i1
, y

in
) ∈R2n , be the locations of n landmarks. Using PCA, we 

can write  Ti
≈ T + Φb , where  T is the mean shape of the pattern, Φ = (φ

1
| ... | φ

t
)  is 

a   (n + m) × (n + m)  matrix composed with the eigenvectors of the covariance matrix 

S of the centered data and b is a vector of dimension t : b = Φ t (T
i

− T ) . The 

dimension t of the vector b is the number of eigenvectors with the largest eigenvalues. 

In classical uses of PCA, such as de-noising, t<n+m is chosen by λ
i

i =1

t

≥ 0.95 λ
i

i = 1

m + n

. 

The vector b is then a good approximation of the original dataset and every vector Ti 

can be represented with the  tt < n + m
values of the vector b. 

Under this hypothesis, if some points (says t=n points) are known, the remaining 
unknown points can be determined using PCA. Without any approximations, we can 
write: 
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This is a linear system with m equations and n+m unknowns that can not be 
resolved. Since PCA can represent the dataset with t<n+m values, suppose t<=n, the 

unknown vector (b
1
,K ,b

n
, X

1
,K , X

m
)  can be estimated by the following system: 
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In this framework, a linear approximation of spatial relations between known and 
unknown points are explicitly determined from the eigenvectors of the covariance 
matrix. 

3   KPCA Models 

Kernel PCA can be considered as a natural generalization of linear PCA and is very 
well suited to extract interesting non-linear structures in the data. Closely related to 
methods applied in Support Vector Machines, it has proved useful for various 
applications, such as denoising and as a pre-processing step in regressions problems. 

3.1   Kernel PCA and Reconstruction 

Kernel PCA first map the data from an input space I into a feature space F via a 
(usually non-linear) function and then perform linear PCA on the mapped data. As the 
feature space F can be very high dimensional, kernel PCA employs Mercer kernels 
instead of carrying out the mapping explicitly such as Gaussian kernels 

  
k(x, y) = exp(− x − y

2

/ c)  and polynomial kernels k(x, y) = (1 + x • y)d . 
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Consider  data vector x and  y in the  input space I = R2n . The non-linear 

mapping    Φ : R2n → F is defined such that : Φ(x) • Φ( y) ≡ k(x, y)  where • is the 
vector dot product in the high dimensional feature space F.  

To perform PCA in feature space, we need to find Eigenvalues λ > 0 and 

Eigenvectors V ∈F\{0} satisfying λV = CV with C = Φ(x
i
)Φ(x

i
)T , the 

covariance matrix computed on the mapped data. Defining the NxN Kernel matrice 

K: 
  
K

ij
≡ Φ(x

i
) • Φ(x

j
) , the problem becomes :  

 Nλα = Kα      (1) 
To extract non-linear principal components βi of a test point 

r
x , the projection onto 

the k-th component is computed by: 

β
k

= (V k • Φ(x)) = α
i
k k(x, x

i
)

i=1

N

   (2) 

To reconstruct the Φ -image of a vector x from its projections βk onto the first n 
principal component in F (assuming that the Eigenvectors are ordered by decreasing 

Eigenvalue size), a projection operator P
n

is defined by  

  
P

n
Φ(x) = β

k
V k

k =1

n

    (3) 

When observations are not centered, the centered Φ(x) are used : 

Φ(x) ≡ Φ(x) − 1
N

Φ(xi )
i=1

N

 ∀r
x ∈Rn .                                     (4) 

In term of dot product, the Gramm matrix replaces the Kernel matrix: 

K
ij

= K
ij

−
1

N
K

ip
p =1

N

−
1

N
K

qj
q =1

N

+
1

N 2
K

pq
p ,q =1

N

.   (5) 

3.2   Missing Data Estimation 

The problem to solve is the reconstruction of partially unknown examples from the 
KPCA model and from the known part of the data. 

Let   z = (c
1
,K ,c

n
, x

1
,K ,x

m
)  be an example to reconstruct, with the n first 

coordinates known. The statistical model can be seen as some variability parameters 
(b in PCA model, β in KPCA model) around a mean shape. Finding the unknown part 
of x is equivalent to find the shape belonging to the model (i.e. variability parameters) 
whose first coordinates are given by the known part of x. However we are interested 
in an estimation in the input space (x1,x2,…xm) rather than in feature space 
(β1,β2,…βk). So the solution is given by a vector satisfying P

n
Φ(c) = Φ(z) , which 

is the pre-image with (x1,x2,…xm,β1,β2,…βk) as unknown. Remember that in the 
classical pre-image, the feature space coordinates (β1,β2,…βk) are known.  
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one to the model, is found by minimizing ρ(x) = Φ(z) − P
N
Φ(c)

2
, i.e. 

  
ρ(x) = Φ(z)

2
− 2 Φ(z) • P

N
Φ(c)( )+ P

N
Φ(c)

2
         (6) 

Using equations (2) and (3), kernel notation is introduced to obtain: 

ρ(x) = k(z, z) − α
i

k k(c, x
i
)

i =1

L

k =1

N

α
i

k 2k(z, x
i
) − k(c, x

i
)( )

i =1

L

   (7) 

The projection of c and z on the KPCA space are the same : 

  
ρ(x) = k(z, z) − α

i
k k(c,x

i
)

i=1

L
2

k =1

N

   (8) 

This is the general case and minimize ρ(z) depends upon the chosen kernel. This 
equation can be solved by numerical optimization, but this function presents in 
general a great number of local minima, sometimes numerically instable. Now, the 
paper is focused on the polynomial kernels.  

3.3   Estimation for Polynomial Kernel 

Let pose   z = (c
1
,K ,c

n
, x

1
,K , x

m
) as the known part of z is the known part of x. For 

polynomial kernels, we have to minimize  

  

ρ(z)
min

= (1+ x
c

• x
c

+ z
x

• z
x
)d − α

i
k (1+ x

c
• x

ci
+ z

x
• x

xi
)

i=1

L d

k =1

N
2

 (9) 

which is a polynomial of degree 2d with m unknowns. The mapping ϕ is easily 
retrieved and is explained using a linear combination of monomial and dot product. 

3.3.1   Polynomial Degree One 
As the observation must be centered in the Feature space k(x, y) = (x • y) . The 

mapping in this case is linear. 

  

ρ(x)
min

= (c • c + x • x) − α
i

k (c • x
ci

+ x • x
xi

)
i =1

L
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i

k x
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For an extremum, the gradient has to vanish, which lead to a necessary condition: 

x =
C

0 k
C

1k

k = 1

N

1 − C
1k

( )2

k = 1

N
=

α
i

k c • x
ci( )

i =1
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α
i
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xi

i =1

L

k = 1

N

1− α
i

k x
xi

i =1

L
2

k = 1

N

 (10) 

Not surprisingly, this is the classical PCA solution related in §II.  

 

When the vector has no pre-image z, the vector z, such as its image is the nearest 
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3.3.2   Polynomial Degree 2 
The mapping ϕ is given by 

  
ϕ(x) = (x
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The gradient has to vanish:  

  
ϕ

x
(z) • ϕ

x
(z) − C

0 k
C

1 k
• ϕ

x
(z) + C

1 k
• ϕ

x
(z)( ) C

1 k
• ϕ

x
(z)( )( )

k =1

N

 (12) 

Finding the roots of this polynomial  
is done by classical numerical method such as newton’s one or brent’sone. Note that 
the solution must be close enough to the mean value of the model and between 3 
times the eigenvalue around the mean. This is used as initial value and/or bracketed 
range. Finding the solution of the general equation (eq 9) give simultaneously the 
unknown input space data (unknown part of object) and the variability parameter β of 
the model. 

4   Results 

4.1   Synthesis Data 

In this first experiment, a data set of three points (i.e. six values) is generated (fig 2). 
Three parameters are needed to perfectly describe these data, i.e. 3 is the theoretical 
optimal number of variability parameters for PCA and KPCA methods.  

1. In these synthesis data, one point is a constant. It should be easily 
predicted, simply because its mean values is a constant.  

2. Variations of a point through the examples are linear. Its trace on the figure 
3 is a line. The linear PCA and the Kernel PCA should predict it with a 
good accuracy. 

3. Variations of the last point through the examples are non linear. This point 
describes an ellipse. A first set uses a full ellipse (on the left side of figure 
2) with some indetermination on y-axis when x is known. A second set 
uses a half ellipse (on the right side of figure 2) where this indetermination 
is missing. 

Independent uniform noise is added to every position. 

The PCA and KPCA models are trained on a set of 50 samples. The test set is 
composed of 300 samples.  
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Fig. 2. 3 points with linear and non linear relationships. The circles are initial data set, crosses 
are reconstructed data set when 3 values are missing in an example. 

In this experiment, the last value of each sample is suppressed and this missing data 
is estimated by our model. First, the value of the function to minimize (eq 12) has a 
clearly visible minima, and the width of this minima is the width of the added noise 

Second, The error of this estimated unknown value is summarized in the table 1, 
with respect to the number of variability parameters retained, for 3 methods : 

1. Polynomial Kernel minimization, described here : variability parameters 
and pre-image are simultaneously estimated. 

2. Explicit second degree polynomial projection with PCA : variability 
parameters are first estimated, following by pre-image computation 

3. Classical PCA 

Table 1. Estimation error for a varying number of parameters 

Variability 
Parameters 

1 2 3 4 5 

Kernel minimization  478.94 54.811 60.662 58.685 56.088 
Polynomial function 505.1 598.09 592.09 816.96 962.14 
PCA 3504.7 27639 19549 39786 4.952e+005 

 

The results exhibit a large advantage to the non linear method : the non linear aspect 
of the data is well extracted  and represented by these models. Linear PCA cannot 
deal with such non linear data. The second method, in which the variability 
parameters are first estimated and then the pre-image computed is less powerful than 
the use of the kernel trick and the estimation of the variability parameters and the 
unknown values in one step. 

Another Comparison between linear and Kernel PCA can be achieved with the 
accuracy of the reconstructed points when the number of these reconstructed points. 
In the previous example, 3 parameters are needed to describe the data. So, 3 values 
can be retrieved by this method and the number of retained variability parameters 
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varies from 1 to 3 in the linear model, from 1 to 9 in the non linear model. Figure 3 
plots the error of global reconstruction when 3 values are missing, with the number of 
variability parameters used on the x-axis. It becomes clear that non linear method has 
a large advantage with a better reconstruction error, but with an increased 
computational cost because more parameters are used. 
 

 

Fig. 3. Reconstruction error for 3 missing points 

4.2   Real Data 

The goal of cephalometry [2,8] is the study of the skull growth of young children in 
order to improve orthodontic therapy. It is based on the landmarking of cephalometrics 
points on tele-radiography, two dimensional X-ray images of the sagittal skull 
projection (figure 4). These points are used for the computation of features, such as the 
length or the angle between lines. The interpretation of these features is used to 
diagnose the deviation of the patient form from an ideal one. It is also used to evaluate 
the results of different orthodontic treatment. Cephalometric landmarks are linked to 
the shape of the cranial contour. In this context, the cranial contour is sampled and the 
landmarks are learned together with the sampled contour [9]. 

To landmark a new cephalogram, knowing the contour, the unknown part of the 
model (landmarks) has to be retrieved, with the statistical model and the known part 
(sampled contour). On these real data, linear PCA and KPCA give the same results, 
with 4mm of mean error between the real positions of the landmarks and the estimated 
landmarks. Note that intra-expert variability is about 1mn. This means that the data are 
non really non linear, or that the non-linearity in these data cannot be represented by a 
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polynomial of degree 2. This is quite more than a previous non linear and affine 
invariant version [8], which use an ad-hoc projection function, with 2mn of mean error. 

 

Fig. 4. cephalogram, cranial contour and real (white) and estimated (black) landmarks 

5   Conclusion 

In this paper, a polynomial kernel based shape model has been presented. This non 
linear model is used to resolve the problem of missing data in an image in a statistical 
framework.  We found equation 12, which can be numerically solve in the general case. 
Shape parameters and missing data are then estimated. With polynomial kernel, we have 
to found the roots of a polynomial equation and the solution more robust. The 
polynomial kernel based model has been compared to classical linear PCA on synthetic 
and real data. When a non linear relationship exists between data, the kernel model has 
better accuracy than the linear one, with a larger computational cost.  

References 

1. T.F.Cootes, G.J. Edwards, C.J.Taylor. Active Appearance Models, IEEE PAMI, Vol. 23 
(6), pp. 681-685, 2001. 

2. T.J. Hutton, S. Cunningham, P. Hammond. An Evaluation of Active Shape Models for the 
Automatic Identification of Cephalometric Landmarks. European Journal of Orthodontics, 
Vol. 22(5), pp. 499-508, 2000.  

3. S. Mika, B. Schölkopf, A.J. Smola, K.-R. Müller, M. Scholz, and G. Rätsch. Kernel PCA 
and de-noising in feature spaces. In M.S. Kearns, S.A. Solla, and D.A. Cohn, editors, 
Advances in Neural Information Processing Systems 11, pages 536-542. MIT Press, 1999. 

4. B. Schölkopf, A. Smola et K. Müller. Non linear component Analysis as a Kernel 
Eignevalue Problem. Neural Computation, 10(5): 1299-1319, 1998. 



 Missing Data Estimation Using Polynomial Kernels 399 

 

6. Bakir, G.H., J. Weston and B. Schölkopf: Learning to Find Pre-Images. Advances in 
Neural Information Processing Systems, 16, 449-456. (Eds.) Thrun, S., L. Saul and B. 
Schölkopf, MIT Press, Cambridge, MA, USA (2004) 

7. S. Sclaroff, AP..Pentland, Modal Matching for Correspondence and Recognition. IEEE 
Transactions on Pattern Recognition and Machine  Intelligence, 17(6):545-561, 1995.  

8. B. Romaniuk, M. Desvignes, M. Revenu, M.J. Deshayes Linear and Non-Linear Model for 
Statistical Localization of Landmarks, ICPR, Vol. 4, pp. 393-396, 2002 

9. B. Romaniuk, M. Desvignes, "Contour Tracking by Minimal Cost Path Approach. 
Application to Cephalometry", International Conference on Image Processing ICIP, 
Singapore, October 2004 

5. J. T. Kwok et Ivor W. Tsang. The Pre-Image Problem in Kernel Methods. Proceedings of 
ICML 2003 : pp.408-415, 2003. 



Predictive Model for Protein Function Using
Modular Neural Approach

Doosung Hwang1, Ungmo Kim2, Jaehun Choi3, Jeho Park1, and Janghee Yoo3

1 Department of Computer Science, Dankook University,
San 29, Anseo-dong, Cheonan-si, Chungnam, 330-174, Korea

{dshwang, dk jhpark}@dankook.ac.kr
2 Department of Computer Engineering, Sungkyunkwan University,
ChunChun-dong 300, JangAn-Gu, Suwon, Kyounggi, 440-746, Korea

umkim@yurim.skku.ac.kr
3 Electronics and Telecommunications Research Institute,
161 Kajong-Dong, Yuseong-Gu, Daejeon 305-350, Korea

{jhchoi, jhy}@etri.re.kr

Abstract. As interest within bioinformatics has been vastly increased,
efforts to predict functional role of proteins have been made using di-
verse approaches. In this paper, we discuss a protein function prediction
method that utilizes protein molecular information including protein in-
teraction data. The proposed method takes the given problem into ac-
count as a K-class classification problem and resolves the new problem
by using a modular neural network based predictive approach. The sim-
ulation demonstrates that the proposed approach predicts the functional
roles of Yeast proteins with unknown functional knowledge and is com-
petitive to the other methodologies in KDD Cup 2001 competition.

1 Introduction

The potential value of the knowledge in bioinformatics is perceived as promising
by different application areas. This is accelerated with the completion of genome
sequencing of several target organisms. Among the various related work, the
functional annotation of the proteins is one of the most challenging tasks. Utiliz-
ing the bioinformatics information disseminated out in the Internet, the biology
related research laboratories published massively new experimental results, up-
dated the existing knowledge and constructed the new relationships between
known facts. Accessing the countless available information, various computa-
tional methods for protein function prediction have been studied using such data
as phenotype [2], gene expression [12], motif [18,19], and protein-protein interac-
tion [5,11,16]. The function prediction methods can be categorized according to
training data that they used. Graph-based methods [4,7] utilizes protein-protein
interaction data for graph construction while machine learning methods [2,19]
take protein-related knowledge as input to the methods. A graph-based approach
may fail to define protein function if a protein containing known functions in-
teracts directly or indirectly to proteins without functions. A learning methods

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3686, pp. 400–409, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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generate the prediction rules that are used to assign functional roles to proteins
that are not bound with known functions.

In KDD Cup 2001 competition [9], various learning algorithms were chal-
lenged for high performance in respect of function prediction problem of Yeast
proteins. The performance of neural network was however not comparable to
the other methods. Here our main objective is to propose a model for protein
function prediction that can be competitive to the winning approaches in the
KDD Cup.

In order to fulfill our objective, perceiving the aspect that a protein can
contain multiple functions, we take into account the given task as a K-class
classification problem. Each decomposed subproblem is then resolved by a mod-
ular neural network [3,17]. It is generally accepted that a modular neural net-
work improves learning speed and flexible in data representation over a case of
a single neural network for a multi-class classification problem. By doing this,
a modular neural network’s decomposability makes it possible to accommodate
smooth learning of the mapping mechanism implicated in a subproblem. In ad-
dition, the training data set used for a modular neural network can be easily
understood than the much larger original data set. The class determined by a
subproblem covers a local region of the pattern space over which a modular neu-
ral network can proceed its learning phase. As a binary or 2-class classifier, a
modular neural network with backpropagation algorithm displays fast learning
and good generalization. However, in order to exploit the advantages of a modu-
lar neural network, the additional works such as the class data analysis, problem
decomposition, and output combination are quite demanding.

The rest of this paper is organized as follows. Section 2 describes the ap-
plication of modular neural networks to multi-class classification problems. The
details of data preparation is followed in Section 3. Section 4 shows the experi-
mental results in case of machine learning and graph-based approaches. Finally,
a summary of this work is given in Section 5.

2 Modular Neural Network

In oder to resolve the K-class classification problem with a neural network, it is
demanded to decompose the K-class problem into a set of 2-class subproblems.
Each 2-class subproblem is then addressed by using a modular neural network.
Therefore the K modular neural networks are constructed for a K-class problem
and a modular network Mi models a classifier for class Ci. As like a neural
network requires a training data set, each modular neural network also demands
distinct data preparing process that plays a partial role of data preparation for
the original K-class classification problem.

A modular neural network needs its own topology according to the complex-
ity of the subproblem and utilizes the training set Ci for its learning. Ci includes
the data of positive and negative classes, C+

i and C−
i . During the data prepa-

ration of a modular neural network Mi, if a training data e is included in both
classes of C+

i and C−
i , the replicated data contained in the negative class should
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Fig. 1. The structure of the modular neural network for a K-class problem

be eliminated in order to avoid class interference problem. Unlike the general
problems that can be resolved nicely by exploiting a neural network, the class
interference problem in our case prohibits generation of plausible results that can
be achieved with a neural network. We conjecture that e is considered as only in
C+

i for learning Mi resulting in preventing interference problem. Figure 1 shows
the architecture of modular neural networks for a K-class classification problem.
An input test data is fed to all modular neural networks and the outputs of the
modular neural networks are combined for the global classification. Each modu-
lar neural network is constructed by using a multi-layered architecture in order
to attack the non-linear classification problem. Our approach is based upon a co-
operative modular neural network according to the types of combining modular
neural networks [3].

In a learning phase for a modular neural network Mi, the data sizes of
C+

i and C−
i are not equal because the set of negative data is the total of all

Ck, k = 1, · · · , K, k �= i. This occurs due to that the members of C+
i can

be detected with little problem, however the identification of members in C−
i

needs to be considered in the scope of the overall data set including the set
C+

j , j = 1, · · · , i, i + 1, · · · , K. A multi-layered neural network trained on im-
balanced data may not learn to discriminate properly between classes [14]. In
order to balance the data sizes of positive and negative data, the oversampling
strategy of SMOTE1 [15] is applied to the modular neural network. The syn-
thetic data that are generated by SMOTE enables the modular neural network
to learn large and broad decision regions rather than small and specific regions.
If the sampling strategies are used in learning a single network for an imbal-
anced multi-class classification problem, it is difficult to equally approximate
the number of present data in classes due to the existence of multiple classes.
But if a problem is restricted to two classes, it is easy to equally approximate the
number of present data. Therefore, the sampling strategies could be effective in
the modular approach of a multi-class classification problem. Figure 2 describes

1 Synthetic Minority Over-sampling Techniques.
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the learning phase for a K-class problem. Sample(E, N) returns N synthetic
data generated from class data E by SMOTE. In order to proceed the learning
phase, a training data set needs to be carefully prepared.

Build Modular Network( TE, K, α)
TE is a set of training data with a pair of (x, t) where x is the network input
and t is a class data(t ∈ {1, · · · K}). K is the number of classes in TE.
α is the oversampling rate as a real value.

for k = 1, · · · , K do
1. prepare the training data Ek for class Ck

• add (x, 1) to E+
k if (x, t) ∈ TE and t = k

• add (x, 0) to E−
k if (x, t) ∈ TE and t 	= k

• delete (x, 0) from E−
k if (x, 1) ∈ E+

k and (x, 0) ∈ E−
k

2. oversample a set of synthetic data from the subordinate class
• if | E+

k |
| E−
k |, add Sample( E+

k , α× | E+
k | ) to E+

k

• if | E−
k |
| E+

k |, add Sample( E−
k , α× | E−

k | ) to E−
k

• update Ek = E+
k + E−

k

3. learn a modular neural network Mk

• construct Mk with hidden neurons
• train Mk with Ek

Fig. 2. The learning phase of a modular neural network approach for a K-class problem

3 Data Preparation

Currently, the target database used for our system is KDD Cup 2001 that con-
tains information about 1,243 Yeast proteins. The database consists of four ta-
bles: a protein relation and an interaction table for both training and test sets.
The databases are filled with unordered category information that has null val-
ues in many cases. In the protein relation table, attribute values are observable
characteristics of an Yeast protein such as protein(or gene name), essential, class,
complex, phenotype, motif, chromosome number, function, and localization. The
interaction table explains an interaction between two proteins so that if an in-
teraction exists between two proteins, the fact is represented by interaction type
and expression correlation.

As a neural network cannot handle categorical values directly, those values
needs to be transformed into vector values. Here, regarding a neural network’s
performance, we devise an encoding scheme for vector values that has charac-
teristics such as low dimensionality, uniqueness among values, and reasonable
distance between two values. In order to satisfy these conflicting requirements,
the main ideas are focused on enumeration of attribute values and binary en-
coding. During enumeration phase, all category information except meaningless
values such as ”?” or 0 are enumerated. As a result, an unique category informa-
tion obtains an unique enumeration value. In the next phase, the enumeration
values are transformed into binary code by using our own encoding scheme. The
point of the encoding scheme is bit-map style transformation considering the
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largest number for each digit with different weight. This transformation guar-
antees that at least two bits in the resulted vector implemented as a bitmap
are different. As a result, the distance between two points in a vector space is
much larger. For instance, a category class has 23 constituent members, the last
category member is mapped to a value 23. We here need three bits for the three
possible members at the first digit: 0, 1, and 2. Similarly, the second digit needs
ten bits from 0 to 9. Hence, the total length of the resulting bitmap has 13 bits
and the actual code is encoded as (0 0 1 0 0 0 1 0 0 0 0 0 0) by setting as 1 for
the third position among the first three bits and the forth position among the
following ten bits. Null attribute values are transformed as all zeros.

By using this coding scheme, it needs 4 bits for 4 essentials, 13 for 23 classes,
16 for 51 complexes, 12 for 12 phenotypes, 23 for 235 motif and 12 for 16 chro-
mosomes. In our analysis over the data, a protein can have multiple values for
a single attribute. Moreover, we found 13 functions in the training data and
14 functions in the testing data. For simplicity, we decided to use 13 bits to
represent protein functions. If a protein demonstrates multiple functions, more
than one bit is set as 1’s in its function vector. When the transformation from
category information into bit-maps, all tables are linked by protein name.

The prediction of protein function is generally based on the biological fact:
two proteins that directly interact are likely to be involved in the similar bio-
logical function [6]. By utilizing the hint, the explicit relationship between two
interacting proteins is represented in data preparation phase. A binary interac-
tion is simply a symmetrical relationship. However, repeatedly applied transitive
relation increases the size of the interaction relation rapidly. In order to avoid
a large set of training data caused by representation of transitive relation, we
multiply two expression correlations2 by considering only the transitive rela-
tionship within interaction depth 4 and add 1,301 new interactions of expression
correlation greater than 0.5. Being based on the abovementioned scheme, the
performance of our proposed method is implemented and run experiments.

4 Experiments

We implemented our modular neural network system as a 3-layer feed-forward
network with sigmoid activation function. The resilient backpropagation [13] is
used for learning a modular neural network. The training and testing data sets
are created in a binary vector by the encoding scheme. The size of training
data is 6,395 without duplicates. The scheme of training data table consists of
essential, class, complex, phenotype, motif, and function in form of binary vector.
The negative class data E−

i data of class fi is generated with a condition of
function �= fi and class value 0. Some attributes can found in both the positive
and negative set so that it might cause interference within learning phase of a
neural network. In order to avoid such a situation, for each data x ∈ E+

i in the
2 An expression correlation is the correlation between gene expression patterns for the

two genes. A correlation far from 0 implies that these genes are likely to influence
one another strongly.
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positive set, the same data in the negative set(x /∈ E−
i ) is eliminated from the

set during the preparation phase.
The class data sets for training are generated from the overall training data

set. The number of training data differs highly in positive and negative data. The
imbalance rate was 2.14% to 32.1%3. The total is not equal because an input
vector has multiple target classes and the problem is a K-class classification
problem.

The simulation environment uses the necessary parameters: 10−3 for the
minimum performance gradient, 50.0 for the maximum weight change, 1.2 for
increment weight changes and 0.5 for decrement weight change. If the neuron
output is greater than 0.95, the output value is 1 . The total error is measured
with sum of square error and the performance of each trial is calculated by a
confusion matrix. The network topology is 68 × 82 × 13. The training vector
does not have chromosome information. The learning rate is set as 0.1 and the
sum–of–square error is 10−3. The total of iterates is 20,000.

Table 1 is the result of the single neural network approach with 3-fold cross-
validation. The 20% of the training data are used for a cross-validation. The
performance of the training and cross-validation is around 91.0% while that of
the testing set is 87.0%.

Table 1. The simulation results of the single neural network

Experiment 1 2 3
Training(%) 91.7 91.2 91.4

Cross-validation(%) 91.8 91.1 91.3
Testing(%) 87.3 87.0 87.8

Regarding the simulation environments for the proposed modular approach,
the topology of a binary classifier is set as 68× 16× 1. The learning rate is 0.01
and the error goal is 10−3. The total of iterations is 2, 000. As expected, the
application of a single neural network took about two hours at learning phase
while the modular approach spent one hour for learning.

Table 2 shows the results of the modular neural network approach for each
class with 10-fold cross validation. The 100% and 200% of the subordinate classes
are added for the simulations. The experiments without sampling shows that the
accuracy of the training set is close to 100.0% and that of the cross-validation is
ranged within 94.39% to 99.0%. According to this result, we can be sure that the
proposed approach is more effective than a single neural network. The sampling
strategy improves the accuracy in the training set and the cross-validation set,
but not in case of the test set.

Table 3 demonstrates the performance comparing to the other approaches
in the competition of the KDD Cup Yeast data. From the results, we can see
clearly that the proposed modular neural approach is competitive to the the

3 min (| E+
i |, | E−

i |)/max (| E+
i |, | E−

i |) × 100.
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Table 2. The simulation results of the modular approach(KDD Cup data)

M Data set Original 100% 200%
1 Training 99.60 ± 0.10 99.71 ± 0.10 99.67 ± 0.06

Cross-validation 94.39 ± 1.43 95.57 ± 0.73 96.89 ± 1.35
2 Training 99.70 ± 0.09 99.79 ± 0.06 99.72 ± 0.09

Cross-validation 96.99 ± 0.83 97.33 ± 0.94 96.82 ± 1.17
3 Training 99.70 ± 0.10 99.67 ± 0.12 99.78 ± 0.07

Cross-validation 97.71 ± 0.64 98.11 ± 0.69 98.45 ± 0.61
4 Training 99.23 ± 0.20 99.59 ± 0.09 99.80 ± 0.05

Cross-validation 97.48 ± 2.99 97.81 ± 0.98 97.99 ± 0.95
5 Training 99.23 ± 0.20 99.37 ± 0.24 99.23 ± 0.29

Cross-validation 97.48 ± 2.99 97.86 ± 0.95 97.06 ± 1.59
6 Training 99.46 ± 0.09 99.60 ± 0.11 99.62 ± 0.06

Cross-validation 97.56 ± 0.90 98.03 ± 0.70 98.13 ± 0.76
7 Training 99.78 ± 0.02 99.81 ± 0.03 99.75 ± 0.06

Cross-validation 99.16 ± 0.45 99.33 ± 0.45 99.42 ± 0.37
8 Training 99.71 ± 0.05 99.63 ± 0.09 99.62 ± 0.10

Cross-validation 99.16 ± 0.27 99.23 ± 0.55 99.21 ± 0.44
9 Training 99.69 ± 0.09 99.79 ± 0.08 99.82 ± 0.06

Cross-validation 95.78 ± 0.86 96.88 ± 1.23 96.99 ± 0.62
10 Training 99.61 ± 0.12 99.71 ± 0.08 99.71 ± 0.08

Cross-validation 96.68 ± 1.02 97.69 ± 0.85 97.43 ± 1.01
11 Training 99.71 ± 0.05 99.73 ± 0.09 99.65 ± 0.10

Cross-validation 99.42 ± 0.24 99.26 ± 0.23 99.18 ± 0.32
12 Training 99.63 ± 0.09 99.74 ± 0.08 99.79 ± 0.07

Cross-validation 96.55 ± 0.81 97.71 ± 0.80 97.14 ± 1.17
13 Training 99.68 ± 0.05 99.70 ± 0.10 99.78 ± 0.05

Cross-validation 99.13 ± 0.22 99.30 ± 0.35 99.46 ± 0.47

Table 3. The performance comparisons(KDD Cup data)

TP TN FP FN Acc(%) no.
SVM 690 4,304 58 282 93.6 381
ICP 654 4,264 90 326 92.2 381
MNN 668 4,295 84 287 93.0 381
2-NN 535 3,265 249 213 89.1 336
χ2 432 3,234 428 284 83.9 336

SVM(Support Vector Machine) and ICL(Inductive Classification Logic, [10]).
Moreover, the modular approach outperforms k nearest–neighbor(k = 2) and χ2-
statistic methods. The nearest–neighbor [5] and χ2-statistic [8] approaches utilize
protein interaction data only in predicting protein functions. The disadvantages
of the nearest–neighbor and χ2-statistic approaches is that those methods can
not assign functions to proteins without interaction with proteins with known
functions. The SVM approach was the winner with the accuracy of 93.6 %. The
best performance of our approach was 93.0 % with a sampling strategy of 200%.



Predictive Model for Protein Function Using Modular Neural Approach 407

Table 4. The performance comparisons(MIPS Yeast data)

Test RS EQ-1 EQ-2 EQ-3
TP 749 1,258 1,273 1,242
TN 6,205 7,819 8,122 7,917
FP 420 94 97 101
FN 150 1,488 1,547 1,646
Tot 7,524 10,659 11,039 10,906

Acc(%) 92.42 85.16 85.11 83.98

The proposed approach also applied to the training and testing sets created
from the MIPS Yeast database [1]. Compared to the KDD Cup data, the MIPS
data has the different numbers of categorical values in protein attributes: 4 essen-
tials, 25 classes, 69 complexes, 12 phenotypes, 594 motifs and 17 chromosomes.
The number of functional roles is 19. The topology of a modular neural network
is 72×24×1 for each class. The total of proteins is 3,510 and the interaction data
is not used. A test set is prepared by random selection(RS), equal selection(ES)
per functional class. In equal selection, we prepare three different sets for test
data. The 10 % of class data is chosen for test if the data size is greater than
100, otherwise the 25 % of the function class data is selected. The number of
proteins is 396 for RS, 561 for ES-1, 581 for ES-2, and 574 for ES-3. The training
set for each test set was prepared except its test instance. In the simulation, the
accuracy is around 99.0% for the training set and 97.0% for the cross–validation
set. The test accuracy is shown in Table 4 by a confusion matrix4. The perfor-
mance is 92.42 % for RS, 85.16 % for EQ-1, 85.11 % for EQ-2, and 83.98 % for
EQ-3. The good result of RS might occurs due to the data scarcity of 5 classes.
The average of the ER sets is around 85.0 %. The simulation demonstrates that
the proposed approach is adaptable in predicting the functions of Yeast protein
without interaction data.

5 Conclusion

For the prediction of protein function, various approaches have been discussed
and analyzed as the potential value of bioinformatics increases rapidly. The ap-
plication of a neural network to the prediction of protein function had showed
lower performance than the other methods. In this paper, we showed our ef-
forts to apply a neural network to the problem taking advantage of its high
quality classification capability. Our approach starts with taking into the prob-
lem as a K−class classification problem. Each decomposed subproblem is then
resolved by applying a modular neural network that can avoid learning interfer-
ence among classes. The modular neural network in our system were designed
based on multi-layered architecture in order to resolve non-linear problem that
4 True Positive(TP), True Negative(TN), False Positive(FP), False Negative(FN), Ac-

curacy(Acc)
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contains complex classification boundary. The imbalance problem caused in the
modular network was addressed by utilizing oversampling strategy. The experi-
ments demonstrate that the proposed approach can predict the functional roles
of Yeast proteins with unknown functional knowledge. More importantly, our
approach is competitive to the other methodologies in KDD Cup 2001 data.

We plan to use this framework with the improvement of the modular neu-
ral network and apply to other organisms. In real situation, there exists many
missing values in protein-related information. This problem was not resolved
completely or could not find reasonable compensation method. The method that
manipulates the missing values should be studied in respect of biological context
and computational model as well for robust protein function classification.

References

1. http://mips.gsf.de/proj/yeast/.
2. A. Clare and R. D. King . Machine learning of functional class from phenotype

data. Bioinformatics, 18:160–166, 2002.
3. A. J. C. Sharkey. Combining Artificial Neural Nets: Ensemble and Modular Multi-

Net Systems. Springer, 1999.
4. A. Vazques, A. Flammini, A. Maritan, and A. Vespignani. Global protein function

prediction in protein-protein interaction networks. Nature Biotechnology, 21(697),
2003.

5. B. Schwikowski, P. Uetz, and S. Fields. A network of protein–protein interactions
in yeast. Nature Biotechnology, 18(3):1257–1261, December 2000.

6. C. L. Tucker, J. F. Gera, and P. Uetz. Towards an understanding of complex
protein networks. TRENDS in cell biology, 11(3):102–106, May 2001.

7. P. Uetz et. al. A comprehensive analysis of protein–protein interactions in saccha-
romyces cerevisiae. Nature, 403(10):623–627, February 2000.

8. H. Hishigaki, K. Nakai, T. Ono, T. Tanigami, and T. Takagi. Assessment of pre-
diction accuracy of protein function from protein–protein interaction data. Yeast,
18:523–531, 2001.

9. J. Cheng, C. Hatzis, H. Hayashi, M. A. Krogel, S. Morishita, D. Page, and J. Sese.
KDD Cup 2001 report. SIGKDD Exploration, 3:47–64, 2001.

10. W. Van Laer. From Propositional to First Order Logic in Machine Learning and
Data Mining - Induction of first order rules with ICL. PhD thesis, Department of
Computer Science, K.U.Leuven, Leuven, Belgium, jun 2002. 239+xviii pages.

11. M. Fellenberg, K. Albermann, A. Zollner, H. W. Mewes, and J. Hani. Integrative
Analysis of Protein Interaction Data. In R. Altmann, T.L. Bailey, P. Bourne,
M. Gribskov, T. Lengauer, I.N. Shindyalov, L.F. Ten Eyck, and H. Weissig, editors,
Intelligent Systems for Molecular Biology, volume 8, pages 152–161. AAAI Press,
2000.

12. M. P. S. Brown, W. N. Grundy, D. Lin, N. Cristianini, C. Sugnet, T. S. Furey, M. A.
Jr., and D. Haussler. Knowledge-based analysis of microarray gene expression data
using support vector machines. Proceedings of the National Academy of Sciences,
2000.

13. M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation
learning: The RPROP algorithm. In Proc. of the IEEE Intl. Conf. on Neural
Networks, pages 586–591, San Francisco, CA, 1993.



Predictive Model for Protein Function Using Modular Neural Approach 409

14. N. Japkowicz and S. Stephen. The Class Imbalances: A Systematic Study. IDA
Journal, 6(5):429–449, 2002.

15. N. V. Chawlar, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. SMOTE:
Synthetic Minority Over–sampling Techniques. Journal of Artificail Intelligence
Research, 16:321–357, June 2002.

16. S. Oliver. Guilt-by-association goes global. Nature, 403(6770):601–603, 2000.
17. S. Haykin. Neural Network: A Comprehensive Foundation. Prentice Hall, 1998.
18. Xiangyun Wang, Diane Schroeder, Dreana Dobbs, and Vasant Honavar. Auto-

mated data-driven discovery of motif–based protein function classifiers. Informa-
tion Sciences, 155:1–18, 2003.

19. Xinghua Lu, Chengxiang Zhai, Vanathi Gopalakrishnan, and Bruce G Buchanan.
Automatic annotation of protein motif function with Gene Ontology terms. BMC
Bioinfotmatics, 5(122), 2004.



S. Singh et al. (Eds.): ICAPR 2005, LNCS 3686, pp. 410 – 419, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Using kNN Model for Automatic Feature Selection 

Gongde Guo1, Daniel Neagu1, and Mark T.D. Cronin2 

1 Department of Computing, University of Bradford, Bradford, BD7 1DP, UK 
{G.Guo, D.Neagu}@Bradford.ac.uk 

2 School of Pharmacy and Chemistry, Liverpool John Moores University, L3 3AF, UK 
M.T.Cronin@Livjm.ac.uk 

Abstract. This paper proposes a kNN model-based feature selection method 
aimed at improving the efficiency and effectiveness of the ReliefF method by: 
(1) using a kNN model as the starter selection, aimed at choosing a set of more 
meaningful representatives to replace the original data for feature selection; (2) 
integration of the Heterogeneous Value Difference Metric to handle 
heterogeneous applications – those with both ordinal and nominal features; and 
(3) presenting a simple method of difference function calculation based on 
inductive information in each representative obtained by kNN model. We have 
evaluated the performance of the proposed kNN model-based feature selection 
method on toxicity dataset Phenols with two different endpoints. Experimental 
results indicate that the proposed feature selection method has a significant 
improvement in the classification accuracy for the trial dataset. 

1   Introduction 

The success of applying machine learning methods to real-world problems depends 
on many factors. One such factor is the quality of available data. The more the 
collected data contain irrelevant or redundant information, or contain noisy and 
unreliable information, the more difficult for any machine learning algorithm to 
discover or obtain acceptable and practicable results. Feature subset selection is the 
process of identifying and removing as much of the irrelevant and redundant 
information as possible. Regardless of whether a learner attempts to select features 
itself, or ignores the issue, feature selection prior to learning has obvious merits [4]: 

(1) Reduction of the size of the hypothesis space allows algorithms to operate faster 
and more effectively. 

(2) A more compact, easily interpreted representation of the target concept can be 
obtained. 

(3) Improvement of classification accuracy can be achieved in some cases. 

Feature selection methods are commonly divided into two broad categories: 
wrapper methods [6] and filter methods [2]. Wrapper methods usually employ a 
statistical re-sampling technique using the actual target learning algorithm to estimate 
the accuracy of feature subsets. The wrapper model tends to give superior 
performance as it finds features better suited to the predetermined learning algorithm. 
The main problem of this approach is the relative low efficiency especially for large 
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datasets and the dependency on the learning algorithm. On the other hand, filters 
operate independently of any learning algorithm. They make use of all the available 
training data only when commencing feature selection. When the training data 
become very large, the filter model is usually a good choice due to its computational 
efficiency and neutral bias toward any learning algorithm [9]. Many feature selection 
algorithms [12, 17, 18] have been developed to answer challenging research issues: 
from handling a huge number of instances, large dimensionality, to deal with data 
without class labels. 

The aim of this study was to investigate an optimised approach for feature 
selection, termed kNNMFS (kNN Model-based Feature Selection). This augments the 
typical feature subset selection algorithm ReliefF [8]. The resulting algorithm was run 
on toxicity data for phenols to assess the effect of reduction of the training data. 

2   Related Work 

The basic concept of Relief was introduced initially by Kira et al. in 1992 [7]. It is a 
feature weight-based algorithm inspired by instance-based learning algorithms. It 
estimates the quality of features according to how well their values distinguish 
between the instances of the same and different classes that are near each other [9]. 
The Relief family of algorithms e.g. Relief, ReliefF and RReliefF, are feature subset 
selection methods that are applied in a pre-processing step before the model is 
learned, and are amongst the most successful algorithms [10]. The majority of 
heuristic measures for estimating the quality of the attributes assumes the conditional 
independence (upon the target variable) of the attributes and is therefore less 
appropriate in problems which possibly involve much feature interaction. Relief 
algorithms do not make this assumption. They are efficient, aware of the contextual 
information, and can estimate the quality of attributes correctly in problems with 
strong dependencies between attributes [5]. 

The Relief algorithm works by randomly sampling an instance and locating its 
nearest neighbour from the same and opposite class. The values of the features of the 
nearest neighbours are compared to the sampled instance and used to update the 
relevance scores for each feature. This process is repeated for a user specified number 
of instances. The rationale is that a useful feature should differentiate between 
instances from different classes and have the same value for instances from the same 
class [5]. A major limitation of Relief is that it does not help with reducing redundant 
features. Another limitation is that it works only for binary classes. These drawbacks 
are overcome by ReliefF. 

ReliefF, an extension of Relief, aims to solve the problem of datasets with multi-
class, noisy and incomplete data. It smoothes the influence of noise in the data by 
averaging the contribution of k nearest neighbours from the same and opposite class 
of each sampled instance, instead of the single nearest neighbour of Relief, which 
ensures greater robustness of the algorithm with regards to noise. The user-defined 
parameter k controls the locality of the estimates. Multi-class datasets are handled by 
finding the nearest neighbours from each class that are different from the current 
sampled instance, and weighing their contribution by the prior probability of each 
class estimated from the training data [8].  
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One major drawback of ReliefF comes from its limitation to deal with the problem 
of multi-valued attributes. ReliefF uses a numerical-oriented method as a similarity 
measurement. It uses a simple strategy to cope with categorical attributes by assigning 
0 to the difference function for categorical data with the same value, and 1 for 
categorical data with different values. This simple strategy cannot, however, measure 
the contribution of each discrete value of a categorical attribute to the class label 
appropriately. Another drawback of ReliefF is the setting of a suitable number of 
instances sampled from the dataset. The number of randomly selected instances, is 
usually set empirically, or set to the number of the entire dataset.  

RReliefF is a further extension of ReliefF to deal with regression problems, where 
the predicted value is continuous, and therefore nearest hits and misses cannot be 
used. To solve this difficulty, instead of requiring the exact knowledge of whether two 
instances belong to the same class or not, a kind of probability that the predicted 
values of two instances are different is introduced [11]. This probability can be 
modelled with the relative distance between the predicted (class) values of two 
instances. 

FSSMC (Feature Selection via Supervised Model Construction) [5] is an attempt to 
deal with the problems facing ReliefF described above. FSSMC chooses a set of more 
meaningful representatives (the centre of each cluster) to replace the whole dataset 
and serves as the basis for further feature selection. As the number of chosen 
representatives can be reduced to only 10 percent of the original datasets on average 
[3], it is computationally faster than ReliefF.  Moreover, it applies a frequency based 
encoding scheme to transform categorical data to numerical data to cope with the 
multi-valued attributes.  

Although FSSMC improves the computational efficiency compared to ReliefF, 
there is no significant classification accuracy improvement of FSSMC on most trial 
datasets [5]. The problem probably is the manner in which it randomly chooses seeds 
for grouping clusters, thus generating a set of less optimal representatives for feature 
selection. Moreover, noise in the data will affect the generated representatives both in 
quality and quantity, e.g. the number of representatives.  

The basic idea of kNN model-based classification method (kNNModel) [3] is to 
find a set of more meaningful representatives of the complete dataset to serve as the 
basis for further classification. Each chosen representative di is represented in the 
form of <Cls(di), Sim(di), Num(di), Rep(di)> which  respectively represents the class 
label of di; the similarity of di to the furthest instance among the instances covered by 
Ni; the number of instances covered by Ni; a representation of instance di. The symbol 
Ni represents the area that the distance to di is less than or equal to Sim(di). kNNModel 
can generate a set of optimal representatives via inductively learning from the dataset. 

3   kNN Model-Based Feature Selection 

3.1   A  Modified kNN Model 

For the convenience of difference function calculation between any two 
representatives and making use of the generated information in the final model of 
kNNModel for further feature selection, we make a slight change of the original 
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kNNModel by adding some inductive information, e.g. the nearest neighbour and the 
furthest neighbour covered by a representative. Therefore, each representative in the 
modified kNNModel is represented as <Cls(di), Sim(di), Num(di), Rep(di), Rep(di1), 
Rep(di2)>, in which the additive information such as Rep(di1), Rep(di2) respectively 
represent the nearest neighbour and the furthest neighbour covered by this 
representative. As there is not significant change between the original and the 
modified kNNModel, we still called the modified kNNModel as kNNModel for 
convention. Moreover, the Heterogeneous Value Difference Metric (HVDM) 
similarity measure [15], instead of the numerical-oriented methods, is used in 
kNNModel to deal with the multi-valued attributes problem.  

The modified kNNModel method is described as follows: 

Algorithm kNNModel 
Input: the entire training data D, parameter  
Output: a set of automatically generated representatives M 

1. For a given similarity measure, create a similarity matrix from a given 
training set D 

2. Set to “ungrouped” the tag of all instances and set M=Ø 
3. For each “ungrouped” instance, find its local -neighbourhood 
4. Among all the local -neighbourhoods obtained in step 3, find its global -

neighbourhood Ni. Create a representative <Cls(di), Sim(di), Num(di), 
Rep(di), Rep(di1), Rep(di2))> into M to represent all the instances covered by 
Ni, and then set to “grouped” the tag of all the instances covered by Ni 

5. Repeat step 3 and step 4 until all the instances in the training set have been 
set to “grouped” 

6. Model M consists of all the representatives collected from the above learning 
process. 

Fig. 1. Pseudo code of the modified kNNModel algorithm 

In the algorithm above, A neighbourhood of a given instance is defined as the set 
of nearest neighbours around this instance; A local neighbourhood is a 
neighbourhood which covers the maximal number of instances with the same class 
label; A local -neighbourhood is a neighbourhood which covers the maximal number 
of instances with the same class label except for allowing  exceptions and a global -
neighbourhood is a local -neighbourhood which covers the largest number of 
instances among a set of obtained local -neighbourhoods. 

3.2   kNN Model-Based Feature Selection 

A kNN model-based feature selection method, kNNMFS is proposed in this study. It 
takes the output of the modified kNNModel as seeds for further feature selection. 
Given a new instance, kNNMFS finds the nearest representative for each class and 
then directly uses the inductive information of each representative generated by 
kNNModel for feature weight calculation. This means the k in ReliefF is varied in our 
algorithm. Its value depends on the number of instances covered by each nearest 
representative used for feature weight calculation.  
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The detailed kNNMFS algorithm is described as follows:  

Algorithm kNNMFS 
Input: the entire training data D and parameter . 
Output: the vector W of estimations of the qualities of attributes. 

1. Set all weights W[Ai]=0.0, i=1,2,…,p; 
2. M:=kNNModel(D, ); m=|M|; 
3. for j=1 to m do begin 
4. Select representative Xj=<Cls(dj), Sim(dj), Num(dj), Rep(dj), Rep(dj1), 

Rep(dj2)> from M 
5. for each class C Cls(dj) find its nearest miss (C)  from M; 
6.      for k=1 to p do begin 
7.           +×+−= )2/()
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8.        end; 
9. end; 

Fig. 2. Pseudo code of the kNNMFS algorithm 

In the algorithm above, p is the number of attributes in the dataset; m is the number 
of representatives which is obtained from kNNModel(D, ) and is used for feature 
selection. diff() uses HVDM [15] as a different function for calculating the difference 
between two values from an attribute.  

Compared to ReliefF, kNNMFS speeds up the feature selection process by 
focussing on a few selected representatives instead of the whole dataset. These 
representatives are obtained by learning from the original dataset. Each of them is an 
optimal representation of a local data distribution. Using these representatives as 
seeds for feature selection better reflects the influence of each attribute on different 
classes, thus giving more accurate weights to attributes. Moreover, a change was 
made to the original difference function to allow kNNMFS to make use of the 
generated information in each representative such as Sim(dj) and Num(dj) from the 
created model of kNNModel for the calculation of weights. This modification reduces 
the computational cost further. 

4   Experiments and Evaluation 

To evaluate the effectiveness of the newly introduced algorithm kNNMFS, we 
performed some experiments on a dataset of toxicity values for approximately 250 
chemicals, all of which contained a similar chemical feature, namely a phenolic 
group. The toxicity of the phenols was assessed in the ciliated protozoan Tetrahymena 
pyriformis, according to [13]. The full toxicity dataset was reported originally by 
Cronin et al [1] following experimental measurement of the effects by Schultz and co-
workers (College of Veterinary Medicine, University of Tennessee, Knoxville TN, 
USA). The analysis of the Tetrahymena pyriformis toxicity data allowed for an 



 Using kNN Model for Automatic Feature Selection 415 

evaluation of the performance of the kNNMFS algorithm and to assess its 
performance in feature selection for the real-world application of toxicity prediction 
of the environmental effects of chemicals. 

4.1   Toxicity Dataset for Phenols 

The hydroxy-substituted aromatic compounds (phenols) form a large and structurally 
diverse group of chemicals. These are interesting from a toxicological point of view, 
since the phenols are widely used organic compounds. They elicit a number of 
toxicities to different species [14]. Thus, there has been much interest in quantitative 
structure-activity relationships (QSARs) for phenols, due to their ubiquitous presence 
in the environment and the various toxicities they may have. One of the important 
tasks in the prediction of the toxicity of phenols using QSAR analysis is the 
examination of the relevance of the descriptors in the modeling paradigm. This is 
often a tedious task, considering the large number of descriptors and compounds to be 
studied. The algorithm proposed in this study is therefore a contribution to the area of 
analyzing the correlations between chemical descriptors and the development of 
QSARs. In this study high quality toxicity data for a large number of phenols were 
collated from a historical source [14], and supplemented by those from further testing, 
providing data on 250 compounds for the development and validation of QSARs [1]. 
A total of 173 descriptors were calculated for each compound. These descriptors were 
calculated to represent the physico-chemical, structural and topological properties that 
were relevant to toxicity. An explanation of these chemical descriptors and the large 
variety of software tools used to calculate them is available from [1]. 

4.2   Evaluation Criteria 

An optimal subset is always relative to a certain evaluation criterion. Evaluation 
criteria can be broadly categorized into two groups based on their dependency on the 
learning algorithm applied to the selected feature subset. Typically, an independent 
criterion, as in filter models, tries to evaluate the goodness of a feature, or a feature 
subset, without the involvement of a learning algorithm in this process. A dependent 
criterion, as in wrapper models, tries to evaluate the goodness of a feature, or feature 
subset, by evaluating the performance of the learning algorithm applied on the 
selected subset.  

For the prediction of continuous class values, e.g. the toxicity values in the phenols 
dataset, dependent criteria: Correlation Coefficient (CC), Mean Absolute Error 
(MAE), Root Mean Squared Error (RMSE), Relative Absolute Error (RAE), and Root 
Relative Squared Error (RRSE) are chosen to evaluate the goodness of different 
feature selection algorithms in the experiments. The evaluation measures for 
continuous class values prediction are presented in Table 1. For the prediction of 
discrete classes, e.g. the Mechanism of Action in the Phenols dataset, average 
classification accuracy and unbiased variance are used as evaluation criteria. The 
unbiased variance is defined as:  

=
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where x  is the sample mean. These evaluation measures are used frequently to 
compare the performance of different feature selection methods.  
 

Table 1. Evaluation measures for continuous class values prediction 

The following terms are used in Table 1 for a set of n data points (xi, yi), where xi 
represents the predicted value of yi, yi is the true class value, and y is the average 

defined by the formula: 
=
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4.3   Evaluation 

[Experiment 1]. In this experiment, eight feature selection methods including ReliefF 
and kNNMFS were performed on the phenols dataset with toxicity as endpoint to 
choose a set of optimal subsets based on different evaluation criteria. Besides 
kNNMFS that was implemented in our own prototype, seven other feature selection 
methods are implemented in the Weka [16] software package.  

The experimental results performed on subsets obtained by different feature 
selection methods are presented in Table 2. In the experiments, a 10-fold cross 
validation method was used for evaluation. It is obvious that the proposed kNNMFS 
method performs better than any other feature selection methods evaluated by the 
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linear regression algorithm on the phenols dataset. The performance on the subset 
after feature selection by kNNMFS using linear regression algorithm is significantly 
better than that on the original dataset. Compared to ReliefF and other feature 
selection methods, kNNMFS obtains higher correlation coefficient and lower error 
rates such as MAE, RMSE, RAE and RRSE. 

Table 2. Performance carried out on different subsets after feature selection 

Evaluated by Linear Regression Algorithm  
FSM 

 
NSF CC MAE RMSE RAE RRSE 

GR 
IG 
Chi 
ReliefF 
SVM 
CS 
CFS 
kNNMFS
Phenols 

20 
20 
20 
20 
20 
13 

7 
35 

173 

0.7722 
0.7662 

0.7570 

0.8353 
0.8239 

0.7702 

0.8049 
0.8627 

0.8039 

0.4083 
0.3942 

0.4065 

0.3455 
0.3564 

0.3982 

0.3681 
0.3150 

0.3993 

0.5291 
0.5325 

0.5439 

0.4568 
0.4697 

0.5292 

0.4908 
0.4226 

0.5427 

60.7675% 
58.6724% 

60.5101% 

51.4319% 
53.0501% 

59.2748% 

54.7891% 
46.8855% 

59.4360% 

63.7304% 
63.1352% 

65.5146% 

55.0232% 
56.5722% 

63.7334% 

59.1181% 
50.8992% 

65.3601% 

The meaning of the column titles in Table 2 is as follows: FSM – Feature Selection 
Method; NSF – Number of Selected Features. The feature selection methods studied 
include: GR – Gain Ratio feature evaluator; IG – Information Gain ranking filter;  
Chi – Chi-squared ranking filter; ReliefF – ReliefF Feature selection; SVM- SVM 
feature evaluator; CS – Consistency Subset evaluator; CFS – Correlation-based 
Feature Selection; kNNMFS – kNN Model-based Feature Selection and Phenols – the 
original Phenols data set with 173 features. 

Table 3. Performance of wkNN algorithm on different phenols subsets 

10-Fold Cross Validation Using wkNN (k=5)  
FSM 

 
NSF Average Accuracy Variance Deviation 

GR  
IG 
Chi 
ReliefF 
SVM 
CS 
CFS 
kNNMFS 
Phenols 

20 
20 
20 
20 
20 
13 

7 
35 

173 

89.32 
89.08 
88.68 
91.40 
91.80 
89.40 
80.76 
93.24 
86.24 

1.70 
1.21 
0.50 
1.32 
0.40 
0.76 
1.26 
0.44 
0.43 

1.31 
1.10 
0.71 
1.15 
0.63 
0.87 
1.12 
0.67 
0.66 
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[Experiment 2]. In this experiment, we performed the same feature selection as we 
did in experiment 1 on the phenols dataset with mechanism of action as endpoint and 
then carried out classification using Weighted kNN (wkNN) which was implemented 
in our own prototype.  

The experimental results are presented in Table 3. It shows that the proposed 
kNNMFS method performs better than any other feature selection method on the 
phenols dataset with mechanism of action as endpoint. The average classification 
accuracy on the subset after feature selection by kNNMFS using wkNN is higher than 
that of by any other feature selection methods and that of the original dataset. 
Compared to the original Phenols dataset, kNNMFS achieves 8.1% improvement in 
terms of average classification accuracy and has relatively small range of variance. 

5   Conclusions 

In this paper we present a novel solution to deal with the shortcomings of ReliefF. To 
solve the problem of choosing a set of seeds for ReliefF, we modified the original 
kNNModel method by choosing a few more meaningful representatives from the 
training set, in addition to some extra information to represent the whole training set, 
and used it as a starter reference for ReliefF. In the selection of each representative we 
used the optimal but different k, decided automatically for each dataset itself. The 
representatives obtained can be used directly for feature selection. 

Experimental results showed that the performance evaluated on the subsets of the 
Phenol dataset with different endpoints by kNNMFS is better than that of using any 
other feature selection methods. The improvement is significant compared to ReliefF 
and other feature selection methods. The results obtained using the proposed 
algorithms for chemical descriptors analysis applied in predictive toxicology are 
encouraging and show that the method is worthy of further research.  

Further research is required into investigating the effects of boundary data or centre 
data of clusters chosen as seeds for kNNMFS. 
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Abstract. In this paper, Multi-View Expectation and Maximization
(EM) algorithm for finite mixture models is proposed by us to handle
real-world learning problems which have natural feature splits. Multi-
View EM does feature split as Co-training and Co-EM, but it considers
multi-view learning problems in the EM framework. The proposed algo-
rithm has these impressing advantages comparing with other algorithms
in Co-training setting: its convergence is theoretically guaranteed; it can
easily deal with more two views learning problems. Experiments on We-
bKB data1 demonstrated that Multi-View EM performed satisfactorily
well compared with Co-EM, Co-training and standard EM.

1 Introduction

Semi-supervised learning, which combines information from both labeled and
unlabeled data for learning tasks, has drawn wide attention. Some related re-
search deal with labeled and unlabeled data in problem domains where features
naturally divide into different subsets(views)[1][2]. For example, in web-page
classification, features can be divided into two disjoint subsets, one concerning
words that appear on the page, another concerning words that appear in hyper-
links pointing to that page, etc. Many algorithms have been proposed to utilize
this feature division for boosting performance of learning systems such as Co-
training[1], Co-EM[3], Co-EMT[2], etc. Blum and Mitchell provided a PAC-style
analysis for Co-training, which shows that when the two views are compatible and
uncorrelated, Co-training will successfully learn the target concept with labeled
and unlabeled data[1]. Nigam and Ghani demonstrated that when a natural
independent split of input features exists, algorithms utilizing this feature split
outperform algorithms that do not. They also proposed Co-EM as a probabilistic
version of Co-training[3]. Intuitively, Co-EM runs EM algorithm in each view,
and before each new EM iteration inter-changes the probabilistic labels gener-
ated in each view. However, Co-EM is only a technical design in the view of EM

1 This data is available at http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-
20/www/data/webkb-data.gtar.gz

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3686, pp. 420–425, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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framework considering the step of interchanging two views’ labels, which does
not guarantee convergence.

In this paper, we propose Multi-View EM algorithm for finite mixture models,
which follows the scheme of feature split and deal with these multi-view learning
problems in the EM framework instead of PAC model. The proposed algorithm
guarantees convergence.

Section 2 briefly reviews Co-training setting and EM, then describes Multi-
View EM for finite mixture models and provides some implements in Gaussian
mixture models (GMM) and Näıve Bayes Classifier. Section 3 presents experi-
mental results of comparing Multi-View EM with Co-training, Co-EM and stan-
dard EM on WebKB data[1]. Section 4 concludes.

2 Multi-view EM Algorithm for Finite Mixture Models

2.1 The Co-training Setting

The Co-training setting[1] assumes that in real-world learning problems that
have a natural way to partition features into two views V1, V2, an example x
can be described by a triple [x1, x2, l], where x1,x2 are x’s descriptions in two
views and l is its label. In this setting, given a learning algorithm L, the sets T
and U of labeled and unlabeled samples and the number k of iterations to be
performed, Table 1 and Table 2 describe flow charts of Co-training and Co-EM
respectively.

Table 1. Flow chart of Co-training

Loop for k iterations or while all samples have been labeled
-Use L, V1(T ), V2(T ) to create classifiers h1 and h2 respectively
-For each class Ci:
-Let E1, E2 be unlabeled examples on which h1 and h2 make the most
confident predictions for Ci:
-Remove E1, E2 from U , label them according to h1 and h2, respectively,
and add them to T
-Recreate classifiers h1 and h2 with L, V1(T ) and V2(T ), respectively

Table 2. Flow chart of Co-EM

-Let S = T ∪ U , h1 be the classifier obtained by training L on T
Loop for k iterations
-New1=Probabilistically Label(S, h1)
-Use L, V2(New1) to create classifier h2

-New2= Probabilistically Label(S, h2)
-Use L, V1(New2) to create classifier h1

Combine the prediction of h1 and h2 by sum rule and then designate labels
according to the largest class conditional probability.
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2.2 Finite Mixture Models and EM Algorithm

It is said a d-dimensional random variable x = [x1, x2, · · · , xd]T follows a k-
component finite mixture distribution, if its probability density function can be
written as

p(x|θ) =
k∑

m=1

αmp(x|θm), (1)

where αm is the prior probability of the mth component and satisfies:

αm ≥ 0, and
k∑

m=1

αm = 1, (2)

θm is the parameter of the mth density model and θ = {(αm, θm), m = 1, 2, · · · , k}
is the parameter set of mixture models. For GMM, θm = {μm, Σm}.

EM has been widely used in the parameter estimation of finite mixture mod-
els. Suppose that one set Z consists of observed data X and unobserved data
Y . According to Maximum Likelihood(ML) estimation, the E-Step calculates
the complete data expected log-likelihood function defined by the so called Q
function[4],

Q(θ, θ̂(t)) ≡ E[log p(X, Y |θ)|X, θ̂(t)]. (3)

The M-Step updates the parameters by

θ̂(t + 1) = arg max
θ

Q(θ, θ̂(t)). (4)

The EM algorithm performs the E-Step and M-Step iteratively, and the con-
vergence is guaranteed.

2.3 Multi-view EM Algorithm for Finite Mixture Models

For convenience, we describe two-view version of Multi-View EM for finite mix-
ture models in this paper, which can be easily generalised to more views with
only slight changes of the corresponding formulas. In this setting, it holds that:

p(x1|θ) =
k∑

m=1
αm

∑
x2

p(x1, x2|θm) =
k∑

m=1
αmp(x1|θmV1)

p(x2|θ) =
k∑

m=1
αm

∑
x1

p(x1, x2|θm) =
k∑

m=1
αmp(x2|θmV2),

(5)

where {(αm, θmV1), m = 1, 2, · · · , k} = θV1 and {(αm, θmV2), m = 1, 2, · · · , k} =
θV2 denote models’ parameter sets of two views respectively.

Multi-View EM fits finite mixture models to observed data according to
another criterion instead of ML, which can be formulated as:

Q′′(θ, θ̂(t)) ≡ E[log(p(X1, Y |θV1)w1 • p(X2, Y |θV2)w2)|X, θ̂(t)],
θ̂(t + 1) = arg max

θ
Q′′(θ, θ̂(t)), (6)
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where wi denotes the weight of the ith view. The M-step of Multi-View EM
updates parameters by maximizing the Q′′ function. Consider that in the EM
parameter estimation of mixture models, for the Q function[4], it holds that:

Q(θ, θ̂(t)) =
k∑

m=1

N∑
i=1

ln(αm)p(m|xi, θ̂) +
k∑

m=1

N∑
i=1

ln(p(xi|θm))p(m|xi, θ̂), (7)

where p(m|xi, θ̂) denotes the probability that component m generates sample
xi. Therefore in Multi-View EM, it holds that:

Q′′(θ, θ̂(t)) =
k∑

m=1

N∑
i=1

ln(αm)(w1 · p(m|xi
1, θ̂V1) + w2 · p(m|xi

2, θ̂V2))+

w1 ·
k∑

m=1

N∑
i=1

ln(p(xi
1|θmV1))p(m|xi

1, θ̂V1) + w2 ·
k∑

m=1

N∑
i=1

ln(p(xi
2|θmV2))p(m|xi

2, θ̂V2),

(8)
Then M-step of Multi-View EM updates parameters by maximizing this Q′′

function which can be formulated as:

αm = 1
N

N∑
i=1

p(m|xi, θ̂),

θ̂mV1 = argmax
θmV1

N∑
i=1

ln(p(xi
1|θmV1))p(m|xi

1, θ̂V1),

θ̂mV2 = argmax
θmV2

N∑
i=1

ln(p(xi
2|θmV2))p(m|xi

2, θ̂V2),

p(m|xi, θ̂) = w1
w1+w2

• p(m|xi
1, θ̂V1) + w2

w1+w2
• p(m|xi

2, θ̂V2).

(9)

Nigam et al. proposed one scheme to utilize EM for semi-supervised learning
[5], which firstly built an initial classifier θ̂ with all the labeled data T , and then
began the EM iterations until convergence:
E-step: for all the unlabeled data xi

u ∈ U calculated the probability p(m|xi
u, θ̂)

that each mixture component m (or class m when one class was represented by
one component) generated xi

u; for all the labeled data (xi
l , y

i) ∈ T , p(m|xi
l , θ̂) = 1

when m = yi, otherwise p(m|xi
l , θ̂) = 0.

M-step: re-estimated the classifier θ̂ with all the labeled and unlabeled data xi

and their probability labels p(m|xi, θ̂).
Different from Co-EM, Multi-View EM has a global optimization objective

and iterates completely in the framework of EM, which theoretically guarantee
its convergence. Following this scheme, Multi-View EM can be utilized for semi-
supervised learning similarly.

2.4 Implementation Details of Multi-view EM

For GMM, where θm = {μm, Σm}, the updating iterative formulas in the M-step
for θ̂mVt can be represented by:

μmt =

N∑
i=1

xi
tp(m|xi

t,θ̂Vt)

N∑
i=1

p(m|xi
t,θ̂Vt )

, Σmt =

N∑
i=1

p(m|xi
t,θ̂Vt )(xi

t−μmt )(xi
t−μmt )T

N∑
i=1

p(m|xi
t,θ̂Vt )

. (10)
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For Näıve Bayes classifier, consider the simple case which assumes that one
class consists of only one component[5]. Then θm =

{
θaj |m = P (aj |m)

}
, where

set {aj} denotes input attributes of all the training samples. The updating iter-
ative formulas of in the M-step for θ̂mVt can be represented by [5]:

θaj |mVt
=

1+
N∑

i=1
V alue(xi

t,aj)P (m|xi
t,θ̂Vt )

n+
n∑

s=1

N∑
i=1

V alue(xi
t,as)P (m|xi

t,θ̂Vt)

, (11)

where V alue(xi
t, aj) denotes the value of attribute aj in the tth View of sample

xi. In the text classification task, V alue(xi
t, aj) denotes the frequency of word

aj in the tth View of document xi.

3 Experiments

In this section, Multi-View EM is compared with Co-training, Co-EM and stan-
dard EM for designing Näıve Bayes classifier on WebKB data in semi-supervised
learning scenarios.

In WebKB data there are overall 8,282 pages which had been manually
classified into 7 categories. In experiment, we firstly extracted page-based view
and hyperlink-based view from those pages by the document feature selection
method: ”χ2 statistics+Document Frequency Cut”[6]. Here 3000 features were
selected to form the page-based view and 2000 features were selected to form
the hyperlink-based view. Then we randomly selected 2000 samples from the
“course” category and the “others” category to design a 2-category Näıve Bayes
classifier for testing performances of Multi-View EM, Co-training, Co-EM and
standard EM(using the whole 5000 features) in semi-supervised setting.

In experiment, after removing all the labels of data, we randomly re-labeled
part of them then testified performances of Multi-View EM, Co-training, Co-
EM and EM with the semi-supervised datasets created. We randomly re-labeled
200, 400, 600 samples in 2000 samples for 20 times respectively and achieved
the averages and variations of the accuracy by different semi-supervised learning
algorithms. In multi-view EM, weights of page-based view and hyperlink-based
view were set by cross-validation, which was set to be 0.2 and 0.8 respectively
in experiment. The experimental results are presented in Table 3. It can be
observed that Multi-View EM outperformed Co-training Co-EM and EM in this
learning task.

Table 3. Semi-supervised learning on WebKB

labeled sam-
ples

Multi-View
EM

Co-training Co-EM EM

Accuracy
200 0.872±0.013 0.819±0.017 0.861±0.015 0.748±0.011
400 0.893±0.006 0.849±0.009 0.881±0.005 0.780±0.008
600 0.907±0.004 0.869±0.009 0.897±0.004 0.808±0.007
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In the view of classifier fusion, Multi-View EM can be intuitively regarded
as in each round before each EM iteration, independently designing a classifier
in each view and then using the weighted sum criterion of classifier fusion[7] to
combine probabilistic labels from all the classifiers. Technically, other classifier
fusion criteria such as multiplication criterion and max criterion, etc, could be
utilized to combine probabilistic labels, but rigidly, in the framework of EM,
using these criteria could not guarantee the convergence.

4 Conclusions

In this paper, Multi-View EM for finite mixture models is proposed to handle
real-world learning problem which have natural feature splits. As a more proper
and close probabilistic version of Co-training than Co-EM, Multi-View EM is
completely deduced in the EM framework and its convergence is theoretically
guaranteed. Multi-View EM can be intuitively regarded as that it runs EM in
each view, and before each new EM iteration combines all the weighted prob-
abilistic labels generated in each view. Future work involves introducing prior
knowledge of data and some criteria to automatically choose more appropriate
weights of different views and utilizing Multi-View EM for more semi-supervised
learning problems. And that active learning could be introduced so that active
learning version of Multi-View EM similar to Co-EMT[2] could be designed.
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Avenue de l’Université, 76801 Saint Etienne du Rouvray, France
sebastien.chabrier@ensi-bourges.fr

Abstract. Segmentation evaluation is a very difficult task even for an
expert. We propose in this article a new unsupervised evaluation criterion
of an image segmentation result. The quality of a segmentation result is
derived without any a priori knowledge by taking into account different
evaluation criteria from the literature. We first compare six unsupervised
evaluation criteria on a database composed of synthetic gray level images.
Vinet’s measure is used as an objective function to compare the behavior
of the different criteria. We propose in this paper to fuse the best ones
by a support vector machine. We illustrate the efficiency of the proposed
approach through some experimental results.

1 Introduction

Segmentation is a fundamental stage in image processing since it conditions the
quality of interpretation. Many segmentation methods have been proposed in the
literature [9], [4], but it still is difficult to evaluate their efficiency. In order to
make an objective comparison of different segmentation methods or results, some
evaluation criteria have already been defined and some literature is available [12].
This evaluation of a segmentation result obviously makes sense for a given level
of precision (same number of regions or classes ...).

An evaluation criterion can be used for different applications. The first ap-
plication is the comparison of different segmentation results of a single image.
This enables to compare the behavior of different segmentation methods in order
to choose the most appropriate for a given application. The second application
is to facilitate the choice of the parameters of a segmentation method. Image
segmentation generally needs the definition of some input parameters, which
are usually defined by the user. This task, that is sometimes arbitrary, can be
obtained by determining the best parameters with the evaluation criterion.

Briefly stated, there are two main approaches. On the one hand, there are
evaluation criteria based upon the computation of a dissimilarity measure be-
tween a segmentation result and a ground truth (due to the use of synthetic
images or derived by an expert). These methods are of widely use for example
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in medical applications. On the other hand, there are unsupervised evaluation
criteria that quantifies the quality of a segmentation result by computing differ-
ent statistics without any a priori knowledge. They are based on the fact that
the quality of a segmentation result could be estimated without any information
on its interpretation [7]. In [12], a comparative study of evaluation criteria of
segmentation results of gray level images is developed. The problem is that most
of the tested criteria are not adapted for textured images while most real images
are composed of textured regions. In order to solve this problem, Mac Cane [2]
showed that it is necessary to use the maximum quantity of different criteria
and to combine them. This article deals with this kind of approach.

In the first part of this article, we carry out a comparative study of six unsu-
pervised evaluation criteria. We use a database of synthetic images and Vinet’s
measure as an objective function. In the second part, we define a new criterion
by combining the best criteria in order to improve the quality of evaluation. Fi-
nally, we show the efficiency of the proposed method through some experimental
results.

2 Developed Method

First, we carry out a comparative study of evaluation criteria from the literature.
In order to improve the quality of these evaluation criteria, we then fuse the best
ones by using a support vector machine.

2.1 Unsupervised Evaluation Criteria

We selected, from the state of art [12], six unsupervised evaluation criteria of
a gray level image segmentation result and one supervised criterion (used as a
reference):

– Zeboudj’s contrast (Zeboudj) : this contrast takes into account the internal
and external contrast of the regions measured in the neighborhood of each
pixel.

– Levine and Nazif’s inter-class contrast (Inter-regions) [8] : this criterion com-
putes the sum of contrasts of the regions balanced by their surfaces.

– Levine and Nazif’s intra-class uniformity (Intra-region) : this criterion com-
putes the sum of the normalized standard deviation of each region.

– Combination of intra-class and inter-class disparity (Intra-inter) : this in-
dicator combines similar versions of the Levine and Nazif inter-class and
intra-class contrast.

– Borsotti criterion (Borsotti) [1] : this measure is based on the number, the
surface and the variance of the regions.

– Rosenberger’s criterion (Rosenberger) [11] : the originality of this method
lies in its adaptive computation according to the type of region (uniform or
textured). In the textured case, the dispersion of some textured parameters
is used and in the uniform case, gray levels parameters are computed.
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– Vinet’s measure (Vinet) : it is a supervised evaluation criterion. It computes
the correct classification rate by comparing the result with a ground truth.
Since we work in this study on a database composed of synthetic images,
Vinet’s measure is used as a point of comparison.

The database used for our tests included 300 synthetic images composed
of textured and uniform regions. Each image contained five regions of different
types : texture from Brodatz’s album [3] or uniform with low noise. One database
called Unif was composed of 5 uniform regions, Mix was composed of 2 textured
and 3 uniform regions. Finally, Tex only contained textured regions (see Figure
1).

Each image was segmented by the EDISON algorithm which uses the mean
shift algorithm [4] and by a classification method (fuzzy K-means) with a number
of clusters equal to 5 and with 3 different parameters settings : a 5x5 pixels anal-
ysis window and moments of order 1 to 4 (segmentation adapted to uniform im-
ages); a 9x9 pixels analysis window, moments of order 1 to 4 and attributes from
the cooccurrence matrix (segmentation adapted to slightly textured images); a
15x15 pixels analysis window, moments of order 1 to 4, attributes from the cooc-
currence matrix and the normalized autocorrelation (segmentation adapted to
strongly textured images).

Fig. 1. Example of images for each database a) Unif, b) Mix and c) Tex

We studied the correlation factor of each criterion as an indicator of similarity
(see Table 1). It was computed on 1.200 segmentation results (300 images and
4 methods). The absolute value of the correlation factor of two variables is near
zero when they are complementary and near 1 when they are similar. The criteria
that obtained the best correlation factor with Vinet’s measure (ground truth)
were Zeboudj, Borsotti and Rosenberger. In order to improve these results, we
suggest to fuse these evaluation criteria and to exploit the evaluation of these
1.200 segmentation results in a learning phase.

2.2 Fusion by Support Vector Machine

Let us suppose that we have a set of pairs {xi, yi}i=1,·� with xi ∈ R
d being a

vector of d criteria describing the quality of a segmentation result i of a given
image and yi an index quality of segmentation (issued from Vinet’s measure
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associated to the image segmentation result). Our objective is to learn from
the knowledge of the training set {xi, yi}i=1,·� a function f that will be able to
predict accurately the index quality of a new image segmentation result x. Thus,
our idea is to use a supervised learning framework to achieve this goal but also
to use this context for the fusion of different criteria and the selection of the
most useful.

Table 1. Correlation factors for each evaluation criterion with Vinet’s measure

Unif Mix Tex

Borsotti -0.622 -0.005 -0.188
Zeboudj 0.565 0.252 0.063

Inter-regions 0.200 0.227 0.181
Intra-region 0.158 0.030 0.256
Intra-inter 0.226 0.096 0.010

Rosenberger 0.471 0.306 0.313

This supervised learning problem is a multiclass problem in which the num-
ber of classes depends on the cardinality of index quality (for instance, Vinet’s
measure can be discretized into 10 values yielding thus into a 10-class prob-
lem in a d dimension space). The multiclass problem is addressed through a
polychotomy based on a one-against-one approach [6]. Our baseline machine
learning algorithm for each binary problem is a 2-norm Support Vector Ma-
chines [5]. Hence, we are looking for a hyperplane in a space H defined as :
f(x) =

∑�
i=1 α�

i yiK(xi, x) + b that maximizes the margin between the hyper-
plane and the projected data points xi in H. Hence α�

i are the solutions to the
following optimization problem :{

maxαi

∑
i αi − 1

2

∑
i,j αiαjyiyj(K(xi, xj) + 1

C δi,j)
with

∑
i αiyi = 0 0 ≤ αi

(1)

where K is the kernel associated to H, δi,j is the kronecker symbol and C is
a trade-off parameter between the margin width and the number of training
examples located beyond the margin.

Note that all the segmentation criteria are implicitly combined through ker-
nel K. In fact, owing to the property of H, the decision function can also
be written : f(x) = 〈∑i αiyiK(xi, x)〉 + b which becomes (in the linear case)
f(x) = 〈∑i αiyixi, x〉+ b. Thus, each evaluation criterion u of the segmentation
results x is weighted by

∑
i αiyix

(u)
i in the decision function. If we want to select

only a small subset of criteria to fuse, then a criterion selection stage must be
performed.

In this work, we have also addressed this problem. In fact, among all the
available segmentation criteria, only a small subset of them may be relevant
to predict the index quality. Hence, besides learning the decision function f ,
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a criteria selection has been performed. The variable selection algorithm is a
backward features ranking algorithm based on the influence of a given criterion
on the margin [10] . Hence, each criterion has been weighted by a scaling factor
σ. The sensitivity of the margin with regards to a criterion u is related to :

|
∑

i

∑
j

αiαjyiyj
∂K(xi, xj)

∂σu
|

3 Experimental Result

We have carried out several experiments to assess the performance of our way of
merging segmentation criteria. In this first experiment, we have used the same
data as in section 2 namely, 1.200 segmentation results. We used 22 criteria
(Zeboudj, Borsotti and the Rosenberger’s criterion with 20 different parameters).
The problem has been turned into a 10 class problem: the quantitative index
quality of the segmentation result belongs to {1, · · · , 10}. The index quality that
we used was Vinet’s measure which, for this purpose, was discretized. Our first
objective was to rank all the criteria with regards to their relevance in predicting
the correct Vinet’s measure. We thus ran a one-against-one SVM with a variable
ranking at each run. SVMs hyperparameters were set to σ = 2 for the gaussian
kernel bandwidth and C = 10 so that the number of misclassified segmentation
results was low on the training data. Learning and testing sets have been built by
randomly splitting each class in 20% and 80% respectively for the learning and
testing set. Then, with the random nature due to this, for each binary classifier,
30 trials were performed with different random draws of the learning and testing
sets.

The results of this experiment are depicted in Figure 2 (left). We see that
learning to predict Vinet’s measure of segmentation results is an interesting
approach since, with a single criterion, the correct classification rate of segmen-
tation results is around 84%. Combining all criteria by using them as predictive
variables yields an improvement of the classification rate. But, the plot also tells
us that, by using a small subset of them, we get better results (of the order
of 87%) which means that some criteria, instead of bringing information about
the segmentation results, tend to make the learning problem harder. Figure 2
(right) gives the average ranking of each criterion over all the trials and binary
classifiers. A criterion that was ranked first (most relevant criterion) for all the
runs should then get a mean rank of 1. Hence, this plot tells us that the four
most relevant variables are the following : 22 (Borsotti’s criteria), 1 and 3 (clas-
sical Rosenberger’s criteria with adaptive parameters and with a fixed set of
parameters), and 21 (Zeboudj’s criteria).

According to Figure 2 (left), the best performance is achieved when the num-
ber of criteria is equal to 7. Hence, we have selected the corresponding criteria
and looked for the performance of our criterion fusion approach for different
training set size. The experimental setting is similar as above but we did not
perform variable ranking, we only used the best criteria. We show in Figure 3 the
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obtained performances. We can see that even with very few learning examples
(1% of the learning set), our criteria fusion method is able to predict accurately
(up to 78%) Vinet’s measure and that, surprisingly, increasing the size of the
training set improves this performance (about 90%). Therefore, just a few seg-
mentation results can be compared to a ground truth and then used as training
set.
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Fig. 2. Results on variables ranking. (left) Performances on the SVMs with regards to
the number of evaluation criterion used for predicting Vinet’s measure. (right) Mean
ranking over all the runs of the 22 different criteria.
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Fig. 3. Classification rate on Vinet’s measure prediction according to the number of
examples in the training set

We finally illustrate the efficiency of our approach on three real images.
The first image is an aerial one (see Figure 4). The image is composed of

textured and uniform regions. The segmentation result that can be visually con-
sidered as the best one is EDISON’s. Table 2 shows the values for each evalua-
tion criterion. If we focus on Rosenberger’s criterion, the value of the EDISON
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segmentation result is much better than for the others ones. On the contrary,
Zeboudj criterion has a bad value for this segmentation result. We used the
proposed fusion method using the SVM (the learning process was realized with
segmentation results on synthetic images). If we now consider the fusion result,
we see that EDISON’s segmentation result is correctly preferred.

(a) originalim-
age

(b) FCM (c) PCM (d) EDISON

Fig. 4. (a) Aerial image and three segmentation results

Table 2. Comparison of three segmentation results of an aerial image of the figure 4
by different evaluation criteria

FCM PCM EDISON
Borsotti 0.0222 0.0297 0.0155
Zeboudj 0.6228 0.6124 0.5428

Rosenberger 0.6379 0.6328 0.6973

SVM 9 9 10

(a) original im-
age

(b) FCM (c) PCM (d) EDISON

Fig. 5. (a) Medical image and three segmentation results

The second image is a medical one (see Figure 5). Once again, EDISON’s
segmentation result is correctly preferred by SVM.
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The last image is a radar one (see Figure 6). EDISON’s segmentation result
seems visually much better than the two other ones. In this case, EDISON’s
segmentation result is preferred by SVM.

Table 3. Comparison of three segmentation results of a medical image of the figure 5
by different evaluation criteria

FCM PCM EDISON
Borsotti 0.5154 4.4901 0.0389
Zeboudj 0.7279 0.7184 0.5721

Rosenberger 0.5294 0.5025 0.6418

SVM 8 8 9

(a) original im-
age

(b) FCM (c) PCM (d) EDISON

Fig. 6. (a) Radar image and three segmentation results

Table 4. Comparison of three segmentation results of a radar image of the figure 6 by
different evaluation criteria

FCM PCM EDISON
Borsotti 0.1952 0.2793 0.0293
Zeboudj 0.1094 0.1172 0.0432

Rosenberger 0.4699 0.4677 0.9074

SVM 6 6 9

4 Conclusion

Segmentation evaluation is a great challenge and has lots of applications. The
first application is the comparison of different segmentation results for a sin-
gle image. We could compare the behavior of different segmentation methods in
order to choose the most appropriate for a given application. The second applica-
tion is to improve the choice of the parameters of a segmentation method. Image
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segmentation generally needs the definition of some input parameters, that are
usually defined by the user. This sometimes-arbitrary task can be automatic
by determining the best parameters by using the proposed evaluation criterion.
Another application is the possibility to define new segmentation methods by
optimizing these evaluation criteria. Last, an evaluation criterion can be used to
fusion several segmentation results of a single image or of the different bands in
the multi-components case.

We presented in this paper a comparative study of unsupervised evaluation
criteria from the literature. We selected three evaluation criteria for their effi-
ciency : Borsotti’s, Zeboudj’s and Rosenberger’s. The first two are efficient for
low textured images while Rosenberger’s is more reliable for textured images.
We showed the benefit of combining these criteria by a support vector machine
to improve their performances.

We are developing new segmentation methods by optimizing this new seg-
mentation evaluation criterion.
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Abstract. We have implemented an algorithm for detection and segmentation 
of protein spots in 2-D gel electrophoresis images using symmetry derivative 
features computed using low level image processing operations. The 
implementation was compared with a previously published Watershed 
segmentation and a commercial software. Our algorithm was found to yield 
segmentation results that were either better than or comparable to the other 
solutions while having fewer free parameters and a low computational cost.

1   Summary 

Two-dimensional gel electrophoresis (2-DE) is a major workhorse in proteomics. 2-
DE data comes as spot maps containing a vast number of proteins, requiring 
automatic image processing for efficient analysis. Quantification of individual 
proteins and tracing changes in expression between gels require accurate spot 
detection. Existing spot detection algorithms often require user intervention for setting 
free parameters and time consuming morphological post processing. We approach the 
problem by using a set of computationally cheap and robust symmetry derivative 
features and minimal post processing. A feed forward neural network is used to find 
decision boundaries in the feature space. The neural network is trained with features 
extracted from manually segmented 2-DE images. Classification performance is 
compared with the published non-commercial algorithm of Bettens [1] and one 
commercial 2DE image analysis program, ImageMaster™ 2D Platinum v5.0 (GE 
Healthcare, formerly Amersham Biosciences). The result, presented as ROC curves, 
show that we perform at least as well as both Bettens and Imagemaster in terms of 
spot detection and segmentation, while using fewer free parameters, and a limited 
amount of computational resources. 

1.1   Originality and Contribution 

We propose a set of symmetry derivative features [2, 3] to be used in automatic 
segmentation of 2DE gel images with minimal post-processing. Symmetry derivatives 
give immediate information on local shape that otherwise requires time consuming 
regional processing. In addition to achieving better segmentation performance, this 
moves the focus of the problem from post processing to basic signal processing. 
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1.2   Introduction to the Problem 

2-DE [4] is able to separate thousands of proteins in a sample, presented as image 
data. Spot detection and segmentation into spot regions is of central importance for 
the quantitative and differential analysis of proteomics experiments. The 
segmentation is complicated by the large range of protein concentration affecting spot 
geometry, overlapping spots, irregular spot shapes, and random noise.  

1.3   Alternative Spot Detection Techniques 

Most spot detection solutions are closed source, making fair comparison difficult. 
However many older image analysis packages [5, 6] applied model fitting for direct 
segmentation of the protein spots. The alternative approach is to use a crude initial 
segmentation followed by computation of morphological and grey level features of 
the initial regions for a final decision. The Laplacian of Gaussian (LoG) filter 
response is a weak feature that has been widely used in segmentation [7, 8, 9]. In 
recent years the unsupervised Watershed algorithm has also become a popular choice 
[1, 9] for initial 2DE image segmentation. The second step often consists of iterative 
model fitting within the regions [1, 8, 10] to closer determine spot properties. Fitting 
each segmented area to a model is often a computationally expensive step. 

1.3.1   Gaussian Fitting 
The 2-D Gaussian function is used for smoothing and noise removal in image 
processing, and is also the most common protein spot model:  
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As the function is separable smoothing can be done either with a 2-d convolution 
with the Gaussian kernel above or by convolution with two orthogonal 1d kernels. 
The reason the Gaussian is a popular in spot modeling is that the Gaussian function 
corresponds to diffusion from a single point. Most spots are formed under conditions 
similar to diffusion in the MR/PI directions, making the model appropriate for many 
spots. The main weaknesses are poor modeling of irregularly (ie non ellipsoid) shaped 
spots, and in fitting with saturated “flat top” spots. Bettens as well as Rogers [8] 
address the flat top spot problem by assuming diffusion from a central area rather than 
a point, representing the spot as a central disc or irregularly shaped region convolved 
with a Gaussian kernel. In spot detection the Gaussian is used either by iteratively 
optimizing the parameters around a peak [5] with respect to a residual, or by similar 
fitting to a segmented region that is expected to contain one spot only. 

1.3.2   Second Derivative 
The second derivative gives information on the curvature of the local surface. As 
protein spots appear as dark blobs on a white background they have convex curvature. 
This weak criterion is widely used in initial spot segmentation [7, 8, 9]. Since the 
second derivative amplifies noise a smoothing operation is often applied before the 
derivative is computed. In practice the computation of the second derivative of a gray 
scale image is often implemented by means of 2-d convolution with the LoG filter 
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which in the case of local concave curvature gives a positive value on a spot. 

1.3.3   The Watershed Transformation 
The watershed transformation (WST) is a powerful segmentation algorithm 
commonly used for segmentation of locally homogenous grey value images that has 
been implemented in linear time [11]. The transform finds the reliefs that separates 
catchment basins around local minima. In 2-DE the WST has been applied to a 
smoothed grey scale image [1] and to the gradient strength image [9]. The WST tends 
to over-segment spots when applied to the gradient strength image. Usually heuristics 
are applied to merge or discard regions in a computationally costly post processing 
step. 

2   Method 

2.1   Features and Feature Extraction 

For each pixel we generate a feature vector containing the local LoG transform of the 
original image and the local symmetry derivative response. The LoG captures the 
concavity of spot surfaces while symmetry derivatives capture spot shape. Symmetry 
derivatives are powerful textural features that have a wide range of applications in 
image processing [3, 12, 13]. The main strength of symmetry derivatives is an ability 
to represent local shape without initial segmentation of the raw image, a costly step in 
terms of computation. Symmetry Derivatives are differential operators that are  
based on  

Dx + iDy = ∂/∂x + i∂/∂y . (3)

which yields a complex vector field when applied to images. Higher order symmetry 
derivatives of the n'th order, and their conjugates, are defined as  

(Dx + iDy)
n . (4) 

(Dx - iDy)
n . (5) 

respectively. Applying a differential operator to an image corresponds to convolution 
with a derivative kernel in the direction of the differential combined with a window 
function. We choose the discrete Gaussian function and its derivative as window 
function and derivative kernel respectively. In our application we first use derivative 
operators to compute the local orientation map of an image 

Z=(dxf+idyf)2 . (6) 

Further smoothing of Z (convolution with a 2-d window function such as the 
Gaussian kernel) of the local orientation map directly gives the local Complex 
moments I20 and I11. Complex moments of order m+n are defined as: 
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transfer function in the hidden layer and a logistic sigmoid function as transfer 
function in the output layer. We use two output nodes representing the posterior 
probabilities of a pixel belonging to the background or a spot core, and let the 
experiments described in 3.2.1 determine the number of nodes in the hidden layer. 
Training is done by Resilient Backpropagation [16]. As the neural network ignores 
spatial continuity in the data the initial result can be expected to be undersegmented. 
We first split the segmented regions along the local minima of real(I20) for CS. The 
split segments are then kept if their size is above a certain threshold.  

3   Data Set and Experimental Design 

3.1   Data Set 

Training and validation data were obtained from 8-bit tif images of eight silver 
stained gels (four human and four E-coli) with varying signal to noise ratio and 
background intensity. We keep two E-coli gel images as test data. In addition we used 
an artificially generated gel [16] with known spot positions (available for download at 
http://www.isbe.man.ac.uk/~mdr/content.php?f=electrophoresis). The continuous 
regions of the smoothed real gel images whose second derivative is above zero were 
split along the watershed lines of the Laplacian strength image. The resulting regions 
were manually inspected and if necessary merged with their neighbours. Finally the 
resulting regions were eroded by two pixels to eliminate the smallest spots and to 
separate spot cores from boundaries. 

The following features were computed from the 8 bit grey value images: 

x1= real(I20) for CS   x2= imag(I20) for CS  x3=I11-|I20| for CS x4=|I20|/I11 for CS 
x5= real(I20) for PS   x6= imag(I20) for PS x7= |I20|/I11 for PS x8= LoG 

Pixels for training of the neural network were selected as follows: For the spot core 
class all pixels belonging to the identified spot regions in the training set were chosen. 
For the background class we chose all the pixels within a cityblock distance of two 
pixels from the spot core, and a number of pixels equal to that of the spot core class 
were randomly chosen from the remaining pixels. 

3.2   Experiments 

3.2.1   Selection of Features and Parameters for ANN 
Parameter selection is carried out using the Backward Elimination technique. The 
method consists of two steps. First we set the number of nodes by changing the 
number of nodes in the hidden layer between 1 to 15 and performing five-fold cross-
validation for each configuration. In the second step we use the number of nodes that 
gave the lowest number of misclassified pixels in a leave one feature out experiments. 
The feature with the smallest effect on the total error was then removed, and the two 
steps repeated with the reduced feature set. The result is presented as error bars for the 
best number of nodes for each number of features. 
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Table 1. Test parameters 

3.2.2   Evaluation of Segmentation Performance 
In the final segmentation experiments we feed the neural network with a reduced 
feature set for an initial classification. Post processing is done by splitting the regions 
at local minima of the feature x1,, followed by discarding regions of a size smaller 
than a certain threshold.Using a segment of a real silver stained image containing 215 
manually identified spots and an artificial silver stained image with 924 spots we 
compute precision and recall with respect to spots found. A spot is considered valid if 
the centre of the segmented region is within the identified core of a real gel, or within 
20% of the standard deviation plus three pixels distance of the centre of the artificial 
spots. As the watershed segmentation only gives target regions for later gaussian 
fitting we provide an alternative segmentation performance measure as well. For these 
we consider all segmented regions that overlap precisely one spot center to be valid, 
giving a measure of the potential improvement from post processing. Precision and 
recall is computed for our algorithm as well as the Watershed of Bettens and 
Imagemaster 2D Platinum. The result is presented as ROC curves with respect to 
different parameters of the algorithms (Table 1).  

3.2.3   Comparison of Execution Time 
As Image Master is a closed source package we choose measure execution time in 
order to estimate the comparative computational complexity. Cropped versions of a 
real image with sides 128, 181, 256, 362, 512, 724, and 1024 pixels were used for the 
experiment. The Symmetry derivative and Watershed based approaches were 
implemented in Matlab 7.0. For the testing of Image Master we used a downloadable 
trial version (available at http://www1.amershambiosciences.com/). Execution times 
for the Matlab implementations were measured using Matlab’s internal timer 
functions, while the execution times for Image Master were measured manually with 
a stopwatch. All experiments were performed under Windows XP Professional on a 
AMD Athlon XP2400+ with 1Gb RAM. The results are presented as a log-log plot of 
execution time vs the number of pixels. 

4   Results and Interpretation 

4.1   Feature Selection and ANN Parameter Selection 

Figure 2 shows the crossvalidation error and standard deviation after removing 
features. Four features can be removed without hurting performance. The redundant  

Algorithm Parameter Values 

Symmetry derivative Minimum Core size 0 to 19 

ImageMaster™ 2D Platinum v5.01 Saliency 1, 2, 5, 10, 20 

Bettens Watershed2 Minimum watershed size 10 to 160 in increments of 10 
1Imagemaster also has the parameters Smooth and Min Area which were held constant at 2 and 5 respectively 
as experiments showed that they have little effect on the performance on our data set. 
2Bettens algorithm has one more parameter, Maximum Grey value in Watershed, that we after experiments 
decided to hold constant at 238 for the real images and 250 for the artificial images.  
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Fig. 2. Crossvalidation error and standard deviation of the average error after successive 
removal of features. The features were removed in the order listed from left to right. 

features represent direction of parabolic symmetry, lack of CS, and swirly spiral 
patterns. With the exception of the lack of CS this is unsurprising. However one of the 
remaining features represents relative strength of CS, a property that is related to lack 
of circular symmetry accordingly. We choose to keep features 1, 3, 7, and 8.

4.2   Segmentation Performance 

Fig. 3 shows ROC curves for the experiments. The Symmetry based approach  
consistently yields a higher recall compared to the most sensitive setting of Image 
Master, but also finds a higher number of false positives. A large subset of the false 
positives found by our algorithm are caused by splitting of actual spots. Such false 
positives are less of a problem than false negatives when the output of a spot detection 
algorithm is used to find targets for MS analysis, as the goal often is to find low 
abundance novel proteins. Image Master achieves the highest precision, but never 
manages to achieve an equal error rate even on the artificial gel. The comparison with 
the Watershed algorithm shows that we achieve comparable initial segmentation 
performance except for in the case of the artificial gel. The artificial gel used in the 
test has an unrealistically low noise level and thus lack the non-spot catchment basins 
that otherwise cause the Watershed algorithm to oversegment an image. The 
difference between the segmentation and detection curves shows the potential 
improvement of the algorithms by further post processing. One low cost improvement 
could be to compute the spot center using a method that takes pixel values into 
account rather than computing the center of gravity of the regions only, as done in this 
paper. Our segmentation approach returns smaller regions, corresponding to spot 
cores, compared to Watershed and Imagemaster, which would result in 
computationally cheaper post processing. The results closest to an equal error rate for 
each algorithm are show in Table 2. The results for Image Master are from detection 
at the most sensitive settings. 

4.3   Computational Complexity and Execution Time 

Fig 4 shows a log-log plot of execution time vs the number of pixels in the image. A 
realistic image of size 1024*1024 pixels is segmented in 10s by Image Master, 31s by 
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Fig. 3. ROC curves for spot segmentation and detection on real and artificial gels 

Table 2. Best performance 

Symmetry Derivatives Watershed Imagemaster

Detection Precision Recall Precision Recall Precision Recall

Real gels 73% 74% 39% 39% 87% 70%

Virtual gel 85% 85% 51% 43% 96% 80%

Segmentation Precision Recall Precision Recall Precision Recall

Real gels 79% 81% 79% 79% 88% 73%

Virtual gel 84% 85% 93% 88% 97% 82%

the Symmetry Derivative based method, and 560s by the Watershed based method. 
The execution time for the Symmetry derivative approach and Image Master is linear, 
while our implementation of the Watershed segmentation has much worse 
performance. The poor performance of the Watershed based segmentation stems from 
the post processing that is dependent on the number of watersheds as well as their 
size. Our implementation also uses loops which are very inefficiently implemented in 
Matlab, further adding to the execution time. Execution times for the Symmetry based 
approach were on average 3.2 times longer than for Image Master. This difference is 
remarkably small as Image Master is a compiled, optimised software, while the  
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Fig. 4. Execution time vs number of pixels in the image. Image Master had execution times 
lower than 1 second for images with fewer than 131044 pixels. 

Symmetry Derivative based segmentation was implemented in an interpreting 
language using an inefficient double precision representation of all data.

   Conclusions 

In this paper we have presented a novel 2-DE image segmentation algorithm based 
upon Symmetry Derivatives and compared it with the widely used Watershed 
segmentation technique and a commercial software package. We achieve a better 
equal error rate and a better performance on the recall measure compared to 
Imagemaster, and comparable or results to a Watershed segmentation approach that 
relies on significant post processing. The comparison shows that we achieve 
equivalent or better spot detection compared to the other approaches, using only the 
basic signal processing operation of one-dimensional convolution and a size criterion. 
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Tübingen, Sand 14, D-72076 Tübingen, Germany
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Abstract. The human immune system is a highly complex machinery
tuned to recognize specific molecular patterns in order to distinguish
self from non-self proteins. Specialized immune cells can recognize major
histocompatibility (MHC) molecules with bound protein fragments (pep-
tides) on the surface of other cells. If these peptides originate from virus
or cancer proteins, the immune cells can induce controlled cell death. In
silico vaccine design typically starts with the identification of peptides
that might induce an immune response as a first step. This is typically
done by searching for specific amino acid patterns obtained from pep-
tides known to be recognized by the immune system. We propose a new
method for deriving decision rules based on the physiochemical proper-
ties of such peptides. The rulesets generated give insights into the un-
derlying mechanism of MHC-peptide interaction. Furthermore, we show
that these rulesets can be used for high accuracy prediction of MHC
binding peptides.

1 Originality and Contribution

This study shows how pattern recognition can be applied for analyzing and pre-
dicting MHC-binding peptides. We encode the peptides using physiochemical
amino acid properties, e.g. hydrophobicity and size, in order to find important
determinants of MHC-peptide binding. This gives new insights into the under-
lying mechanism of MHC-peptide interaction, which is useful in the design of
peptide-based vaccines.

2 Introduction

Cancer and infectious disease are two major causes of death in the world today.
Both cancer cells and virally infected cells produce proteins that are not present
under normal conditions. These and other intracellular proteins are degraded into
smaller peptides and some of these are selectively displayed on the cell surface
bound to major histocompatibility (MHC) class I molecules. The MHC-peptide
complexes serve as a ”fingerprint” of the current state of the cell. Cancer cells
� These authors contributed equally to this work.

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3686, pp. 446–453, 2005.
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and virally infected cells typically display a distinct range of peptides compared
to normal cells, which can be recognized by cytotoxic T-cells (CTLs) of the
immune system. CTLs can then induce cell death (apoptosis) of such modified
self-cells.

During recent years, several clinical experiments have proven that MHC-
binding peptides can be used for therapeutic purposes in vaccine development
for both cancer [1,2] and viral infection [3,4]. However, the number of MHC-
binding candidates from a known protein sequence is about 100-200 fold higher
than the number of actual binders [5]. There are up to six different MHC class
I variants (alleles) expressed in each individual (human) and there are several
hundred known alleles with different binding preferences. This diversity makes
humans robust against quickly evolving pathogens that try to avoid recognition.
Nonetheless MHC molecules share some common features, the bound peptides
usually have a length of eight to ten amino acids and the interaction is typically
very strong in a few deep pockets of the MHC molecule. Some MHC alleles
have pockets that can accommodate long and charged amino acids, whereas
other prefer small hydrophobic ones. The amino acids not buried in the MHC
molecules are typically exposed to the extracellular environment, enabling them
to interact with T-cells.

In this study we use simple rulesets based on amino acid property descriptors
to investigate MHC-peptide binding. The identified properties give an easily
interpretable biological explanation of MHC-peptide binding. We are also able
to show that only a limited number of positions are crucial for describing the
interaction. In comparison with two existing prediction methods, we show that
our rule-based approach is well suited for discriminating between binding and
non-binding peptides.

A Brief Review of Competing Techniques to Solve the
Problem

The first sequence-based prediction methods presented used regular-expression
searches for consensus amino acid patterns identified in experimental data, e.g.
the XLXXXXXXV (X indicating any of the 20 amino acids) motif for the MHC
allele HLA-A*0201 [6]. The simple motifs have been extended into position-
specific scoring matrix (PSSM) methods, where a score is assigned for each
amino acid in every position of the peptide. The best known PSSM methods
are SYFPEITHI [7] and BIMAS [8]. The SYFPEITHI method assigns scores
based on expert knowledge; amino acids contributing strongly to binding are
given a score of 10, preferred amino acids are given a lower positive score, and
amino acids with a negative contribution are given a negative score. The BIMAS
method on the other hand is based on experimentally measured dissociation rates
of the MHC-peptide complex. A large number of peptides differing in only one
or a few positions were synthesized in order to determine the contribution of
individual amino acids to the overall binding energy.
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A number of different machine learning methods, such as neural networks [9],
hidden Markov models [5], and support vector machines [10], have also been
used for prediction. The advantage of these methods is that they use a non-
linear description of MHC-peptide interactions, leading to a higher accuracy
than the PSSM methods for some alleles. The major drawback of these methods
is that they are ”black boxes” not giving an easily interpretable description of
the underlying mechanism of MHC-peptide binding.

3 The Proposed Method

Here we use decision rules based on amino acid-specific properties for predicting
MHC class I binding peptides. The aim of this study is both to find the amino
acid properties that describe the interaction in MHC-peptide complexes and to
create a prediction method with high accuracy. We test a wide range of different
amino acid properties in combination with specific positions of the peptides.

From the rulesets generated we find peptide positions and amino acid prop-
erties determining binding of peptides to different MHC alleles. The prediction
performance of our method is tested and compared to that of two existing PSSM-
based methods.

4 Data Used and Experimental Design

Experimentally verified MHC binding peptides with a length of nine amino acids
for the HLA-A*0201, HLA-B*08, and HLA-B*2705 alleles were obtained from
the SYFPEITHI database [7]. This gave a total of 246 HLA-A*0201, 45 HLA-
B*2705, and 32 HLA-B*08 peptides. A dataset of non-binders was created by
extracting peptides from existing proteins in the Ensembl database [11]. The
effect of potential binders in the non-binding dataset is considered small since
only 1 in 100-200 peptides from a protein typically binds to a certain MHC
molecule [5]. The number of non-binders used in the training data was twice the
size of known binders for each allele. Duplicate entries were removed from the
data sets and peptides were encoded using amino acid-specific properties (e.g.
hydrophobicity, side chain volume, and absolute entropy) from the AAindex
database [12].

We used the well known C4.5 and C5.0 software packages [13] to create
rulesets that consist of unordered collections of if-then rules. We prefer rulesets
over decision trees since they give clear descriptions of the rules associated with
a certain class. In cases where more than one rule applies, the C5.0 program
takes the confidence value of each rule into account to calculate a total vote for
each class. Furthermore, there is a default class that is used when none of the
rules in the ruleset is applicable. The aim with the sampling procedure is to find
amino acid patterns, in terms of biochemical properties describing MHC-peptide
binding.

In a preliminary analysis every amino acid property was evaluated separately
considering all peptide positions. The rulesets generated were then searched for
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key positions and subsequent predictions restricted to a limited number of posi-
tions showed improved accuracy. Furthermore, different combinations of amino
acid properties and position were evaluated. In most cases a limited number of
peptide positions and amino acid features gave the best prediction results. The
prediction performance was evaluated using Matthews correlation coefficient [14]
and fivefold cross-validation. Furthermore, we report the sensitivity, specificity,
and total accuracy of our method.

We also compared our method against the existing methods SYFPEITHI
and BIMAS by applying the same data and statistics to the online version of
these methods.

5 Results and Interpretation

The performance for the best combination of peptide positions and amino acid
properties found for each allele is presented in Table 1. The general conclusion
from these results is that only a limited number of peptide positions and amino
acid properties are needed to describe MHC-peptide binding. This also means
that the dimensionality of the classification problem can be reduced, since there
is no need to take all sequence positions into account. We also investigated the
effect of data splits into training and test sets for the best results, giving only
small differences to the results presented here.

Table 1. Results for the best prediction accuracy achieved for each of the studied
MHC alleles. The table shows the statistics obtained from fivefold cross-validation, the
positions of the peptide considered, and the amino acid properties used.

MHC MCC SP SE ACC POS Properties

HLA-A*0201 0.85 0.95 0.89 0.93 2,4,6,9 BetaStruct,SideChainGyr,BurResidue
HLA-B*2705 0.95 1.0 0.94 0.98 2,9 Stability,LengthSideChain
HLA-B*08 0.92 0.97 0.97 0.97 3,5,9 PosCharge,Stability,AccSurfaceArea

Fig. 1 shows the rulesets generated for HLA-B*2705 (a) and HLA-B*08 (b)
using the whole datasets. The rules for HLA-B*2705 are based on two peptide
positions and two amino acid properties. The two features found to be the most
important for this allele are Stability and LengthSideChain. Stability describes
the contribution to protein stability from a certain side-chain [15], whereas the
LengthSideChain property is a size descriptor for the amino acids [16]. Stability
is a feature closely correlated to the hydrophobicity of an amino acid, which
can be seen in position nine of the peptide where hydrophobic amino acids are
preferred. It can be seen from the ruleset that HLA-B*2705 prefers amino acids
with long side chains in position two of the peptide. This is important since the
”binding pocket” of the MHC molecule is rather spacious. A small amino acid
would not be able to fill the pocket. Space-filling effects like this are known to be
important for protein structure stability and protein-ligand interaction [17,18].
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a.

Rule 1: (48/3, lift 2.8)
Stability_9 > 0.2024793
LengthSideChain_2 > 0.9756944
-> class epitope [0.920]

Rule 2: (84, lift 1.5)
LengthSideChain_2 <= 0.9756944
-> class non-epitope [0.988]

Rule 3: (38, lift 1.5)
Stability_9 <= 0.2024793
-> class non-epitope [0.975]

Default class: non-epitope

b.

Rule 1: (23/1, lift 2.7)
PosCharge_3 > 0
AccSurfaceArea_9 <= 0.2057143
-> class epitope [0.920]

Rule 2: (9/1, lift 2.4)
PosCharge_5 > 0
Stability_3 > 0.4917355
-> class epitope [0.818]

Rule 3: (35, lift 1.5)
AccSurfaceArea_9 > 0.2057143
-> class non-epitope [0.973]

Rule 4: (52/1, lift 1.5)
PosCharge_3 <= 0
PosCharge_5 <= 0
-> class non-epitope [0.963]

Rule 5: (30/2, lift 1.4)
PosCharge_3 <= 0
Stability_3 <= 0.4917355
-> class non-epitope [0.906]

Default class: non-epitope

Fig. 1. The rulesets created for the HLA-B*2705 (a) and HLA-B*08 (b) alleles. The
rules presented here were generated using the whole dataset for each allele.

The small number of features needed to describe the relevant properties for
binding gives a very compact model.

The ruleset for HLA-B*08 is based in three amino acid properties. PosCharge
describes the charge of the amino acids [16] and AccSurfaceArea is a measure
of how exposed a certain amino acid is to the solvent in known protein struc-
tures [19]. The importance of PosCharge in position five of the peptide can
clearly be seen (Rule 2 and Rule 4). This has been previously described in liter-
ature, where the positively charged amino acid lysine has been found in position
five of the peptide [20]. AccSurfaceArea in position nine is also important for
HLA-B*08 (Rule 1 and Rule 3) where small residues are preferred. Figure 2
shows the structure of a HLA-B*08 molecule with a bound peptide (PDB code
1M05). The peptide binding groove is formed by antiparallel β-sheets and two
α helices, see Fig. 2a. A cross-section of the MHC-peptide complex can be seen
in Fig. 2b. This figure clearly shows how the amino acids in positions 3, 5, and
9 of the peptide are deeply buried in the MHC molecule. These positions are
in close contact with the MHC molecule and are crucial for binding, something
also captured in the rulesets generated.

The results of the external methods SYFPEITHI and BIMAS can be seen
in Table 2. SYFPEITHI performs better than BIMAS for the HLA-A*0201 and
HLA-B*08 alleles, but is worse for HLA-B*2705. The ruleset method is better
than both SYFPEITHI and BIMAS considering all alleles. The advantage of the
ruleset method is that it finds the peptide positions and amino acid properties
that best describe MHC-peptide interaction. Thus we can learn the underlying
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Fig. 2. This figure shows the structure of an HLA-B*08 MHC molecule with a bound
peptide. An overview of the structure shows the binding groove formed by β-sheets and
two α-helices, as well as the peptide (A). A cross-section of the MHC-peptide complex
is also presented (B). Here the positions 3, 5, and 9 of the peptide can be seen to go
deeply into the MHC molecule, something also reflected in the rulesets generated for
HLA-B*08. The figures were generated using BALLView [21].

Table 2. Prediction performance of the SYFPEITHI and BIMAS methods for the
three MHC alleles HLA-A*0201, HLA-B*08, and HLA-B*2705. The measures used
for the performance evaluation are Matthews correlation coefficient (MCC), specificity
(SP), sensitivity, (SE), and overall accuracy (ACC).

A*0201 B*2705 B*08

Method MCC SP SE ACC MCC SP SE ACC MCC SP SE ACC
SYFPEITHI 0.84 0.95 0.88 0.93 0.92 0.96 0.98 0.96 0.83 0.98 0.81 0.92

BIMAS 0.79 0.93 0.86 0.91 0.95 0.97 1.0 0.97 0.79 0.98 0.75 0.91

rules that have to be considered, in terms of MHC-peptide binding, for peptide-
vaccine design. Whole proteins or even whole proteomes can easily be analyzed
for vaccine candidates using these rules.

6 Conclusions

Decisions rules based on amino acid properties are well-suited to understand and
predict MHC-peptide binding for several alleles. The method reveals the patterns
recognized by MHC molecules and does so in the form of concise, easily inter-
pretable rules. These rules are found to be meaningful in the context of protein
structure and consistent with current immunological knowledge. Interestingly,
these simple rulesets outperform methods based on position-specific scoring ma-
trices in predicting MHC binding peptides. The main difference between the two
methods lies in the feature encoding. Projecting the peptide sequence into a
physiochemical property space obviously yields features well-suited to describe
the underlying binding process. The resulting rules are thus quite simple and
provide insights into the biophysics of the recognition process. We conclude the
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rule-based method prove to be a valuable tool in the prediction of MHC binding
peptides, the first step in the in-silico design of peptide-based vaccines.
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Abstract. Determining protein sequence similarity is an important task for pro-
tein classification and homology detection. Typically this may be done using se-
quence alignment algorithms, yet fast and accurate alignment-free kernel based
classifiers exist. Viewing sequences as a “bag of words”, we test a simple weighted
string kernel, investigating the effects of k-mer length, sequence length and choice
of weighting. We also extend the kernel to operate on the k-mer frequency repre-
sentation of a sequence rather than the “bag of words” representation.

Keywords: Protein Classification, Homology, String Kernel.

1 Originality and Contribution

We investigate use of a simple string kernel method for classification of protein se-
quences. We start from our own implementation of the alignment free Probabilistic
Sequence Search Tool (PSST) method previously proposed by Miller and Attwood[1].
The PSST algorithm uses co-occurrence of rare words to determine similarity of two
protein sequences. We provide mathematical justification for the heuristic weighting
scheme used by Miller and Attwood[1]. We investigate the effect of sequence length on
the performance of the algorithm, and adapt it to compare sequences of arbitrary length
with no loss of performance. The adapted algorithm performs well with all types of
sequences, including families with large and varying numbers of amino acids between
conserved regions.

2 Introduction

Classification of protein function is a central task in Bioinformatics, particularly given
the large number of uncharacterized proteins from various sequenced organisms. Func-
tional classification is often made by transfer of annotation from homologous sequences,
i.e. characterized protein sequences from other organisms that are believed to share an
ancestral sequence with the uncharacterized protein. Determination of homology usu-
ally proceeds by detection of similarities between protein sequences, as sequence simi-
larity can imply both functional and structural similarity as well as homology. There are
many approaches to determining sequence similarity, e.g. local pair-wise methods, such
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as BLAST[2] and FASTA[3], profile hidden Markov model based methods[4], iterative
methods such as PSI-BLAST[5]. Alternative alignment free based methods offer the
advantage of speed. Many of these alternative approaches treat sequences as a “bag of
words”, and consequently are amenable to string kernel treatments[6]. With such ker-
nel methods being based more upon machine learning than biology, there is a need to
develop a strategy for efficient estimation of suitable kernel parameter values.

3 Critical Review

The PSST score function SN described by Miller & Attwood[1], scores sequence sim-
ilarity according to the co-occurrence of various k-mers. Different k-mers or words are
weighted differently,

SN =
∑

i

ωiN
(1)
i N

(2)
i . (1)

Here N
(1)
i and N

(2)
i are binary numbers which equal 1 if k-mer i is present in the

sequence (1) or (2) respectively, and 0 otherwise. Miller and Attwood[1] set the weight
ωi = 1/ρi where ρi is the training sample (database) average of Ni. This choice of
weighting rewards rarity of different k-mers, and is a common heuristic approach within
text-based information retrieval where rare words are considered more distinctive and
therefore discriminative.

The simple score function SN , given by eq.(1), is just a weighted scalar product
between two vectors N (1) = (N (1)

1 , . . . , N
(1)
M ) and N (2) = (N (2)

1 , . . . , N
(2)
M ), with M

being cardinality of the set of all possible k-mers. Consequently SN represents a kernel,
similar in form to the Spectrum[7] and the Mismatch[8] kernels used by Leslie et al.
for Support Vector Machine classification of protein sequences. Both these algorithms
derive their scoring weights from the information contained within the sequences to
be compared, such as the number of occurrences of word i within a sequence for the
spectrum algorithm. The Mismatch kernel extends the idea of the spectrum kernel by
setting a limit on the number of words that do not occur in both sequences and which
can still be classified as similar.

The variance, Var(Ni), of the ith feature is given by ρi(1−ρi). Choosing a weight-
ing ωi = 1/Var(Ni) is then essentially equivalent to a sensible pre-processing step
that produces a set of new features all with unit variance, and one that would be ex-
pected to increase classification performance. Since 1/Var(Ni) increases as ρi → 0,
this provides a heuristic justification for the weighting scheme chosen by Miller and
Attwood[1]. A weighting 1/Var(Ni) also up-weights commonly occurring k-mers, i.e.
those for which ρi → 1. However for this research we will just retain the weighting
used by Miller and Attwood. The weighting ωi = 1/Var(Ni) can also be derived in a
more principled fashion by optimization of a suitable objective function, but we do not
give the details in this short paper.
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4 Proposed Method

For this research we take a selected set of classified protein sequences. Classification
based upon a “bag of words” treatment of protein sequences will offer advantages over
classifiers acting directly upon the primary amino acid sequence only if there is a gen-
uine difference in information (signal) content of the k-mer composition of a sequence
in comparison to the information (signal) content encoded in the amino-acid composi-
tion. This is actually to be expected since important functional domains within protein
typically extend over several amino acids. To determine if such differences do genuinely
exist within our test set we calculate the Kullback-Leibler (KL) distance between the
observed (sample) k-mer frequencies and a set of theoretical k-mer frequencies pro-
duced from a null-model of k-mer generation that operates at the level of individual
amino acids. In this case the null-model k-mer frequencies are calculated as the product
of the constituent amino acid frequencies. Statistical significance of the calculated KL
distance was evaluated by boot-strapping, producing 10000 artificial data sets under the
null-model.

As the length L of a sequence increases there will be a corresponding increase in
the probability that a particular k-mer i is present in that sequence, with the probability
ultimately saturating, i.e. P (Ni = 1) → 1 as L → ∞. As a consequence, the lack
of positional information in the algorithm means that a local cluster of words in one
sequence can match the same words distributed over the entire length of another long
sequence[1]. To address this problem Miller & Attwood [1] divided the sequences up
into blocks with each block containing 300 amino acids. An alternative approach, closer
to the Spectrum kernel, is to replace the binary features Ni by the frequency fi of k-mer
i within the sequence. Therefore we test a second kernel (using an obvious notation),

Sf =
∑

i

ωif
(1)
i f

(2)
i . (2)

By analogy with the original score function of Miller and Attwood we chose to test
the weighting scheme ωi = 1/πi, where πi is the population (database) frequency of
k-mer i.

5 Experiment Design

Following Miller and Attwood the protein sequences used were taken from the
PRINTS[9] database, a database of fingerprints for detecting members of large pro-
tein super-families. Each fingerprint is made up of aligned and un-weighted motifs[1].
PRINTS contains over 67,000 sequences, so for speed a smaller database, miniPRINTS,
was constructed from 20 families represented in PRINTS, and duplicate sequences were
removed. miniPRINTS contains highly divergent super-families as well as some small
well-defined families[1].

To investigate the effect of sequence length on the performance of the algorithm,
mini-PRINTS was then divided again into three databases of approximately equal size;
a database of short, mid-length, and long sequences. The short database contained se-
quences with less than 355 amino acids, the mid-length database sequences with be-
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tween 355 and 560 amino acids inclusive, and the long database sequences with more
than 560 amino acids.

We implemented the algorithm in Java, removing each sequence within the
miniPRINTS database in turn to create a query sequence. This was scored, using (1)
or (2), against the remaining sequences in the same miniPRINTS database. The high-
est score, or top-hit, was used to classify the query sequence. The performance of the
kernels in (1) and (2) was investigated for word lengths k = 3 and k = 4. With a 21
character alphabet (21 amino acids if we include selenocysteine) the number of possible
k-mers is 21k. Beyond k = 4, with > 160000, k-mers this raises concerns of compu-
tational efficiency. However for large choices of k there is also a significant likelihood
that k-mers become specific to a single sequence, with a consequent reduction in recall
when querying against the database. A naı̈ve calculation (based upon having O(1) se-
quences in the database with at least one k-mer matching the query sequence) indicates
that for a typical sequence length L in a database of N sequences we require,

k =
ln NL2

ln 21
(3)

Substituting into (3) L = 450 and N = 1000, appropriate for the mid-length database,
gives k � 6. This represents an upper estimate on k, beyond which recall is significantly
reduced. Consequently we have chosen to primarily perform calculations with k = 3
and k = 4.

6 Results

For k = 3 and k = 4 the KL distances between sample k-mer frequencies and the null-
model were 0.058 and 0.316 respectively. In both cases this was highly statistically
significant (p < 1/10000), indicating that as expected the information (signal) content
contained within the k-mer composition of a sequence is genuinely different from the
information content of its amino-acid composition, and that consequently it is a valid
approach to construct a classifier based upon k-mer composition.

Each top-hit score was assigned as being a positive hit of negative hit according to
whether it was greater or less than a pre-selected threshold. Variation of the threshold
value permits the calculation of a Receiver Operating Characteristic (ROC) curves for
each database and each kernel score function. The ROC curves consist of the True
Positive Fraction (TPF) plotted against the False Positive Fraction (FPF), with TPF and
FPF defined as,

TPF =
True Positives

True Positives + False Negatives
, FPF =

False Positives
False Positives + True Negatives

(4)

The area (AROC) of the resulting curve gives an indication of how well the algorithm
under test discriminates between the data and are given in Table 1. For completeness
the classification accuracy of the top-hit, irrespective of threshold, is given in Table (2).
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Table 1. Area under the ROC curves for
each algorithm for each database.

Database k = 3 k = 4
Sf SN Sf SN

Short 0.9395 0.7781 0.9243 0.7916
Mid 0.9525 0.9399 0.9689 0.9633
Long 0.9555 0.8280 0.9800 0.9564

Table 2. Percentage of correct classifications
(accuracy) of the algorithm.

Database k = 3 k = 4
Sf SN Sf SN

Short 94.051% 95.795% 95.179% 96.821%
Mid 97.020% 95.889% 96.814% 96.711%
Long 96.107% 68.238% 95.082% 81.455%

The poor results for the kernel Sf operating on short sequences are due to the poor
results for the LIPOCALIN and ALPHAHAEM families, with AROC for these families
of 0.67 and 0.85 respectively. Since sequences from both of these difficult to classify
families are only represented in the short database, this has biased the results for the
database of short sequences.

The results show that the accuracy of the kernel SN , operating on binary features,
does reduce as the sequence length increases, whereas the kernel Sf , operating on con-
tinuous valued features, performs consistently irrespective of sequence length.

The results for each family within miniPRINTS are listed in Table 3. For com-
parison we have evaluated each kernel classifier with a uniform weighting scheme
ωi ≡ 1, ∀i. Table 3 shows that for most families, with the exception of FNTYPEIII
the kernel Sf performs as well or better than the kernel SN . The kernel Sf also per-
forms more consistently across the families, with the percentage of correct classifica-
tions falling to a minimum of 87.5% for OPSINs, as opposed to 12.24% for classi-
fication of GLHYDRLASE3 with SN . All sequences for GLHYDRLASE3 are con-
tained within the long database, with an average length of 789 amino acids, which
could explain the poor performance of SN with this family. On average, the use of
a non-uniform weighting ωi improves top-hit classification accuracy. Some families,
e.g. HEATSHOCK90 and KRINGLE, show marked improvement at the shorter k-mer
length k = 3. However improvement is by no means consistent across all families -
for example GPCRRHODOPSIN and PRION show a small decrease in classification
accuracy when using the non-uniform weighting schemes.

7 Conclusion

The quality of these results suggest that even the simplest of kernels may be well suited
to the problem of protein sequence classification. The results show that a kernel operat-
ing on the k-mer composition, fi, of a sequence tends to outperform a kernel operating
on the binary features Ni. In particular the classification performance Sf is less suscep-
tible to variations in sequence length than SN . The results also show that the accuracy
of all the kernels considered, while related to the discriminatory power given by the
AROC values, tends to be greater than the the poorer AROC values suggest. This is
because the classification method used is in effect a nearest neighbour classifier, and
thus is not effected by how close the two distributions are in general, just the family of
the nearest neighbour.
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Table 3. Percentage of correct classifications for each family, using the highest scoring sequence
to indicate family, with k = 3 & k = 4 and different choices of weighting scheme ωi

ωi=
 1/ρi ωi=

1/πi ωi=
 1/ρi ωi=

1/πi

SN Sf SN Sf SN Sf SN Sf

ALPHAHAEM 99.33% 99.33% 98.65% 99.33% 99.33% 99.33% 99.33% 99.33%
BETAAMYLOID 60.00% 100.00% 70.00% 100.00% 100.00% 100.00% 100.00% 100.00%

CYTOCHROMEF 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
DPTHRIATOXIN 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
EUMOPTERIN 29.79% 91.49% 40.43% 95.74% 87.23% 95.74% 85.11% 95.74%

FANCINICGENE 50.00% 100.00% 50.00% 100.00% 75.00% 100.00% 100.00% 100.00%
FNTYPEIII 97.47% 97.59% 97.70% 92.18% 97.01% 89.89% 97.70% 90.57%

GLHYDRLASE3 8.16% 83.67% 12.24% 97.96% 42.86% 91.84% 48.98% 95.92%
GPCRRHODOPSN 95.41% 96.91% 93.31% 94.71% 97.01% 95.92% 94.81% 96.31%

HEATSHOCK90 40.30% 100.00% 53.73% 100.00% 88.06% 100.00% 85.07% 100.00%
KINESINLIGHT 63.64% 100.00% 63.64% 100.00% 100.00% 100.00% 100.00% 100.00%

KRINGLE 53.97% 93.65% 66.67% 95.24% 88.89% 96.83% 87.30% 96.83%
LIPOCALIN 91.21% 94.51% 93.41% 94.51% 97.80% 98.90% 94.51% 96.70%

NIHGNASESMLL 100.00% 94.12% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
OPSIN 88.75% 84.50% 88.75% 88.75% 91.25% 88.75% 90.00% 88.75%

PHOTOSYSPSAAB 63.41% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
PRION 100.00% 100.00% 97.37% 97.37% 100.00% 100.00% 100.00% 100.00%

RHODOPSIN 91.49% 91.49% 91.49% 91.49% 91.49% 91.49% 89.36% 89.36%
URICASE 95.83% 95.83% 95.83% 95.83% 95.83% 95.83% 95.83% 95.83%

ZINCFINGER 68.28% 98.75% 71.86% 98.21% 80.65% 98.03% 80.11% 96.06%
AVERAGE 74.85% 96.09% 79.25% 97.07% 91.62% 97.13% 92.41% 97.07%

Family

k=3

ωi=1 ωi=1

k=4

Classification performance could potentially be improved by using class labels from
all sequences above the threshold rather than just the top-hit, which is equivalent to just
a nearest-neighbour classifier. The results from the ROC curves suggest that this type of
classifier may perform very well. The use of regular expressions to allow for non-exact
matches may also improve results and is something we are currently investigating.
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Abstract. We propose a simple yet efficient feature-selection method
— based on principle component analysis (PCA) — for SVM-based clas-
sifiers. The idea is to select features whose corresponding axes are closest
to the principle components computed from a data distribution by PCA.
Experimental results show that our proposed method reduces dimension-
ality similar to PCA, but maintains the original measurement meanings
while decreasing the computation time significantly.

1 Introduction

In many object-detection systems, feature selection — which is generally con-
sidered as the selection of a smaller subset of features from a large set of
features — is one of the critical issues for the following three reasons.

First, there are many ways to represent a target object, leading to a huge
input feature set. For example, Haar wavelet features used in [1] are in the order
of thousands. However, only small and incomplete training sets are available. As
a result, systems will suffer from the curse of dimensionality and overfitting.

Second, a large feature set includes many irrelevant and correlated features
that can degrade the generalization performance of classifiers [2,3].

Third, selecting an optimal feature subset from a large input feature set can
improve the performance and speed of classifiers. In face detection, the success
of systems such as those in [1,4] comes mainly from efficient feature-selection
methods.

Most work, however, only focuses on feature-extraction methods, such as
principle-component analysis (PCA), linear discriminant analysis (LDA), and
independent-component analysis (ICA) [5,6,7], which try to map data from high-
dimensional space to lower-dimensional space. This might be because feature-
selection methods, such as sequential forward selection (SFS), sequential back-
ward selection (SBS), and sequential forward floating search (SFFS) [8,9], incur
very high computational cost.

In this paper, to address these problems, we propose a simple yet efficient
feature-selection method for object detection. The main idea is to select features
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whose corresponding axes are closest to principle components computed by PCA
from the data distribution. This is a very naive feature-selection method, but
experimental results on different kinds of features show that when working with
support vector machine (SVM)-based classifiers, our proposed method has com-
parable performance, but faster speed, compared to a feature-selection method
based on PCA directly.

The rest of the paper is organized as follows: In section 2, feature extraction
by PCA is presented. Our feature selection method is introduced in section 3.
Experimental results are showed in section 4. Finally, section 5 concludes the
paper.

2 Feature Extraction Using PCA

The main steps to extract features using PCA are summarized in the following.
The details are given in [5].

Each face image I(x, y) is represented as an N × N vector Γi.
The average face Ψ is computed as: Ψ = 1

M ΣM
i=1Γi where M is the number

of face images in the training set.
The difference between each face and the average face is given as: Φi = Γi−Ψ .

A covariance matrix is then estimated as: C = 1
M ΣM

i=1ΦiΦ
T
i = AAT where

A = [Φ1Φ2...ΦM ].
Eigenvectors ui and corresponding eigenvalues λi of the covariance matrix

C can be evaluated by using a Singular Value Decomposition (SVD) method
[5]: Cui = λiui. Because matrix C is usually very large (N2 × N2), evaluating
eigenvectors and eigenvalues is very expensive. Instead, eigenvectors vi and cor-
responding eigen values μi of matrix AT A (M × M) can be computed. After
that, ui can be computed from vi as follows: ui = Avi, j = 1, ..., M .

To reduce dimensionality, only a smaller number of eigenvectors K(K << M)
corresponding to the largest eigenvalues are kept. A new face image Γ , after
subtracting the mean (Φ = Γ − Ψ) can then be reconstructed in eigenspace by
the formula: Φ̃ = ΣK

i=1wiui where wi = uT
i Ψ are coefficients of the projection and

can be considered as a new representation of the original face in this eigenspace.

3 The Proposed PCA-Based Feature Selection

The main idea of our naive feature-selection method is to investigate the principle
components computed by PCA in the projection space to select corresponding
axes in the original space. Selected axes are those closest to these principle com-
ponents. Specifically, starting from each principle component ei in the projection
space, we try to find the principle axis xj in the original space closest to ei. As
a result, the jth feature will be selected.

The method is illustrated in Figure 1. According to the data distribution,
e1 and e2 are principle components sorted by their corresponding eigen values.
By using PCA for feature extraction, we can map data from (x1, x2) to (y1, y2).
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Fig. 1. Feature extraction by using PCA

And by using the proposed feature-selection method, starting from e1, x1, which
is the closest to e1, is found. Hence, the first feature, i.e, x1, will be selected.
The proposed algorithm is summarized as follows:

– Step 1: Compute principle components {e1, e2, ..., eN} from the data dis-
tribution by PCA and sort them in the order of the magnitude of eigen
values.

– Step 2: For each principle component ei, find the axis xj that is closest to
ei.

– Step 3: Select feature jth.

4 Experimental Results

4.1 Training Data

We demonstrated efficiency of our feature-selection method by building a face
detector based on SVM. For training, we used 7,000 face samples and 7,000 non-
face samples. Face samples are collected from the Internet, cropped and resized
to a size of 24x24 pixels. Non-face samples are generated from 6,278 images with
various subjects such as rocks, trees, buildings, scenery, and flowers that contain
no faces. Figure 2 shows some of the face and non-face samples. For comparison,
2,450 face samples and 7,000 non-face samples different from the training set
were also used.

4.2 Pixel-Based Features

In this experiment, we used the intensity of pixels as features. LibSVM [10] was
used to train SVM classifiers with a RBF kernel on selected feature subsets. We
compared the performances of SVM classifiers trained on subset features selected
by our method and subset features selected from PCA-based feature extraction
in which the top-100 and top-200 eigenvectors were used. The results in Figure 3
shows that the performances of the SVM classifiers are comparable, particularly
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Fig. 2. Some 24x24 face and non-face samples

when the number of features in each subset is large enough, e.g., 200. However,
in terms of speed, the SVM classifier trained on a 200-feature set selected by
our method can process 86 patterns per second (PPS) while the SVM classifier
trained on the top-200 eigenvectors can only process 80 PPS (i.e., approximately
1.08 times slower).

Fig. 3. Performances of SVM classifiers trained on different feature subsets selected
from different selection method are comparable when the number of selected features
is large enough
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Fig. 4. Image of 200 pixels (depicted in white) selected by the proposed selection
method

Figure 4 shows 200 pixel features selected by our method. It is easy to see
that selected pixels belong to major parts of facial features such as eyes, mouth,
and nose.

4.3 Haar Wavelet Features

In recent face detectors based on AdaBoost [1,11,12], Haar wavelet features are
used quite extensively because they are rich and can be evaluated very quickly.
In our experiment, we used the same three kinds of Haar wavelet features as in
[1] which are modeled from adjacent rectangles with the same size and shape.
The feature value is defined as the difference of the sum of the pixels within
rectangles (see Figure 5).

By using integral image definition [1], these feature rectangle values can
be computed very quickly. The integral image at location (x, y) is defined as
ii (x, y) =

∑
x′<=x,y′<=y i (x′, y′) where ii (x, y) is the integral image and i (x, y)

is the original image. In practice, ii (x, y) can be computed simply by using
the following recurrent function: ii (x, y) = ii (x, y − 1) + ii (x − 1, y)+ i (x, y)−
ii (x − 1, y − 1) and sum of the pixels within a rectangle can be computed from
four integral image values of its vertices, for example, Sum(D) = 1+4− (2+3).

Because the Haar wavelet feature set defined above is over-complete (close
to 200,000 features), to use it with SVM [13], first, the maximum 200 features
are selected by AdaBoost [14,1]. Then, from the same feature set, the first-50
features are selected in the order they are added in the training process, and
another first-50 features are selected by using our method. The performances
of the SVM classifiers trained on these two subsets are shown in Figure 6.This
figure indicates that, in terms of performance, using our feature-selection method
is slightly better than not using it. In terms of speed, the SVM classifier trained
on the feature subset selected by our method has 3,405 support vectors and
runs at a speed of 538 PPS, while that trained on the first-50-feature subset has
4,017 support vectors and runs at a speed of 469 PPS (approximately 1.15 times
slower). In Figure 7, some face-detection results are shown.
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Fig. 5. Haar wavelet features can be evaluated very fast by using the integral image

Fig. 6. Performances of two 50-feature subsets selected by different methods

5 Conclusion

We have developed a simple yet efficient method for selecting a good feature
subset for building object-detection systems. The method investigates at variance
of input data and selects features which are closest to principle components
computed by PCA. With this method, by reducing dimensionality of feature
vectors, the final classifier runs faster while maintaining high prediction accuracy.
In experiments on different kinds of features used for face detection, the method
demonstrated promising results.
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Fig. 7. Some face detection results
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Abstract. We propose a method to use self organizing neural networks
to extract information out of nonlinear dynamic systems for control. Non-
linear strange attractors are educed by these systems or the attractors
can be reconstructed. These attractors are partitioned by a newly devel-
oped self organizing neural network. Thus the stream of system states is
transformed into a stream of symbols, which can now serve as basis for
further investigation or control. We are convinced, that controlling and
understanding such nonlinear or chaotic systems is easier, when using
the information within the stream of extracted symbols.

1 Introduction

Nonlinear systems can be found in a wide variety of applications. Nonlinear-
ity seems to be a favorite of “Mother Nature”; therefore it is desirable to get
control over nonlinear dynamical systems, although modeling isn’t available or
appropriate. Controlling and describing these systems mostly requires profound
knowledge about the governing dynamics [1,2,6]. Since nonlinear dynamic sys-
tems tend to educe chaotic attractors that determine the systems development
most linear methods fail directly while attempting to gain control over the sys-
tem. As presented in this paper, these attractors are the key-components in a
new control-model, which utilizes almost the entire complexity of the system
and is more convenient than linear methods.

The complete dynamics of the attractor is represented within the temporal
evolution of the state variables [1,7,8]. A time series of these system variables
contains the characteristics of the nonlinear, sometimes even chaotic system.
[1,8]. It has been shown, that the reconstruction of an attractor by temporal
delayed sampling of the state variables is possible [7]. Such attractors are a re-
construction of the original attractor, with the same dynamical properties than
the original one. Thus it is an alternative representation of dynamics of the sys-
tem, suitable for classification and subsequent control. To take further advantage
of the information carried within the attractor, respectively the time series, we
transform this information into a stream of symbols. All further classification
and control tasks will then use the stream of classified symbols as basis.

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3686, pp. 469–477, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Method

Our purpose is to give an alternative access to investigation of nonlinear dynam-
ical systems, by partitioning the nonlinear attractor into regions. We propose to
express and to represent the dynamics of the chaotic system by a stream of sym-
bols which preserves the dynamical properties. This stream of symbols realiseds
the basis for subsequent information processing stages like, pattern recognition,
control, clustering, time series comparision, . . . .

In traditional control theory often a priori knowledge about the application
or the process is used, e.g. a threshold value. We want our model to be self
organised and solely data dependent. So we decided to use self organizing neural
networks to do the job of knowledge extraction.

We implemented a Self Organizing Map (SOM) as proposed by T. Kohonen
[4], a Neural Gas [5] and a Growing SOM (G-SOM) as proposed by B. Fritzke
[3] and investigated the results with respect to partitionning a chaotic, nonlinear
dynamical system. In some cases, clustering the Roessler or the Lorenz attractor,
the SOM twisted and the results weren’t usable. It has been often observed that
twisting depends on the SOM size [4], and small SOMs (≤ 5x5) normally don’t
twist at all. The Neural Gas model on the other hand, has the disadvantage that
it does not realize a topology preserving mapping into a low-dimensional space
[3], which is desirable for easy handling of a system of higher dimensionality. To
overcome these described disadvantages, we developed an extention of the SOM,
a Multiple Self Organizing Map (M-SOM).

2.1 Architecture

The Multi-SOM (M-SOM) is a set of multiple partner-SOMs. It is not necessary
that all partner-SOMs within a Multi-SOM are identical, they can be different
in topology, size and dimension. Each partner-SOM has the complete function-
ality of a classical SOM. The novelty of the presented approach arises from the
possibility to treat each partner-SOM individually.
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Fig. 1. left: M-SOM containing six 5× 5 partner-SOMs, depicted while learning a seg-
mented distribution in 2D. right: M-SOM containing four 2-dimensional 6× 6 partner-
SOMs, depicted while learning a segmented data distribution in 3D.
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Fig. 2. Several 2-dimensional M-SOMs with different topology and different areas to
represent

To avoid the unwanted effect of twisting and to increase adaptation speed,
each of these partner-SOMs should be kept small in size, which has been reported
several times througout the neural networl community. Extensive simulations
yielded a reliable bound for the size of the SOMs to be below ≈ 8×8×8. A regular
topology M-SOM consists of M partner-SOMs with cartesian, rectangular or
cuboid dimensions. An M-SOM with M cuboid partner SOMs, organised in K1

rows with K2 columns and K3 layers will be denoted as :

M − K1 × K2 × K3 × . . .

and have (N = M · K1 · K2 · K3 · . . .) neurons in total.
The M-SOM topology has two extraordinary cases:

– If the number of SOMs shrinks to M = 1, the M-SOM equals a classical
SOM.

– On the other hand, if the number of neurons in every partner-SOM shrinks
to 1, with N = M ·1, the M-SOM becomes a Neural Gas with N = M nodes.

2.2 Learning

Learning with a Multi-SOM is done using the same methods as for classical
SOMs, to benefit from the complete variety of published modifications and en-
hancements to the basic SOM algorithm.

Two basic M-SOM learning principles arise directly from the Multi-SOM
architecture:

I Pure un-supervised M-SOM learning
II Self-organised-supervised M-SOM learning

I) Unsupervised learning is the classical way of adapting SOMs. For pure
un-supervised M-SOM adaptation, only the very partner SOM that contains the
winning neuron (winning SOM) is changed, following the approved methods of
SOM-adaptation. Thus only the reference vectors of the winning SOM are mod-
ified to form a topographic mapping of the input space in the direct vicinity of
the actual input vector. The other partner SOMs within the M-SOM remain un-
changed, and can thus “concentrate” their topological mapping to other regions
of the input space. Since only a small fraction of the M-SOM has to be modified
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The developed neural network has two extraordinary cases:
If the number of SOMs shrinks to

M=1, the M-SOM equals a 
classical SOM.

If the number of neurons in every 
partner-SOM shrinks to 1, with 
N = M*1x1x1 , the M-SOM 
becomes a Neural Gas with 
N = M nodes.

Fig. 3. Depending on the chosen topology the M-SOM can be anything between a
classical SOM and a neural gas

during each training step, adaptation is fast and the the elapsed time is low,
even if a large number of iterations might be necessary.

II) Supervised training methods require somehow the access to a teacher, or
at least a critic to provide a teaching information (e.g. LVQ, LOVQ). M-SOMs
give the appealing feature to devise teacher information in an unsupervised way.
Thus self-organisation of the individual partner-SOMs can be established using
teacher-like information that has been gained through a process of unsupervised
classification.

In this case we speak about self-organised-supervised M-SOM learning. Lets
suppose that each individual partner-SOM is a representative of an individual
class of data, then all other partner-SOMs stand for other classes. This fact can
now be used to devise the teaching information. Once the winning SOM has been
determined and adapted, the other partner-SOMs are trained following the idea
of Learning Vector Quantization. LVQ is designed to be a supervised method
for classification which makes benefit of the class-membership of a given input
value. Within the self-organised-supervised M-SOM learning the self organised
information of being a member of the winning SOM or not is used instead. Of
course the complete variety of LVQ methods and enhancements can be applied
to the M-SOM.

2.3 Classification

In our task of classifying regions of chaos in the selected attractors, we regarded
every partner net of the M-SOM as one class of it’s own. Once the M-SOM has
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Fig. 4. Unsupervised learning to represent an area that is divided into two parts with
an 7-4×4 M-SOM. Depicted are selected snapshots at time 1, 5, 25, 50 (upper row from
left ro right) and 125, 133, 250, 500 (lower row from left to right). The seven partner-
SOMs are arranged to cover the teaching area.

adapted it’s shape to the input data, the classification of the stream of derived
values is reduced to just notice which partner-net contains the winner-neuron.
This leads to a fast computation and good classification-results, as demonstrated
below.

Subsequent processes working on the derived stream of symbols can lead to
further information extraction. Principles from signal processing can be used
to characterize the development within the stream of symbols and thus within
the dynamical system. Since the underlying dynamics is deterministic and con-
centrated to reside on the attractor, it is likely to find a grammar within the
sequence of symbols, worth to be further investigated.

3 Simulation

To evaluate and demonstrate the capabilities of our approach, we have decided
to use two well investigated nonlinear chaotic systems, the Roessler-System and
the Lorenz-System [8] (see figure 5 and 6). These attractors of both systems
do have the advantage of being embedded into the 3-dimensional space, so that
visualization is still possible. The developed method of information-extraction is
not limited to three dimensions, and applies to higher dimesnions as well.

We have calculated data from the chaotic attractors, which - treated as a
time-series - represent the evolution of state variables of a fictive nonlinear dy-
namical system. Starting the calculation with arbitrary parameters thus equals
starting this fictive system with an arbitrary starting-configuration. The result-
ing values were used to train the self organizing neural networks, for generating a
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Fig. 5. Left: the Roessler-attractor classified by a 5-5×10 M-SOM. The five partner-
SOMs cover the area of the attractor. Right: stream of five symbols (A,B,C,D,E) derived
by classifying subregions of the Roessler-attractor into five classes. Bottom: visualisa-
tion of the stream of 5 symbols derived with the 5-5×10 M-SOM.
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Fig. 6. Left: the Lorenz-attractor clustered by a 4-4×8 M-SOM. Each of the two
“wings” of the attractor is well represented by two partner-SOMs. Right: stream of
four symbols (A,B,C,D) derived from the M-SOM partitionning of the Lorenz-attractor.
Bottom: visualisation of the stream of 4 symbols derived with the 4-4×8 M-SOM.

partitioning scheme. In the case of the M-SOM (described above), we have tested
various sizes and quantities of regular (2-dimensional) M-SOMs, and found them
to be adequate for this task.

The time series, obtained by integration of the differential equation system
was thereby translated into a stream of symbols, using the proposed partitioning
scheme.
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Fig. 7. Left: Reconstructed Roessler-attractor clustered by a 5-5×10 M-SOM Right:
stream of symbols derived by clustering the reconstructed Roessler-attractor. The
stream of symbols reflect the dynamics of the attractor, that is similiar to the dy-
namics of the original attractor.

Further work on the M-SOM model will lead to more sophisticated results
and finer shaped self organizing neural representations.

In Additition to thet we have applied the developed method to a three dimen-
sional attractor that has been reconstructed from a one-dimensional time series
by time-delayed sampling. Therefore we reconstructed the Roessler attractor out
of a time series (≈ 10000 values), which contained the dynamics of one single
component of the system’s state, by time delayed sampling [8].

4 Results

The chosen nonlinear systems (Roessler-System 5 and Lorenz-System 6) have
been partitionned by the Multi-SOMs into 5 and 4 classes respectiveley. The
sequence of winning partner-SOMs is the stream of symbols derived from the
presented way of M-SOM classification of the data. Sorting the state of the
dynamical system (x, y, z)(t) into one of the M-SOM classes, is a variant of vector
quantization. The sequence of symbols can be visualised in different ways; see
right part, and bottom part of fig. 5 and 6.

Regular structures in both variants of visualizations are obvious, and easy
to determine. This validates our assumption, that transforming the information
into a stream of symbols via a self organizing neural network still represent the
underlying dynamical behavior of the nonlinear and even chaotic system.

For further validation of our approach we used the x-component of the
Roessler-system and reconstructed the attractor in 3-D using the method of
time delayed sampling [8],[7]. Figure 7 shows the result of the reconstruction
together with the trained 5-5×10 M-SOM.
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The coordinates of the reconstructed attractor are derived by using time τ
delayed values of the x-component xt of the Roessler-system to form the basis
vectors ai of a new, artificial coordinate-system:

a1 = x(t − 0 · τ)
a2 = x(t − 1 · τ)
a3 = x(t − 2 · τ)

We choose the x-trajectory as the base time-series x(t) and time-steps τ = 10.
Thus, the dynamics of the complete system can be reconstruced even if only
one single component of the state vector is available. With this reconstructed
attractor, the M-SOM approach to unsupervised classification can be applied
to derive a stream of symbols, typivcally for the original 3-dim attractor. The
visualization of the derived stream in figure 7 is very similar to the one of the
original attractor (figure 5), it’s dynamics is comparable to the one of the original
system.

5 Conclusion

Within this paper we have presented a method of partitioning chaotic attractors
of nonlinear dynamical systems into a set of classes. Each class is thereby rep-
resented by an individual symbol, accessible for further information processing
structures. The dynamic evolution of the system along the attractor is reflected
within the stream of symbols generated by the partitioning network. The symbols
can now be used for further analysis and for control of the dynamical system.

The process of classifying a nonlinear attractor was performed using different
neural self organizing paradigms (SOMs, Neural-Gas, Growing SOMs) showing
moderate results. Applying Multi-SOMs for assigning classes to different regions
of the attractor, showed to be a powerful and efficient method. The advantage
to pre-define the number of classes is obvious.

Several nonlinear dynamical attractors that are known to be chaotic (Lorenz-
and Roessler attractor) have been partitioned and transformed into streams of
symbols. It has been demonstrated, that the derived stream of extracted symbols
is suitable for further tasks of analysis and control, like:

– classification of different forms or quality of chaos,
– qualitative characterization of the attractor into different types,
– basis for performing symbolic dynamic with the stream of symbols,
– analysing the stream of symbols to find, and or create a grammar that gov-

erns the nonlinear attractor,
– quantitative calculation of dynamic parameters (fractal dimension, ljapunov

exponents, ...),
– input basis for a controller to obtain control over the dynamical system (e.g.

switching controller, fuzzy inference system, ... ).
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The different partitions (classes) the attractor has been subdivided into, are
solely formed by the probability distribution of the un-disturbed attractor itself.
It is unlikely that such type of segmentation will be optimal suited to control
for everytype of dynamical system, but it is the opinion of the authors, that the
presented approach is generating a powerfull solution.

At the moment we are working towards including additional constraints di-
rectly into the the self organization mechanism of the M-SOM. In addition we
are investigating several approaches of incorporating the effectiveness of applied
control into the adaptation process of the neural self organizing maps.

The presented method of Multi-SOMs for unsupervised partitionning of a
data into a stream of symbols is a novel, easy to implement mathod of classifi-
cation, that can be applied in a wide variety of applications.
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Abstract. Combining multiple classifiers have focused mainly on combination
methods, but a few studies have investigated on how to select component classi-
fiers from a classifier pool. Performance by the information fusion varies with the
component classifiers as well as the combination method. Previous studies focus
on diverse classifiers which accurate and make different errors using the over-
produce and choose strategy or the measures of diversity. In this paper, methods
based on information theory are proposed for selecting component classifiers by
considering the relationship among classifiers. These methods are applied to the
classifier pool and examine the possible classifier sets. A classifier set is selected
as a candidate and evaluated together with the other classifier sets on the recog-
nition of public unconstrained handwritten numerals.

1 Introduction

Combining multiple classifiers has been studied for more than a decade and has reported
improved performance over single classifier approaches [1,2,3,4]. Performance by the
information fusion varies with the component classifiers as well as the combination
method. A few studies have investigated on how to select the component classifiers from
a classifier pool [5,6,7]. Thus, the selection of component classifiers, how to select them,
or how many to select remain important research issues. Woods et al. [4] suggested that
a strategy should be devised when selecting the mix of classifiers, because they observed
that in some cases, fewer classifiers provided superior results. More recently, Kang and
Lee reported some strategies for selecting the multiple classifiers [5]. Giacinto and Roli
[6] focus to select diverse classifiers which accurate and make different errors using the
overproduce and choose strategy [8]. Kuncheva et al. [7] proposed several measures of
diversity for diverse ensembles which have a better potential for improvement on the
accuracy than non-diverse ensembles.

In this paper, two simple selection criteria and three information-theoretic meth-
ods are proposed and reviewed for constructing multiple classifier systems. In order to
simplify the selection problem of classifiers, it is assumed that the number of selected
component classifiers is fixed in advance. A simple selection approach is to select the
component classifiers according to the ranking order of their forced recognition rate or
reliability rate up to the fixed number of classifiers. Information-theoretic criteria are
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based on the measure of closeness in [1,9] or the conditional entropy in [2,10] which
considers the relationship among classifiers or the minimization of mutual information
(mMI) between classifiers. The mMI criterion is proposed to select the component clas-
sifiers as complementary to each other as possible.

Three information-theoretic criteria for selecting the component classifiers are eval-
uated together with two selection criteria for recognition of unconstrained handwritten
numerals from the Concordia University [11] and University of California, Irvine (UCI)
[12] repositories. The selection criteria are applied to the classifier pool and we exam-
ine the possible classifier sets, and select one of the classifier sets as the candidate for
building a multiple classifier system (MCS).

The MCS candidates are evaluated by using the combination methods in [1,2] to-
gether with the other classifier sets in the experiments. From the experimental results,
it was found that the MCS candidates selected by the CE criterion were superior to the
other classifier sets selected by the other criteria, with a few exceptions. Thus, the CE
criterion is regarded as a promising clue for the selection of classifiers.

The remainder of this paper is organized as follows. Section 2 explains the selection
criteria. Experimental results for evaluating the selection criteria are provided in Section
3 and a discussion is given in Section 4.

2 Selection Criteria

Two simple selection criteria are first introduced. One is the forced recognition rate
(FRR) criterion and the other is the reliability rate (RR) criterion. The FRR crite-
rion evaluates the classifier forcing a decision for every input, and not allowing re-
jections. The RR criterion considers the accuracy of all non-rejected decisions. Three
information-theoretic criteria are explained by considering the first- and second-order
dependencies among classifiers. These dependencies enable us to optimally approxi-
mate the high order probability distributions with the product of low distributions for
Bayesian decision combination methods as in [1,2].

2.1 Measure of Closeness (MC) Criterion

The measure of closeness (MC) can be used for obtaining the optimal approxima-
tions by minimizing the difference between a real distribution P (C) and an approxi-
mate distribution Pa(C) where a vector variable C represents both a label class and K
classifiers’ decisions where K is the number of classifiers. The measure of closeness,
I(P (C), Pa(C)), is defined in the following expression:

I(P (C), Pa(C)) =
∑

c

P (c) log
P (c)
Pa(c)

. (1)

When the dth-order dependency in the (K +1)st-order probability distribution of C
is considered for the application of the measure of closeness, an approximate formula
is defined by the following expression:
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Pa(C1, · · · , CK+1) =
K+1∏
j=1

P (Cnj |Cnid(j) , · · · , Cni1(j) ), (2)

(0 ≤ id(j), · · · , i1(j) < j),

such that Cnj is conditioned on all d terms from Cni1(j) to Cnid(j) , and where
(n1, · · · , nK , nK+1) is an unknown permutation of integers (1, · · · , K, K + 1) and
where P (Cnj |C0, Cni·(j)) is defined as P (Cnj , Cni·(j) ).

Given the order of dependency d and K classifiers, the optimal product approxima-
tion for each classifier set is found by the application of the approximate formula Pa of
Eq. (2) to Eq. (1), as in the following expressions by dropping the subscript n of Cnj :

I(P (C), Pa(C)) =
∑

c

P (c) log
P (c)
Pa(c)

=
∑

c P (c) log P (c) −∑K+1
j=1

∑
c P (c) log P (Cj |Cid(j), · · · , Ci1(j))

= −∑K+1
j=1 M(Cj ; Cid(j), · · · , Ci1(j)) +

∑K+1
j=1 H(Cj) − H(C) (3)

H(C) = −
∑

c

P (c) log P (c)

M(Cj ; Cid(j), · · · , Ci1(j)) =
∑

c

P (c) log
P (Cj |Cid(j), · · · , Ci1(j))

P (Cj)
. (4)

From Eq. (3), minimizing I(P (C), Pa(C)) is equivalent to maximizing
∑K+1

j=1

M(Cj ; Cid(j), · · · , Ci1(j)) which is the total sum of dth-order mutual information, since
remaining terms are constant. It is assumed that the larger the total sum of the dth-order
mutual information is, the better its associated classifier set. Thus, the MC criterion
finds an optimal product approximation relevant to each classifier set by maximizing
the total sum of mutual information and then selects as a MCS candidate one classifier
set having the largest total sum of mutual information.

2.2 Conditional Entropy (CE) Criterion

The conditional entropy (CE) relevant to the Bayes error rate can be also applied for
obtaining the optimal approximations by minimizing the conditional entropy H(M |E)
composed of a label class M and a vector variable E of K classifiers’ decisions. The
Bayes error rate Pe is defined in the following expression by introducing the C-D(Class-
Decisions) mutual information U(M ; E) as in [2]:

Pe ≤ 1
2
H(M |E) =

1
2
(H(M) − U(M ; E)) (5)

U(M ; E) =
∑
m

∑
e

P (m, e) log
P (m, e)

P (m)P (e)
. (6)

When dth-order dependency in the probability distribution of M and E is consid-
ered for the application of the minimization of conditional entropy, two approximate
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formulae are defined by the following expressions, as we consider dependencies among
classifiers:

Pa(E1, · · · , EK , M) =
K∏

j=1

P (Enj |Enid(j) , · · · , Eni1(j) , M), (7)

Pa(E1, · · · , EK) =
K∏

j=1

P (Enj |Enid(j) , · · · , Eni1(j) ), (8)

(0 ≤ id(j), · · · , i1(j) < j),

such that Enj is conditioned on all d terms from Eni1(j) to Enid(j) , and where
(n1, · · · , nK) is an unknown permutation of integers (1, · · · , K). P (Enj |E0, E0, M)
is P (Enj , M), P (Enj |E0, Eni·(j) , M) is P (Enj |Eni·(j) , M), and P (Enj |E0, Eni·(j))
is P (Enj , Eni·(j)), by definition.

Given the order of dependency d and K classifiers, the optimal product approxima-
tion for each classifier set is found by the application of the approximate formulae Pa

of Eqs. (7) and (8) to the C-D mutual information, as in the following expressions by
dropping the subscript n of Enj :

U(M ; E) =
∑

e

∑
m

P (e, m) log
P (e|m)
P (e)

=
∑
e,m

P (e, m) log[
1

P (m)

K∏
j=1

P (Ej |Eid(j), · · · , Ei1(j), m)]

−
∑

e

P (e) log
K∏

j=1

P (Ej |Eid(j), · · · , Ei1(j))

= H(M) +
K∑

j=1

[D(Ej ; Eid(j), · · · , Ei1(j), m) − D(Ej ; Eid(j), · · · , Ei1(j))] (9)

D(Ej ; Eid(j), · · · , Ei1(j), m) =
∑
e,m

P (e, m) log
P (Ej |Eid(j), · · · , m)

P (Ej)

D(Ej ; Eid(j), · · · , Ei1(j)) =
∑

e

P (e) log
P (Ej |Eid(j), · · · , Ei1(j))

P (Ej)

ΔD(Ej ; Eid(j), · · · , Ei1(j)) =
D(Ej ; Eid(j), · · · , Ei1(j), m) − D(Ej ; Eid(j), · · · , Ei1(j)) (10)

From Eq. (9), maximizing U(M ; E) is equivalent to maximizing∑K
j=1 ΔD(Ej ; Eid(j), · · · , Ei1(j)) which is the total sum of Δ dth-order mutual

information, since the remaining term is constant. It is assumed that the larger the total
sum of Δ dth-order mutual information is, the better its associated classifier set. Thus,
the CE criterion finds an optimal product approximation relevant to each classifier
set by maximizing the total sum of Δ mutual information and then selects as a MCS
candidate one classifier set having the largest total sum of Δ mutual information.
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2.3 Minimization of Mutual Information (mMI)Criterion

The minimization of mutual information (mMI) criterion is proposed to select the com-
ponent classifiers in a pool as complementary to each other as possible. The mutual
information is used to measure the relative complementarity of classifiers. It is assumed
that the higher the mutual information is, the lower the complementarity. The mMI
criterion selects classifiers in the pool and puts them into the classifier set of multiple
classifier system up to the number of classifiers. Initially, a classifier set S is empty,
and the mutual information between every classifier and a label class set, and the mu-
tual information between classifiers are computed respectively. A procedure to find the
classifier set as a MCS candidate is as follows:

1. For computed mutual information, find a classifier having the maximum mutual
information in a pool as to the label class set and then put the classifier into the
classifier set S.

2. In order to find a classifier in a pool as complementary to classifiers in the classifier
set S as possible, and find a classifier having minimum mutual information in a
pool as to the classifiers in the classifier set, and then put the classifier into the
classifier set.

3. Until the number of classifier in the classifier set S meet the fixed number of clas-
sifiers, repeat the step 2 and then a final classifier set will be found.

3 Experimental Results

A number of MCSs built from the pool of six classifiers, E1, E2, E3, E4, E5, E6, will be
evaluated in this section. These classifiers are developed using the features and struc-
tural knowledge of numerals such as bounding box, centroid, and the width of horizon-
tal runs, from KAIST and Chonbuk National Universities. Some are singular or modular
back-propagation neural networks and the others are modular rule-based classifiers, as
shown in Table 1.

The handwritten numeral database is a fairly representative collection of digits. The
UCI data sets in [12] are used for optical recognition of handwritten digits and consist
of three training data sets tra, cv, wdep and one test data set windep. The Concordia
data sets consist of two training data sets A, B and one test data set T.

The performance of individual classifiers on test data sets is shown in terms of
recognition and reliability rates in Figure 1. We note that classifiers E4 and E5 were
trained using the structural knowledge obtained from the numerals of the Concordia
University source, they are not as good on the numerals from UCI. The reject results of
a classifier were used in the MC criterion.

In our experiments, each neural network based classifier was trained with the train-
ing data sets A and tra. The optimal product sets were found by using the two data sets
A, B and the three data sets tra, cv, wdep. The selection criteria were applied to the
possible classifier sets and then we selected the most successful classifier set among
them for a fixed number of classifiers. To denote the information-theoretic criteria ac-
cording to the order of dependency, we use the abbreviations as follows: MC1 stands
for a MC criterion by first-order dependency, CMC1 for a MC criterion by conditional
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Table 1. Introduction of individual classifiers

architecture classifier distance function reference
E1 singular neural network pixel distance function [13]
E2 modular neural network directional distance distribution [13]
E3 singular neural network mesh feature [13]
E4 modular rule-based modified structural knowledge [14]
E5 modular rule-based structural knowledge [14]
E6 singular neural network contour feature [15]
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Fig. 1. Results of individual classifiers on test data sets: T, windep

first-order dependency, MC2 for a MC criterion by second-order dependency, CE1 for
a CE criterion by first-order dependency, and CE2 for a CE criterion by second-order
dependency. All the MCSs were evaluated by the following combination methods on
the test data sets: voting, Borda count, Bayesian combination methods abbreviated as
in Table 2. The Bayesian methods are described in [1,2,3].

Table 2. Bayesian combination methods

method meaning
CIAB Conditional Independence Assumption based Bayesian
ODB1 first-Order Dependency based Bayesian

CODB1 Conditional first-Order Dependency based Bayesian
ODB2 second-Order Dependency based Bayesian

DODB1 Δ first-Order Dependency based Bayesian
DODB2 Δ second-Order Dependency based Bayesian

From the possible 20 MCSs consisting of three classifiers for each data set, the
classifier sets by the selection criteria are shown in Table 3. Table 4 shows the results of
the selected classifier sets and the best classifier set which can be dynamically selected
by an oracle among the possible MCSs as to the given combination method, in terms
of recognition rates. In case of the numerals of Concordia, the CE criterion was slightly
better than the other criteria in most combinations, However, in case of the numerals
of UCI, the mMI criterion outperforms the other criteria in most combinations and it
shows very similar quality of performance to the best classifier sets.
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Table 3. MCS of three classifiers

data set selection criterion classifiers

Concordia FRR E1,E2,E6
RR E3,E4,E6

MC1,CMC1,MC2 E1,E4,E6
CE1,CE2 E2,E4,E6

mMI E1,E3,E5
UCI FRR,RR,MC1,CMC1,MC2 E2,E3,E6

CE1,CE2 E2,E4,E6
mMI E1,E2,E4

Table 4. Results of three classifier MCS

selection criterion
data set combination FRR RR MC CE mMI best

Concordia voting 97.30 95.60 96.50 96.90 96.00 97.30
(T) Borda 96.25 97.60 97.50 97.65 96.10 97.75

CIAB 96.20 96.80 96.55 96.85 96.65 97.50
ODB1 96.20 96.80 96.55 96.85 96.65 97.10

CODB1 97.10 97.25 97.45 97.30 97.55 97.70
ODB2 95.80 97.25 97.45 95.85 97.55 97.70

DODB1 97.10 97.30 97.55 97.45 97.35 97.65
DODB2 97.30 97.30 97.50 97.65 97.35 97.65

UCI voting 96.77 96.77 96.77 96.99 97.38 97.38
(windep) Borda 96.44 96.44 96.44 94.82 98.33 98.33

CIAB 96.88 96.88 96.88 96.83 97.77 97.77
ODB1 96.88 96.88 96.88 96.83 97.83 97.83

CODB1 96.99 96.99 96.99 97.61 97.77 97.77
ODB2 97.05 97.05 97.05 97.05 97.77 97.77

DODB1 97.16 97.16 97.16 97.38 97.66 97.94
DODB2 97.33 97.33 97.33 97.77 97.33 97.89

For four classifiers, 15 MCSs for each data set were examined, and the selected
classifier sets were evaluated in terms of recognition rates, as shown in Tables 5 and 6.
While the MCSs by the FRR and CE criteria showed slightly better than those of other
criteria in case of the numerals of Concordia, the MCSs by the CE1 and mMI criteria
in case of the numerals of UCI showed better results than those of other criteria in most
combinations.

From the 6 possible MCSs consisting of five classifiers, the classifier sets were
evaluated and their results are shown in Tables 7 and 8. The MCSs by the FRR and CE1
and MC criteria showed better results than those of other criteria in case of the numerals
of Concordia, but the MCSs by the CE2 criterion showed better results than those of
other criteria in case of the numerals of UCI.

From the results, the CE1 criterion was useful in selecting the most promising clas-
sifier sets from the pool of classifiers for constructing a MCS in case of the numerals
of Concordia, although the MCS candidates by the CE1 criterion did not necessarily
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Table 5. MCS of four classifiers

data set selection criterion classifiers

Concordia RR E1,E3,E4,E5
MC1,CMC1,MC2 E1,E4,E5,E6

FRR,CE1,CE2 E1,E2,E4,E6
mMI E1,E2,E3,E5

UCI FRR,RR,MC1,CMC1,MC2 E1,E2,E3,E6
CE1 E2,E3,E4,E6
CE2 E3,E4,E5,E6
mMI E1,E2,E3,E4

Table 6. Results of four classifier MCS

selection criterion
data set combination FRR RR MC CE1 CE2 mMI best

Concordia voting 97.80 97.15 97.05 97.80 97.80 96.85 97.80
(T) Borda 97.80 97.15 97.75 97.80 97.80 97.70 98.00

CIAB 97.05 97.45 97.00 97.05 97.05 96.70 97.45
ODB1 95.85 97.00 96.55 95.85 95.85 96.70 97.15

CODB1 96.30 98.00 97.80 96.30 96.30 97.50 98.00
ODB2 96.90 98.00 97.45 96.90 96.90 97.50 98.00

DODB1 98.00 97.60 97.90 98.00 98.00 97.55 98.00
DODB2 97.85 97.65 97.60 97.85 97.85 97.60 97.95

UCI voting 97.27 97.27 97.27 97.66 95.83 97.22 97.77
(windep) Borda 96.66 96.66 96.66 97.44 96.83 97.77 98.05

CIAB 96.83 96.83 96.83 97.05 96.94 96.77 97.66
ODB1 96.83 96.83 96.83 97.05 97.38 96.77 97.77

CODB1 97.11 97.11 97.11 97.16 97.33 97.38 98.16
ODB2 97.38 97.38 97.38 97.55 97.33 97.38 98.00

DODB1 97.44 97.44 97.44 97.83 96.88 97.72 98.05
DODB2 97.38 97.38 97.38 97.50 97.44 98.05 98.05

Table 7. MCS of five classifiers

data set selection criterion classifiers

Concordia RR E1,E2,E3,E4,E5
FRR,CE1,MC1,CMC1,MC2 E1,E2,E4,E5,E6

CE2 E2,E3,E4,E5,E6
mMI E1,E2,E3,E5,E6

UCI FRR,RR,MC1,CMC1,MC2 E1,E2,E3,E5,E6
CE1,mMI E1,E2,E3,E4,E6

CE2 E2,E3,E4,E5,E6

coincide with the best classifier set. The mMI criterion proposed for the complemen-
tarity was superior to the other criteria in building a MCS of three or four classifiers
in case of the numerals of UCI. And the CE1 and CE2 criteria were respectively good
for building a MCS of four or five classifiers. Particularly, the mMI criterion for build-
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Table 8. Results of five classifier MCS

selection criterion
data set combination FRR RR MC CE1 CE2 mMI best

Concordia voting 97.90 97.40 97.90 97.90 97.45 97.45 97.90
(T) Borda 97.90 98.15 97.90 97.90 97.85 97.80 98.15

CIAB 97.45 97.40 97.45 97.45 97.60 96.80 97.60
ODB1 97.10 96.95 97.10 97.10 96.85 96.80 97.20

CODB1 97.85 97.70 97.85 97.85 97.60 97.80 98.25
ODB2 97.35 97.65 97.35 97.35 95.85 97.50 97.95

DODB1 98.15 97.90 98.15 98.15 98.10 97.65 98.25
DODB2 97.95 97.80 97.95 97.95 97.95 97.80 97.95

UCI voting 97.94 97.94 97.94 97.72 98.16 97.72 98.16
(windep) Borda 97.55 97.55 97.55 97.66 97.22 97.66 97.83

CIAB 97.22 97.22 97.22 97.05 97.33 97.05 97.33
ODB1 97.22 97.22 97.22 97.05 97.44 97.05 97.44

CODB1 97.77 97.77 97.77 97.61 97.38 97.61 98.00
ODB2 98.11 98.11 98.11 97.77 98.11 97.77 98.11

DODB1 98.44 98.44 98.44 97.89 98.27 97.89 98.44
DODB2 98.11 98.11 98.11 98.05 98.22 98.05 98.33

ing a MCS of three classifiers exactly coincided with the best classifier set in 6 out of
8 combinations and the CE2 criterion for building a MCS of five classifiers coincided
with the best classifier set in 4 out of 8 combinations. The selection criteria based on
information theory would be one of the promising clues when Bayesian combination
methods are considered.

4 Discussion

Although the selection criteria based on information theory showed positive evidence
and their utility was supported through the recognition experiments, further studies are
needed because the MCS candidates always do not guarantee the best recognition and
their performances vary with the source of data, and the limit lies with the fixed number
of classifiers except the mMI criterion. As for the mMI criterion, there is a still room
to deal with higher order dependency among classifiers, because current version uses
only the first-order mutual information between classifiers. Furthermore, three classi-
fiers were sometimes better than four or five classifiers according to the combination
methods. It will be useful to deal with the limitation of our approaches as a future work.
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Abstract. In this work we tackle a particular case of image segmentation, the 
automatic detection of the amount and type of clouds over the Iberian Peninsula 
using satellite images. To segment the images we classify each pixel of the im-
age into one of the classes defined using a neural network and a set of features 
representative of the pixel. We emphasized in the preprocessing stage, extract-
ing and selecting a suitable set of features from the images to carry out an opti-
mal classification. To carry out the feature extraction we use the independent 
component analysis (ICA) algorithm. The features extracted with this algorithm 
are very dependent on the dimension of the patches, so we extract several sets 
of features, one for each value of the dimension of the patch. All of these sets of 
features are joined together to form an initial characteristic vector of the pixels 
of the images. Finally, we reduce the dimensionality of this initial characteristic 
vector by means of Genetic Algorithms (GA), choosing the best subset of fea-
tures that offer the best classification results. 

1   Introduction 

Accurate cloud information is very important to modelling the radiation balance in the 
climatic system. Clouds play an important role reflecting the solar radiation and ab-
sorbing thermal radiation emitted by the land and the atmosphere, therefore reinforc-
ing the greenhouse effect. The contribution of the clouds to the Earth albedo is very 
high, controlling the energy entering the climatic system. It has been estimated that an 
increase in the average albedo of the Earth-atmosphere system in only 10 percent 
could produce a decrease in the surface temperature to levels of the last ice age. 
Therefore, global change in surface temperature is highly sensitive to cloud amount 
and type.  

For these reasons, numerous works about this topic have been published in the last 
years, many of them dealing with the search of a suitable classifier, neural networks 
[1-6] or linear discriminations techniques [7, 8]. 

Other works are related to the search of an initial feature set that allow obtaining 
reliable classification results. In the first works, simple spectral features were used,  
as albedo and temperature. Later studies included textural features [9]. In [8]  
Welch et al. used statistical measures based on grey level co occurrence matrix 
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(GLCM) proposed by Haralick et al. in [10]. In [6] several image transformation 
schemes as singular value decomposition (SVD) and wavelet packets (WP’s) were 
exploited. In [11] Gabor filters and Fourier features are recommended for cloud clas-
sification and in [6] authors showed that SVD, WP´s and GLCM textural features 
achieved almost similar results.  

In [12] the authors showed that the initial feature set extracted with the ICA algo-
rithm applied directly to the images was, from the meteorologist point of view, very 
good. They used the 10 first independent components extracted from the 5x5 patches 
defined over the infrared and visible images. 

On the other hand there are some works dealing with the reduction of the dimen-
sionality of the original characteristic vector. In that sense, in [13], Doak identifies 
three different categories of search algorithms: exponential, sequential and random-
ised. In [14] Aha et al. use the most common sequential search algorithms for feature 
selection applied to the clouds classification: the forward sequential selection (FSS) 
and the backward sequential selection (BSS). In [15-17] a genetic algorithm (GA) 
representative of the randomised category is used for feature selection. They use GA 
because it is less sensitive than other algorithms to the order of the features that have 
been selected. On the other hand, in [18, 19] the authors of this work use feature se-
lection algorithms not dependent on the labelling of the prototypes, as principal com-
ponent analysis (PCA) and independent component analysis (ICA). Also, they com-
pare the classification results with the ones obtained using genetic algorithms. 

In this work we have applied the best of these techniques to the cloud cover classi-
fication problem. We have used the ICA algorithm in the feature extraction stage, but 
the features extracted with this algorithm are very dependent on some parameters like 
the number of extracted components or the dimension of the patches. Therefore, we 
have applied ICA in the feature extraction stage, obtaining several characteristic vec-
tors, one for each set of ICA parameters. Joining together these characteristic vectors 
we obtained a unique characteristic vector to carry out the classification. This charac-
teristic vector had a very large dimensionality, so we used GA in the feature selection 
stage to reduce it. In section 2 we show the methodology followed in all the proc-
ess, namely, the neural networks usage and the pre-processing stage that includes 
the feature selection and the feature extraction stages. In section 3 the classifica-
tion results are given and, finally, the conclusions and comments are presented in 
section 5. 

The ideas showed in this paper can be applied to other similar applications of re-
mote sensing in general, hyper spectral analysis, etc. 

2   Methodology 

Our main objective is to provide the meteorologists with an automatic classification 
system to estimate the cloud cover in each image received by the geostationary satel-
lite meteosat. The proposed system has been developed using a feature extractor and a 
feature selector for pre-processing, and a neural network as classifier. This satellite 
gives multi-spectral data in three wavelength channels. In this work two of them, the 
visible and infrared channels, are used. All the process will be described in this sec-
tion, including the neural network usage and the pre-processing stage. 
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2.1   Neural Network 

In order to train our neural network to be used as a classifier for the pixels of the im-
ages we need a large set of prototypes. The set of prototypes is also used to test and 
compare the classification systems and to build systems with generalization capabili-
ties. The subjective interpretation of these images by Meteorology experts suggested 
us to consider the following classes: sea (S), land (L), fog (F), low clouds (CL), mid-
dle clouds (CM), high clouds (CH) and clouds with vertical growth (CV). 

To implement the mapping imposed by the prototypes set and to carry out the clas-
sification of the pixels of the images we used neural networks, in particular one-
hidden-layer perceptrons trained with the Resilient Backpropagation RProp algorithm 
described in [20]. Basically, this algorithm is a local adaptive learning scheme which 
performs supervised batch learning in multi-layer perceptrons. It differs from other 
algorithms since it considers only the sign of the summed gradient information over 
all patterns of the training set to indicate the direction of the weight update. 
In order to test the classification results obtained, and to select the best feature set 
extracted by the GA algorithm, the set of prototypes was divided into a training set, a 
validation set and a test set.  

Optimisation of the neural network is made as follows. First we wish to select the 
best network, i.e. the network with the best generalization, for each feature set. To 
obtain that network we use the validation and training subsets of prototypes. For each 
feature set we start with very few neurons in its hidden layer. Then the network is 
trained with the learning set, and the sum of the squared error over the validation 
(SSEv) set is calculated in each iteration. When the value of SSEv reaches a minimum 
the learning process is stopped and the network is saved. To avoid local minimums 
the process is repeated several times maintaining the topology of the network but 
randomizing the initial weights. The network with the lowest SSEv is selected. Then 
the whole process is repeated by increasing the number of the neurons of the hidden 
layer, saving the network with the lowest SSEv. Finally, the test set is used to compare 
the classification results obtained with the networks representatives of each feature set 
and, therefore, to select the optimal feature set. 

2.2   Preprocessing Stage 

The preprocessing stage is the most important step in a problem of data classification 
and its design is one of the most significant factors in determining the performance of 
the final system. In our case the preprocessing stage includes a calibration step, be-
cause satellite data must be corrected to obtain physical magnitudes which are charac-
teristic of clouds and independent of the measurement process. Afterwards a feature 
extraction step and a feature selection step have been made. 

2.2.1   Calibration 
Our final aim is the design of a system to segment images corresponding to different 
hours of the day and different days of the year. Therefore, satellite data must be cor-
rected in the pre-processing stage in order to obtain physical magnitudes which could 
be said to be characteristic of the clouds and then, independent of the measuring  
process. 
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From the infrared channel, we obtained brightness temperature corrected of the ag-
ing effects and the radiometer transfer function. From the visible channel we obtained 
albedo after correcting it of the radiometer aging effects and considering the viewing 
and illumination geometry. For each pixel, this correction deals with the sun-earth 
distance, the solar zenith angle at the image acquisition date and time, and the longi-
tude and latitude of the pixel. In [6] no data correction is made and an adaptive PNN 
network was proposed to resolve this issue. 

2.2.2   Feature Extraction 
At this point we have to define the characteristic vector representative of the pixel of 
the images from the albedo and brightness temperature data. To carry out this task we 
used the Independent Component Analysis (ICA) in the sense proposed in [21].  

Recently, blind source separation by Independent Component Analysis (ICA) has 
received attention because of its potential applications in signal processing such as in 
speech recognition systems, telecommunications and medical signal processing. The 
goal of ICA [22-23] is to recover independent sources given only sensor observations 
that are unknown linear mixtures of the unobserved independent source signals. In 
contrast to correlation-based transformations such as Principal Component Analysis 
(PCA), ICA not only decorrelates the signals (2nd-order statistics) but also reduces 
higher-order statistical dependencies, attempting to make the signals as independent 
as possible. This technique can be used in feature extraction essentially finding the 
building blocks of any given data [21]. 

The seminal work on blind source separation was by Herault and Jutten [24] where 
they introduced an adaptive algorithm in a simple feedback architecture that was able 
to separate several unknown independent sources. Comon [22] elaborated the concept 
of independent component analysis and proposed cost functions related to the ap-
proximate minimization of mutual information between the sensors. 

One way of formulating the ICA problem consist in considering the data matrix X 
to be a linear combination of non-Gaussian (independent) components i.e. X=S A 
where columns of S contain the independent components and A is a linear mixing 
matrix. In short, ICA attempts to ‘un-mix’ the data by estimating an un-mixing matrix 
W where X W=S 

Different algorithms for ICA have been proposed [25]. In our case, we used the 
FastICA algorithm [26] and simulations were performed using the FastICA package 
[27] for R (A Programming Environment for Data Analysis and Graphics) [28]. 

To perform ICA each pixel is represented by the values of the pixels in the NxN 
patch (window centred at the pixel at issue), each pixel covering an area of 7 Km2 of 
the Iberian Peninsula. We can define one patch in the albedo data and another in the 

temperature data so each pixel is defined by a 22 N⋅  dimensional characteristic  
vector. 

In this study, 80000 pixels were randomly extracted from a set of 40 images cho-
sen to be representative of all types of clouds, land and sea. So, the matrix X has 
80000 rows and 2 N2

 columns. This matrix is passed to the fastICA algorithm to 
extract n independent components. These n independent components are extracted 
simultaneously and the function used in the approximation to neg-entropy is “log-
cosh” with a constant value of 1. The ICA algorithm then estimates an un-mixing 
matrix W  and a pre-whitening matrix K s.t. SWKX =⋅⋅ . 
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 Sea    Land    Fog    Low clouds    Middle clouds    High clouds  
Clouds with vertical growth    Indecisión class.  

Fig. 1. Segmentation of an Iberian Peninsula Meteosat Image using four different sets of ICA 
parameters. Top-left: N=3, n=4, Top-right: N=5, n=6, Bottom-left: N=7, n=8 and Bottom-right 
N=9, n=12. 

Once ICA is performed, we can define a new n dimensional characteristic vector 

representative of each pixel of the image by multiplying the old 22 N⋅  characteristic 
vector of the pixel by the K W matrix estimated by the ICA algorithm. 

The independent components are very dependent on the dimension of the patches 
N and on the number of extracted components n. In [12] the authors showed that us-
ing the ICA algorithm in the feature extraction stage, the best results were obtained 
with n=6 and N=5. In figure 1, we can observe an example of image segmentation 
with different patches dimension. We can observe that the classification results are 
different in each case. For these reasons in this work we considered the independent 
components extracted using N values of 3, 5, 7 and 9, and we used a Genetic Algo-
rithm to select the best characteristics to make the classification. 

2.2.3   Feature Selection 
The large dimensionality of the vector obtained in the feature extraction stage and the 
limited quantity of prototypes available lead us to the case where the sparse data pro-
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vide a very poor representation of the mapping. This phenomenon has been termed as 
“the curse of dimensionality” [29]. Thus, in many problems, reducing the number of 
input variables can lead to improved performances for a given data set, even though 
some information is being discarded. Therefore, this process constitutes one of the 
fundamental steps of the preprocessing stage and also one of the most significant 
factors in determining the performance of the final system. 

To reduce the dimensionality we applied GA. We used this algorithm to select a 
subset of features such that the neural network presents the best generalisation by 
using the prototypes selected and labelled by the experts in Meteorology. That is, the 
network which, trained with the prototypes of the learning set, achieves the minimum 
number of misclassifications over the validation set. 

For each subset of features the algorithm uses one hidden layer perceptron where 
the number of the neurons of the hidden layer changes from 20 to 40. For each topol-
ogy the training process is repeated 20 times randomizing the weights each time. As 
fitness we used the sum of squared error (SSE) over the validation set. 

The GA was configured using a crossover probability of 0.6, a mutation probability 
of 0.1, population of 350 individuals, tournament selection method and steady-state 
population replacement system, with a 30% of replacement. 

The simulations were carried out in a Beowulf style cluster with Clustermatic 
as OS (a patched RedHat 7.2 Linux OS, with bproc for cluster management). The 
cluster is built using a double Pentium III @ 800 MHz with 1 Gbyte of RAM 
memory on master node, and 25 nodes, with AMD Athlon @ 900 MHz with 
512 Mbytes of memory each. For GA simulations we used the PGAPack [30] 
simulator with MPI enabled. 

3   Results 

In order to implement the processes described above, the experts in Meteorology 
selected and labeled 4599 prototypes, 2781 for the training set, 918 for the validation 
set and 900 for the test set. These subsets are randomly selected from the set of proto-
types trying to maintain the equal number of prototypes for all the classes in each 
subset. On the other hand, the number of prototypes in each subset is chosen accord-
ing to the 20%, 20% and 60% rule. The prototypes selection was made from the Ibe-
rian Peninsula Meteosat images corresponding to the years 1995-1998. 

In the feature selection process we used the ICA algorithm to extract four different 
characteristic vectors of dimensions 4, 6, 8 and 12, for the values of the patch dimen-
sion “N” of 3, 5, 7 and 9 respectively. Joining together these vectors we obtained a 
 

Table 1. Parameters selected by the GA algorithm 

N=3, n=4 N=5, n=6 N=7, n=8 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
1 2 3 4 1 2 3 4 5 6 1 2 3 4 5 6 7 8 

 

N=9, n=12 
19 20 21 22 23 24 25 26 27 28 29 30 
1 2 3 4 5 6 7 8 9 10 11 12 
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Table 2. Classification results over the learning and the validation sets with the N=5 and n=6 
ICA parameters 

SET F CL CM CH CV L S SSE 
Learning 94.4 91.4 98.3 98.9 96.5 100 100 166 
Validation 65.9 85.2 96.2 90.5 93.3 92.4 100 167 

 

Table 3. Classification results over the learning and the validation sets with the GA parameters 

SET F CL CM CH CV L S SSE 
Learning 96.2 91.2 96.5 100 98.1 100 100 133 
Validation 93.4 89.9 89.3 96.8 97.8 99.3 100 87 

30-th dimensional characteristic vector. From this characteristic vector the GA algo-
rithm extracted seven parameters. These parameters can be observed shadowed in 
table 1 and they are the first independent component extracted with N =3, the first and 
fourth components with N=5, the third independent component extracted with N=7 
and the third, fifth and seventh components extracted with N=9. 

In [12] the authors showed that, using the ICA algorithm in the feature extraction 
stage, the best results were obtained with n=6 and N=5. Now we want to compare 
these classification results with the ones obtained in this work. In table 2 we can ob-
serve the classification results over the learning and the validation sets of prototypes 
presented in [12]. In table 3 the classification results obtained with the parameters 
selected by the GA algorithm (parameters shadowed in table one) over the learning 
and the validation sets or prototypes are presented. 

4   Conclusions 

In tables 2 and 3 we can observe that the classification results obtained with the GA 
parameters are better than those obtained with the ICA (N=5 and n=6) parameters. 
These results are measured over the learning and the validation sets, though the set 
that must be used to decide which the best classification system is should be the test 
set. In table 4 we can observe the classification results over this set of prototypes and 
we can notice that the classification results are a little worse for the GA parameters. 
To improve the set of parameters selected by the GA we propose, for a future work, to 
use the SSE over the test set as fitness for the Genetic Algorithm. 

 

Table 4. Classification results over the learning and the validation sets with the GA parameters 

Test set F CL CM CH CV L S SSE 
ICA, N=5 
n=6 

68.3 67.3 95.9 95.9 91.1 99.2 100 180 

GA 80.5 60 94.1 100 82.1 99.2 100 195 
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Abstract. In this paper wavelet decomposition is used to decompose speech 
signal into five levels. Low-frequency part of the speech signal was 
reconstructed. Because different frequencies of the speech signal have different 
influence on the performance of the system, the acoustic model of each level 
was trained and tested. The experimental results show that the acoustic model 
of level 1 is the best for clean speech and the acoustic model of level 2 is the 
best for noisy speech .It is proved that the frequency band of A1 makes a lot of 
contribution on the performance of clean speech and the frequency band of A2 
makes a lot of contribution on the performance of noisy speech. 

1   Introduction 

Mel-Frequency Cepstral Coefficients(MFCC) have been the most widely used 
features for speech recognition. A MFCC based speech recognizer outperforms other 
feature based (such as Linear Prediction Cepstral Coefficients(LPCC),Linear 
Prediction Coefficients(LPC),Reflection Coefficients(RC) and so on) speech 
recognizers. 

The wavelet analysis has the best features of narrow band and wide band analysis 
within one transform without assuming a stationary signal. The wavelet analysis of a 
speech signal produces fine time resolution at high frequencies and fine frequency 
resolution at low frequencies[1].  

Based on wavelet analysis, there are some feature extraction methods in speech 
recognition[1][2][3][4]. Tufekci Z. proposed a new feature vector consisting of Mel-
Frequency Discrete Wavelet Coefficients(MFDWC). The MFDWC are obtained by 
applying Discrete Wavelet Transform to the mel-scaled log filter bank  energies of a 
speech frame. The purpose of  using the Discrete Wavelet Transform is to benefit 
from its localization property in the time and frequency domains. A MFDWC based 
speech recognizer outperforms the feature based MFCC[2] . 

Speech signal is a none stationary signal. Although applying wavelet transform on 
noisy speech will lose some high frequency which may make contributions to 
recognition, the noise in high frequency can be suppressed in great. Therefore the 
research on the method which can not only de-noise but also keep the valuable high 
frequency is very meaningful. 
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The method in this paper is different from the traditional methods which focus on 
feature extraction by using wavelet transform. In this paper, the wavelet 
decomposition is used to decompose speech signal into five levels. Low-frequency 
parts of the speech signal were reconstructed and different frequencies of the speech 
signal have different influence on the performance. 

The structure of this paper is as follows. Wavelet theory is described briefly in 
section 2.In Section 3, the wavelet-based de-noising is described. The continuous 
Speech Recognition System Based on Wavelet Analysis is mentioned in Section 4. 
The Experiment and Results are given in Section 5. And at last we come to the 
conclusion in Section 6.   

2   Wavelet Theory 

Wavelet theory is based on generating a set of filters by dilation and translation of a 
generating wavelet. All of the wavelets are scaled versions of the “mother wavelet”. 
This means that only one filter needs to be designed and the others will follow the 
scaling rules in both the time and frequency domain. 

A set of wavelets is generated from the mother wavelet )(tΨ  by: 
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The wavelets are contracted (a<1) or dilated (a>1) and are moved over the signal to 
be analyzed by time step b (which is real valued). Contraction and dilation scale the 
frequency response to allow the set of wavelets to span the desired frequency range.  

The set of wavelets can be considered as a filter bank for speech analysis. 
For admissibility as a wavelet the following condition has to be met: 
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This implies that if the wavelet is differentiable then: 
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The continuous wavelet transform(CWT) is defined as: 
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1
),(

−Ψ=                                                                     (4) 

The discrete wavelet transform (DWT) is given by: 
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a
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k
ii

ii −Ψ=                                                          (5) 

where i  is an integer. The DWT computes data points on a dyadic grid if 2=a . (A 
dyadic grid has half of the number of data points at each successive lower octave). 
This makes it difficult to use the DWT for input to classical recognizers such as 
Hidden Markov Models (HMM) because they are designed to accept frame 
synchronous data. A variation of the DWT is the sampled CWT (SCWT). This 
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produces frame synchronous data (redundant at lower frequencies) but retains the 
features that are offered by the wavelet transform. The sampled CWT is given by: 

)()(
1

),( ks
a

nk

a
naSCWT

k
ii

i −Ψ=                                                              (6) 

By restricting the values of i  to be integers, each of the wavelets will be an octave 

space apart if 2=a . Choosing other values for a  will change the number of 
wavelets that are required to cover a certain frequency range. Thus if the initial 
generating wavelet is defined appropriately then sub-octave resolution can be 
accommodated. The spacing within each octave will need to be preserved so that the 
given number of voices appears within each octave. This can be varied by changing 
the value of a  or by choosing i  to be real and to be a fraction of the number of 
voices in each octave. 

3   Wavelet-Based De-noising 

Wavelet transform has recently emerged as a powerful tool for removing noise from 
speech signal. Such as de-noising based on wavelet decomposition and 
reconstruction. Donoho et al. developed a nonlinear wavelet shrinkage de-noising 
method for statistical applications[5]. And multiple wavelet de-noising[6] is coming 
out recently. The conventional wavelet de-nosing methods only focus on the vision 
effect or hearing effect of the waveform. 

As far as speech recognition is mentioned, each frequency part maybe has different 
influence on the performance of speech recognition systems. This paper proposed a 
method based on wavelet analysis to verify which frequency band makes the main 
contribution to the speech recognition system. 

4   Continuous Speech Recognition System Based on Wavelet 
Analysis 

Figure 1 shows the wavelet decomposition of speech signal S. In this paper, 5 levels 
of decomposition is used, the original speech, S, would be decomposed into a set of 
sub signals A5, D5, D4,…, D1,  where Di is the i level detail and Ai is the i level 
approximation of the original signal. 

In this paper, the sampling frequency of speech signal is 16kHz, so the frequency 
bandwidth of the speech signal is 8kHz. Table 1 shows the frequency band of each 
sub signal. 

Figure 2 shows the continuous speech recognition system based on wavelet 
analysis. The wavelet function “sym4” is used. The speech signal was decomposed 
into five levels. The signals of the low-frequency part were reconstructed. And for 
each level, the acoustic model was obtained by carrying out the same training steps, 
AM 0 is the acoustic model of the baseline system. From level 1 to level 5, the 
acoustic model are presented by AM 1,…AM 5, then the language model(LM) and 
recognizer are used to test the performance of the acoustic model. 
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Fig. 2. Speech Recognition System 

Table 1. Frequency Band 

 Low-Frequency   High-Frequency  
A1 0 4000Hz D1 4000 8000 Hz 
A2 0 2000 Hz D2 2000 4000 Hz 
A3 0 1000 Hz D3 1000 2000 Hz 
A4 0 500 Hz D4 500 1000 Hz 
A5 0 250Hz D5 250 500Hz 
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Fig. 3e 

 

Fig. 3f 

Fig.3a is the spectrogram of the noisy speech and Fig.3b to Fig.3f are spectrograms 
of the five low frequency reconstruction speech signals. Fig.3a shows that the speech 
signal is concentrated in 0-4000Hz, the signal of 4000-8000Hz was corrupted by the 
noise. Fig.3b shows that the signal of 4000-8000Hz comes back, but the noise are still 
strong in the full frequency band. Fig.3c shows that besides the first characteristics of  
Fig.3b, the noise of high frequency band are suppressed. Fig.3d shows that more noise 
are suppressed. Fig.3e and Fig.3f show that the signal are also suppressed by 
suppressing the noise. Therefore for noisy speech, the second level must represent the 
original signal best. 

5   Experiment and Results 

A continuous Chinese speech corpus from 863(High Technology Research and 
Development Program) materials[7] was used. The corpus contains 80 speakers’ data 
and 520 utterances are available for each speaker. All the recorded materials were 
obtained in a low noise environment through a close-talk noise-canceling microphone. 
41 speakers’ data were used as the training set while 8 speakers’ data were used for 
testing. At the same time, the clean speech test corpus are added white noise. The 
Signal noise ratio is 15db.The speech data were sampled at 16KHz and 16bit. The 
speech is pre-emphasised by a factor of 0.97.Twelfth-order mel-frequency cepstral 
coefficients (MFCC) and power are computed every 10ms. Temporal difference of 
the coefficients (�MFCC) and power (�LogPow) are also incorporated. So the 
feature vector at each frame consists of 26 variables. Each model consists of three 
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states excluding the initial and final states that have no distributions. The state 
transitions are all left-to-right, and the path from the initial state and that to the final 
state are limited to one.  

Table 2 shows the system performance of clean and noisy speech recognition. The 
results of clean speech shows that the highest correct rate of Initial/Final is 86.83% which 
is the performance of the AM 1. The performance of AM 2 is a little bit lower than AM 1. 
AM 1 and AM 2 are both better than AM 0 whose rate is 82.83%. And the performance of 
AM 3, AM 4 and AM 5 are too low. The results of noisy speech shows that the highest 
correct rate of Initial/Final is 56.36% which is the performance of the AM 2. The 
performance of AM 1 and  AM 3 are a little bit lower than AM 2. AM 1 AM 2 and AM 3 
are  better than AM 0. And the performance of AM 4 and AM 5 are too low.   

Table 2. Performance of the System 

 Initial/Final Correct Rate  
Acoustic 
Model 

Clean 
speech(%) 

Noisy 
speech(%) 

AM 0 82.83 39.52 
AM 1 86.83 44.19 
AM 2 83.53 56.36 
AM 3 64.97 47.23 
AM 4 34.25 27.33 
AM 5 23.7 22.75 

6   Conclusion 

In this paper a wavelet analysis method is proposed for large vocabulary Chinese 
Mandarin continuous speech recognition. The wavelet decomposition is used to 
decompose speech signals into five levels. Low-frequency parts of the speech signal 
were reconstructed. The acoustic model of each level was trained and tested. From the 
experimental results of clean speech and noisy speech, the acoustic model of level 1 is 
the best for clean speech and the acoustic model of level 2 is the best for noisy 
speech. It is proved that the frequency band of level 1 which is between 0 and 4000Hz 
makes main contribution on the performance of the clean speech recognition system 
and the frequency band of level 2 which is between 0 and 2000Hz makes main 
contribution on the performance of the noisy speech recognition system.This paper 
proved that discarding high frequency part which is corrupted by noise will do some 
good to speech recognition. This is consistent with the man’s hearing effect. For 
example, when hearing shortwave broadcasting, you can hearing more clearly by 
discarding high frequency part. 
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Abstract. The time-domain fingerprint of termite alarm signals is en-
hanced by wavelets and wavelet packets, using multi-resolution analysis.
We take advantage of these emission patterns, characterized by four-
impulse bursts. Identification has been developed by means of analyzing
the impulse response of three sensors undergoing natural excitations. De-
noising exhibits good performance up to SNR=-30 dB, in the presence
of white Gaussian noise. The test can be extended to similar vibratory
or acoustic signals resulting from impulse responses.

1 Introduction

Ultra-sounds signals produced by insects can be detected using ultrasonic sen-
sors [1] which register only the vibratory signals which, in turn, constitute the
patterns of the emissions, filtering the audio band of the spectra. When wood
fibers are broken by termites (or similar insects) they produce acoustic signals
which can be monitored using ad hoc resonant AE piezoelectric sensors which
include microphones and accelerometers, targeting subterranean infestations by
means of spectral and temporal analysis. The drawbacks are the relative high
cost and their practical limitations due to subjectiveness [2].

In acoustic emission (AE) signal processing an usual problem is to extract
some physical parameters of interest in situations which involve join variations of
time and frequency. This situation can be found in almost every nondestructive
AE tests for characterization of defects in materials, or detection of spurious
transients which reveal machinery faults [3]. The problem of insect detection lies
in this set of applications involving non-stationary signals [2].

The prior-art second order methods (spectra and spectrogram) failure in low
SNR conditions even with ad hoc piezoelectric sensors. Bispectrum have proven
to be a useful tool for characterization of termites in relative noisy environments
using low-cost sensors [4],[5]. The computational cost could be pointed out as the

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3686, pp. 505–513, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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main drawback of the technique. This is the reason whereby diagonal bispectrum
have to be used.

Numerous wavelet-theory-based techniques have evolved independently in
different signal processing applications, like wavelets series expansions, multires-
olution analysis, subband coding, etc. The wavelet transform is a well-suited
technique to detect and analyze events occurring to different scales [6]. The idea
of decomposing a signal into frequency bands conveys the possibility of extracting
subband information which could characterize the physical phenomenon under
study [7].

In this paper we show an application of wavelets’ de-noising possibilities for
the characterization and detection of termite alarm signals in low SNR condi-
tions. Waveforms have been buried in Gaussian white noise. Working with three
different vibratory sensors, we find that the estimated signals’ spectra matches
the spectra of the acoustic emission whereby termite alarms are recognized. The
paper is structured as follows: Section 2 summarizes the problem of acoustic de-
tection of termites; Section 3 remembers the theoretical background of wavelets
and wavelet packets. Experiments and conclusions are drawn in Section 4.

2 Acoustic Detection of Termites

2.1 Characteristics of the AE Signals

Acoustic Emission(AE) is defined as the class of phenomena whereby transient
elastic waves are generated by the rapid (and spontaneous) release of energy from
a localized source or sources within a material, or the transient elastic wave(s)
so generated (ASTM, F2174-02, E750-04, F914-03 1).

Figure 1 shows one impulse in a burst produced by termites and its power
spectrum. Significant drumming responses are produced over the range 200 Hz-
10 kHz. The carrier (main component) frequency of the drumming signal is
around 2600 Hz. The spectrum is not flat as a function of frequency as one would
expect for a pulse-like event. This is due to the frequency response of the sensor
(its selective characteristics) and also to the frequency-dependent attenuation
coefficient of the wood and the air.

2.2 Devices, Ranges of Measurement and HOS Techniques

Acoustic measurement devices have been used primarily for detection of termites
(feeding and excavating) in wood, but there is also the need of detecting termites
in trees and soil surrounding building perimeters. Soil and wood have a much
longer coefficient of sound attenuation than air and the coefficient increases with
1 American Society for Testing and Materials. F2174-02: Standard Practice for Ver-

ifying Acoustic Emission Sensor Response. E750-04: Standard Practice for Char-
acterizing Acoustic Emission Instrumentation. F914-03: Standard Test Method for
Acoustic Emission for Insulated and Non-Insulated Aerial Personnel Devices With-
out Supplemental Load Handling Attachments.
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Fig. 1. Normalized power spectrum of a single impulse in a burst

frequency. This attenuation reduces the detection range of acoustic emission to
2-5 cm in soil and 2-3 m in wood, as long as the sensor is in the same piece of
material [8]. The range of acoustic detection is much greater at frequencies <10
kHz, and low frequency accelerometers have been used to detect insect larvae
over 1-2 m in grain and 10-30 cm in soil [1].

It has been shown that ICA success in separating termite emissions with small
energy levels in comparison to the background noise. This is explained away by
statistical independence basis of ICA, regardless of the energy associated to each
frequency component in the spectra [5]. The same authors have proven that the
diagonal bispectrum can be used as a tool for characterization purposes [4].
With the aim of reducing computational complexity wavelets transforms have
been used in this paper to de-noise corrupted impulse trains. In section 3 we
summarize the theoretical background of wavelet and wavelet packets.

3 Wavelet Packets (WP)

3.1 Wavelet Bases

The WP method is a generalization of wavelet decomposition that offers more
possibilities of reconstructing the signal from the decomposition tree. If L is the
number of levels in the tree, WP methods yields more than 22L−1

ways to encode
the signal. The wavelet decomposition tree is a part of the complete binary tree.

When performing a split we have to look at each node of the decomposition
tree and quantify the information to be gained as a result of a split. An entropy
based criterion is used herein to select the optimal decomposition of a given



508 C. Garćıa Puntonet et al.

signal. We use an adaptative filtering algorithm, based on the work by Coifman
and Wickerhauser [9].

Any finite energy signal s(t) can be decomposed over a wavelet orthogonal
basis [6] 2 of L2(�) according to:

s(t) =
+∞∑

j=−∞

+∞∑
k=−∞

〈s, ψj,k〉ψj,k (1)

Each partial sum can be interpreted as the details variations at the scale a = 2j :

dj(t) =
+∞∑

k=−∞
〈s, ψj,k〉ψj,k s(t) =

+∞∑
j=−∞

dj(t) (2)

The approximation of the signal s(t) can be progressively improved by obtain-
ing more layers or levels, with the aim of recovering the signal selectively. For
example, if s(t) varies smoothly we can obtain an acceptable approximation by
means of removing fine scale details, which contain information regarding higher
frequencies or rapid variations of the signal. This is done by truncating the sum
in 1 at the scale a = 2J :

sJ (t) =
+∞∑
j=J

dj(t) (3)

3.2 Multiresolution and Tree Decomposition

We consider the resolution as the time step 2−j, for a scalej, as the inverse of
the scale 2j. The approximation of a function s at a resolution 2−j is defined as
an orthogonal projection on a space Vj ⊂ L2(�). Vj is called the scaling space
and contains all possible approximations at the resolution 2−j.

Let us consider a scaling function φ. Dilating and translating this function
we obtain an orthonormal basis of Vj :{

φj,k(t) =
1√
2j

φ

(
t − 2jk

2j

)}
(j,k)∈Z2

. (4)

The approximation of a signal s at a resolution 2−j is the orthogonal projection
over the scaling subspace Vj , and is obtained with an expansion in the scaling
orthogonal basis {φj,k}k∈Z:

PVj
s =

+∞∑
k=−∞

〈s, φj,k〉φj,k (5)

The inner products
aj[k] = 〈s, φj,k〉φj,k (6)

represent a discrete approximation of the signal at level j (scale 2j). This ap-
proximation is low-pass filtering of s sampled at intervals 2−j.

2
{

ψj,k(t) = 1√
2j

ψ
(

t−2jk
2j

)}
(j,k)∈Z2

.
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A fast wavelet transform decomposes successively each approximation PVj−1s
into a coarser approximation PVj

s (local averages) plus the wavelet coefficients
carried by PWj s (local details). The smooth signal plus the details combine into
a multiresolution of the signal. Averages come from the scaling functions and
details come from the wavelets.

{φj,k}k∈Z and {ψj,k}k∈Z are orthonormal bases of Vj and Wj , respectively,
and the projections in these spaces are characterized by:

aj [k] = 〈s, φj,k〉 dj [k] = 〈s, ψj,k〉 (7)

A space Vj−1 is decomposed in a lower resolution space Vj plus a detail space
Wj , dividing the orthogonal basis of Vj−1 into two new orthogonal bases:

{φj(t − 2jk)}k∈Z and {ψj(t − 2jk)}k∈Z (8)

Wj is the orthogonal complement of Vj in Vj−1, and Vj ⊂ Vj−1, thus:

Vj−1 = Vj ⊕ Wj . (9)

The orthogonal projection of a signal s on Vj−1 is decomposed as the sum of
orthogonal projections on Vj and Wj .

PVj−1 = PVj
+ PWj

. (10)

The recursive splitting of these vector spaces is represented in the binary tree.
This fast wavelet transform is computed with a cascade of filters h and g, followed
by a factor 2 subsampling, according with the scheme of figure 2.

Functions that verify additivity-type property are suitable for efficient search-
ing of the tree structures and node splitting. The criteria based on the entropy
match these conditions, providing a degree of randomness in an information-
theory frame. In this work we used the entropy criteria based on the p-norm:

E(s) =
N∑
i

‖si‖p; (11)

with p≤1, and where s = [s1, s2, . . . , sN ] in the signal of length N . The results
are accompanied by entropy calculations based on Shannon’s criterion:

E(s) = −
N∑
i

s2
i log(s2

i ); (12)

with the convention 0 × log(0) = 0.
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Fig. 2. Cascade of filters and subsampling
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Fig. 3. Limit situation of the de-noising procedure using wavelets (SNR=-30 dB). From
top to bottom: a buried 4-impulse burst, estimated signal at level 4, estimated signal
at level 5.

Once the mathematica foundations have been established, we described the
experienced in 4.

4 Experiments and Conclusions

Two accelerometers (KB12V, seismic accelerometer; KD42V, industrial accelerom-
eter, MMF) and a standard microphone have been used to collect data (alarm
signals from termites) in different places (basements and subterranean wood
structures and roots) using the sound card of a portable computer and a sam-
pling frequency of 96000 (Hz), which fixes the time resolution. These sensors
have different sensibilities and impulse responses. This is the reason whereby we
normalize spectra. In fact we are only interested in the frequency pattern of the
emissions.

The de-noising procedure was developed using a sym8 wavelet, which belongs
to the family Symlets (order 8), which are compactly supported wavelets with
least asymmetry and highest number of vanishing moments for a given support
width. We also choose a soft heuristic thresholding.

We used 15 records (from reticulitermes lucifugus), each of them comprises a
4-impulse burst buried in white gaussian noise. De-noising performs successfully
up to an SNR=-30 dB. Figure 3 shows a de-noising result in one of the registers.
Figure 4 shows a comparison between the spectrum of the estimated signal at
level 4 and the spectrum of the signal to be de-noised, taking a register as an
example.
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Significant components in the spectrum of the recovered signal are found to
be proper of termite emissions.

The same 15 registers were processed using wavelet packets. Approximation
coefficients have been thresholded in order to obtain a more accurate estimation
of the starting points for each impulse. Stein’s Unbiased Estimate of Risk (SURE)
has been assumed as a principle for selecting a threshold to be used for de-noising.
A more thorough discussion of choosing the optimal decomposition can be found
in [6]. Figure 5 shows one of the 15 de-noised signals using wavelets packets.
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Fig. 4. Spectra of the estimated signal and the buried burst

This result can be see the result of reconstructing progressively each aj by
the filter banks.

To show the importance of the pre-processing high-pass filter, we have in-
cluded figure 6. We can seen, for the same SNR conditions that the impulses
in the burst have not been clearly enhanced, despite the fact that they can be
distinguished.

Future effort should be put in the task of simulating with new noise processes.
Results obtained with non-Gaussian noise, and with non-symmetrical noise, will
be specially welcomed in order to establish the real limits of this application.
The objective is to reduce the computational complexity of the algorithms with
the goal of implementing the code in a DSP processor. This work has established
the basis of the equipment which constitutes the objective of a Spanish project
for the transference of technology.
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Fig. 5. Limit situation of the de-noising procedure using WP (SNR = -28.5545 dB).
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Abstract. The performance of Hurst-Vectors (pH feature) for speaker
identification systems is presented and discussed in this paper. The
pH feature is a vector of Hurst (H) parameters obtained by applying
a wavelet-based multi-dimensional estimator (M dim wavelets) to the
windowed short-time segments of speech. The GMM (Gaussian Mixture
Models) and the M dim fBm (multi-dimensional fractional Brownian
motion) classification systems were considered in the performance anal-
ysis. The database—recorded from fixed and cellular phone channels—
was uttered by 75 different speakers. The results have shown the supe-
rior performance of the M dim fBm classifier and that the pH feature
aggregates new information on the speaker identity.

1 Introduction

In an automatic speaker identification process, a speech utterance has to be
identified as to which of the registered speakers it belongs [1]. Important ar-
eas of interest are found in law enforcements, such as penitentiary monitoring
and forensic applications. Identification systems involve three basic steps: speech
acquisition/pre-processing, speech feature extraction and classification.

The most commonly used features employed in speaker recognition are the
LPC-derived cepstral parameters and the mel-cepstral coefficients. Generally,
physiological features are not robust to the channels acoustic distortion and their
extraction from the speech signal requires a high computational load. This is due
to the fact that these features model the spectral characteristics of the human
vocal mechanism. The statistical (pH ) feature proposed in [2][3] consists of a
vector of Hurst (H) parameters. Unlike the physiological features, the pH feature
tends to be robust to channel distortions, since it models the stochastic behavior
of the speech signal. The pH feature is not related to the transfer functions of the
vocal tract and needs less complex extraction/estimation methods. Additionally,
it can be obtained in real-time, i.e., during speakers’ activity. The performance of
the Hurst-vectors for the GMM (Gaussian Mixture Model) [4] and M dim fBm
(Multi-dimensional fractional Brownian motion) [2][3] identification systems is
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examined in this paper. The M dim fBm models the speech characteristics of a
particular speaker using the H parameters along with the statistical means and
variances of the input speech matrix features.

2 The Hurst-Vectors or pH Feature

The Hurst parameter1 expresses the time-dependence or scaling degree of a
stochastic process. It can also be defined by the decaying rate of the auto-
correlation coefficient function ρ(k) (−1 < ρ(k) < 1) as k → ∞. Let the
speech signal be represented by a stochastic process X(t), with finite variance
and normalized auto-correlation function (ACF) or auto-correlation coefficient
ρ(k) = Cov[X(t), X(t + k)]/V ar[X(t)], k = 0, 1, 2, . . . where the ρ(k) be-
longs to [−1, 1] and limk→∞ ρ(k) = 0. The asymptotic behavior of ρ(k) is
given by ρ(k) ∼ H(2H − 1)k2(H−2). This means that ρ(k) is a slowly decay-
ing function and that when k → ∞, ρ(k) ∼ H(2H − 1)k2(H−2) and hence,
ρ(k)/H(2H − 1)k2(H−2) ∼ 1. The H parameter is the exponent of the ACF of a
stochastic process. Only for fractal or self-similar processes, one can relate the
H parameter to a fractal dimension (Dh) through the equation Dh = 2 − H .
Examples where the fractal dimension are used in pattern recognition studies
can be found in [5] and [6]. The fractal dimension has already been used for
discriminating fricative sounds and for speaker identification. The studies pre-
sented in [7] and [8] assumed the hypothesis that speech is a fractal signal. In
the present work, however, although a vector of H parameters is adopted as a
speech feature, it is not assumed that the speech signal is a fractal or self-similar
signal.

The most known H estimators are the R/S (ReScaled adjusted range) statistic
[9], the Higuchi [10] and the wavelet-based Abry-Veitch (AV) [11]. The R/S esti-
mator can be used for any type of speech signal distribution. However, the R/S
estimation of the H parameter is a time-consuming procedure since it depends
on the user visual intervention to define the linear regression region. The Higuchi
estimator is only appropriate for fractal stochastic processes and it cannot be
proved that speech signals are fractals. For these reasons, the Wavelet-based
Multi-dimensional Estimator (M dim wavelets) [3] is based on the AV method.
Moreover, it enables the pH feature extraction in real-time and presents a low
computational cost when compared to the standard physiological features ex-
traction.

Similar to the H estimator proposed in [12] the wavelet-based multi-
dimensional estimator — M dim wavelets — uses the discrete wavelet trans-
form (DWT) to successively decompose a sequence of samples into the detail
and approximation coefficients. From each detail sequence, d(j, k), generated by
the filter bank in a given scale j, an H parameter is estimated, Hj . The set of
Hj values and the H value obtained for the entire speech signal (H0) compose
the pH feature.
1 The H notation is used for a single Hurst parameter. The proposed feature is a

vector of H parameters and is denoted by pH .
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Fig. 1. M dim wavelets estimation example

The M dim wavelets estimator (cf. Fig. 1) can be described in two main
steps:

1. Wavelet decomposition: the DWT is applied to the speech samples generat-
ing the detail sequences d(j, k).

2. pH estimation: application of the AV estimator to the entire speech signal
(H0) and then to each of the J detail sequences obtained in the previous
step. The resulting (J + 1) H values will compose the pH feature.

The speech signal is split into N frames (with overlapping) and the proposed
estimator M dim wavelets is applied to each speech frame. This means that at
each frame n, several H parameter values are estimated. In this study, the pH
matrix— containing the pH vectors along the frames— was obtained from 80ms
frames with 50% overlapping. From several experiments, it was found that a
good configuration for extraction of the pH feature matrix is given by (1) Frame
duration: 80ms; (2) Daubechies wavelets [13] with 12 coefficients; (3) Number of
decomposition scales for the H0: 6 and (4) Coefficient range from 3 to 5.

3 Classification Schemes

3.1 GMM

The GMM is one of the most widely used classifiers for speaker recognition [14].
A mixture of Gaussian probability densities is a weighted sum of M densities,
and is given by p(x|λ) =

∑M
i=1 pibi(x) where x is a random vector of dimension

D, bi(x), i = 1, ..., M , are the density components, and pi, i = 1, ..., M , are
the mixture weights. Each component density is a D variate Gaussian function

of the form bi(x) = e(− 1
2 (x−μ)T K

−1
i

(x−μ))
(2π)

D
2
√

|Ki|
with mean vector μi and covariance

matrix Ki, where T denotes the transpose operation and |.| is the determinant.
The Gaussian mixture model, λ, is parametrized by mean vectors, covariance
matrices, and mixture weights. These parameters are jointly represented by the
following notation: λ = {pi, μi, Ki} i = 1, ..., M . The model parameters are
estimated for a set of training data as the ones that maximize the likelihood
of the GMM. In this paper, we obtain the parameter estimates using a special
case of the expectation-maximization (EM) algorithm [14]. For a sequence of T
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independent training vectors X = {x1, ...,xT }, the normalized log-likelihood of
the GMM is given by log p(X |λ) = 1

T

∑T
t=1 log p(xt|λ). The decision rule for the

speaker identification system chooses the speaker model for which this value is
maximum.

3.2 M dim fBm

The recently proposed M dim fBm classifier [2] [3] models each speaker on
the basis of the speech features time-dependence or scaling characteristics. The
speech signals are not assumed to be fractals. The M dim fBm is based on the
fBm process. The fBm [15] is a Gaussian stochastic process (XH(t)) indexed in �
with zero mean and continuous sample path (null at origin). The fBm is known
as the unique gaussian H-sssi, i.e., self-similar with self-similarity parameter and
stationary increments. The variance of the independent increments is propor-
tional to its time interval accordingly to the expression V ar[XH(t2)−XH(t1)] ∝
|t2 − t1|2H for all instants t1 and t2 and XH(t) has stationary increments,
XH(0) = 0, E[XH(t)] = 0 for any instant t and it presents continuous sample
paths. The fBm is considered a self-similar process since its statistical char-
acteristics2 hold for any time scale. In other words, for any τ and r > 0,

[XH(t + τ) − XH(t)]τ≤0
d≈ r−H [XH(t + rτ) − XH(t)]τ≤0 where

d≈ means equal
in distribution and r is the process scaling factor (r = τ = |t2 − t1|). Note that
XH(t) is a Gaussian process completely specified by its mean, variance, H pa-
rameter and ACF given by [16] ρ(k) = 1

2 [(k +1)2H −2k2H +(k−1)2H ] for k ≥ 0
and ρ(k) = ρ(−k) for k < 0. Similarly to the GMM classification procedure the
M dim fBm scheme is based on the input features models. The M dim fBm
model of a given speaker is generated according to the following steps:

1. Pre-processing : the feature matrix formed from the input speech features3

is split into r regions. This matrix contains c rows, where c is the number
of feature coefficients per frame, and N columns, where N is the number of
frames.

2. Decomposition: for each row of the feature matrix in a certain region the
wavelet decomposition is applied in order to obtain the detail sequences.

3. Parameters Extraction/Estimation: from each set of detail sequences ob-
tained from each row of step 2, estimate the mean, the variance and the H
parameters of the features being used by the identification system. For the
H parameter estimation, use the AV wavelet− based estimator proposed in
[11].

4. Generation of fBm Processes : using the Random Midpoint Displacement
(RMD) algorithm [15] and the three parameters computed in step 3, gener-
ate the fBm processes. Therefore, c fBm processes are obtained for a given
region.

2 Statistical characteristics means marginal distribution and time-dependence degree.
3 Note that the M dim fBm classifier is not constrained to the pH feature. It can be

used with any selected set of speech features.
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5. Determining the Histogram and Generating the Models: compute the his-
togram of each fBm process of the given region. The set of all histograms
defines the speaker c-dimensional model for that region.

6. Speaker Model : the process is repeated for all of the r regions. This means
that a r.c-dimensional fBm process is obtained, which defines the speaker
M dim fBm model.

In the phase of tests, the histograms of the speaker, obtained from the
M dim fBm model, are used to compute the probability that a certain c-
dimensional feature vector x belongs to that speaker. This is performed to the N
feature vectors, resulting in N probability values: p1, p2, ...pN . Adding these val-
ues, the measure of the likelihood that the set of feature vectors under analysis
belongs to that particular speaker is obtained.

4 Experiments Results

Experiments were carried out in order to examined the performance of pH vec-
tors, containing 7 H parameters, vectors of 15 mel-cepstral coefficients and the
fusion of the pH and the mel-cepstral coefficients. We have investigated both
the GMM and the M dim fBm classifiers. It is important to remark that in all
experiments the M dim fBm classifier was used with r = 1 region only. This
means that the speaker model is defined by a c-dimensional fBm process, where
c is the number of feature coefficients.

The database4 used in the experiments is composed of 75 speakers (male and
female, 2 : 1) from 27 Brazilian regions that read 2 different texts. To record the
speech signal the speakers called a free automatic communication center using
first a fixed phone and then a cellular phone. Hence, two databases are available
in which each speaker recorded four different text files (i.e., two different training
and tests speech texts recorded from fixed and cellular phones). The speech
average duration for training as well as testing phases, was 170 s. The tests were
applied to 20, 10 and 5 seconds speech segments. A separate speech segment of 1
minute duration was used to train a speaker model. The performance results of
the identification systems — M dim fBm and GMM— are presented in terms of
the recognition accuracy. The results using the pH satisfy the low computational
cost requirement [17]. On the other hand, the use of the mel-cepstrum and the
joint use of the mel-cepstrum and the pH, is useful in applications where the
computational cost is not of major concern [18].

4.1 pH Feature Results

Tables 1 and 2 show the speaker recognition accuracy of the identification sys-
tems based on the pH, for speech signals recorded from a fixed and a cellular
telephony channel.
4 This database was developed by the Electrical Engineering Department of the Insti-

tuto Militar de Engenharia (IME) under a project jointly sponsored by FAPERJ and
the Security Department of Rio de Janeiro. The database is available and interested
readers can send a request to coelho@ime.eb.br
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Table 1. Recognition accuracy (%) of the identification systems based on the pH, for
speech signals recorded from a fixed telephony channel

Testing Interval M dim fBm GMM
20 s 95.48 95.48
10 s 94.22 94.09
5 s 89.98 89.69

Table 2. Recognition accuracy (%) of the identification systems based on the pH, for
speech signals recorded from a cellular telephony channel

Testing Interval M dim fBm GMM
20 s 87.53 86.85
10 s 84.93 84.89
5 s 61.43 61.10

Table 3. Recognition accuracy (%) of the identification systems based on the 15 mel-
cepstral coefficients, for speech signals recorded from a fixed telephony channel

Testing Interval MdimfBm GMM
20 s 98.54 97.95
10 s 97.99 97.99
5 s 97.59 97.46

Table 4. Recognition accuracy (%) of the identification systems based on the fusion
use of the pH and the mel-cepstral coefficients, for speech signals recorded from a fixed
telephony channel

Testing Interval MdimfBm GMM
20 s 98.57 98.40
10 s 98.62 98.51
5 s 97.91 97.66

Table 5. Recognition accuracy (%) of the identification systems based on the fusion
use of the pH and the mel-cepstral coefficients, for speech signals recorded from a
cellular telephony channel

Testing Interval MdimfBm GMM
20 s 98.19 98.14
10 s 92.56 92.03
5 s 89.96 89.96

As can be seen from these tables, the best results (around 95% recognition)
were obtained with the M dim fBm and the GMM classifiers for fixed tele-
phone recordings using a testing interval of 20s. The results drop significantly
for 5s testing intervals. The performance for cellular telephony recordings is



520 R. Sant’Ana, R. Coelho, and A. Alcaim

much lower than for fixed telephone speech. This is due to the effects of the cel-
lular channel. Comparing the classifiers performance results, it can be seen that
the simpler M dim fBm also provided some improvement over GMM (around
0.6% for 20s testing intervals and cellular speech). It is important to remark that
the pH feature used only 7 H parameters per speech frame. This implies in a
lower complexity of the classifiers as compared to the systems operating on 15
mel-cepstral coefficients per frame. Moreover, it should be reminded that the es-
timation of the pH feature demands less computational complexity (O(n)) than
the extraction of the mel-cepstral coefficients (the FFT computational complex-
ity is O(nlog(n)).

4.2 pH + mel-cepstral Results

In this second set of experiments, the speaker recognition accuracy of the identi-
fication systems was examined for the mel-cepstral coefficients and for the fusion
of the mel-cepstral coefficients and the pH. These results are presented in Tables
3 and 4, respectively, for speech signals recorded from a fixed telephony channel.
From these tables it can be verified that the best results were achieved by the
systems based on the joint use of the mel-cepstral coefficients and the pH. This
means that the pH feature aggregates new information on the speaker identity.
The recognition accuracies of the identification systems based on the fusion use
of the pH and the mel-cepstral coefficients, for speech signals recorded from a
cellular telephony channel, are shown in Table 5. Comparing the results of Tables
4 and 5, it can been seen that the M dim fBm and GMM systems performances
are degraded around 0.3% due to the effects of the cellular telephony channel.
Again, the simpler M dim fBm yields a small improvement over the GMM.

5 Conclusions

In this paper the performance of Hurst-vectors or the pH feature is presented for
M dim fBm and GMM identification systems. For applications requiring a low
computational cost, the systems employing only the pH feature have shown to
be an attractive choice. On the other hand, if computational complexity is not of
major concern, the best strategy — due to its highest performance — is the one
based on the fusion of the pH feature and the mel-cepstral coefficients. More-
over, it was also shown that the M dim fBm classifier yields a better modeling
accuracy with a lower computational load. The M dim fBm is characterized
by only 3 scalar parameters (i.e., mean, variance and H) while the GMM needs
32 gaussians, each one characterized by 1 scalar parameter, 1 mean vector and
1 covariance matrix, to achieve comparable performance results.

The results presented in this paper show that the M dim fBm requires less
computational load and provides a more accurate modeling strategy as compared
to the GMM. It is also shown that the pH feature adds substantial information
to the systems based on the mel-cepstral coefficients.



On the Performance of Hurst-Vectors for Speaker Identification Systems 521

References

1. O’Shaughnessy, D.: Speech Communication Volume 2. ed. IEEE Press (2000).
2. Sant’Ana, R., Coelho, R., Alcaim, A.: Automatic Speaker Verification Based on

Fractional Brownian Motion Process. Electronics Letters 40 (2004) 1232-1233.
3. Sant’Ana, R., Coelho, R., Alcaim, A.: Text-Independent Speaker Recognition

Based on the Hurst Parameter and the Multi-Dimensional Fractional Brownian
Motion. (To appear in IEEE Transactions on Speech and Audio Processing).

4. Reynolds, D., Quatieri, R., Dunn, R.: Speaker Verification Using Adapted Gaussian
Mixture Models. Digital Signal Processing 10 (2000) 19-41.

5. Esteller, R., Vachtsevanos, G., Henry, T.: Fractal Dimensions Characterizes Seizure
Onset in Epileptic Patients. IEEE Proceedings, ICASSP99 4 (1999) 2343-2346.

6. Morimoto et al. T.: Pattern Recognition of Fruit Shape Based on the Concept of
Chaos and Neural Networks. Computers and Electronics in Agriculture 26 (2000)
171-186.
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Abstract. In this paper, we describe and present an overall evaluation of several 
features for distributed speech recognition systems. These systems are based on 
a client-server architecture. This means that recognizers access only the coded 
parameters of the speech coder employed in communication networks         
(e.g., cellular mobile and IP networks). The recognition features considered in 
this paper are obtained from transformations of codec parameters. In particular, 
features generated from LPC and LSF parameters, in intervals of 10 ms and    
20 ms, are analyzed in a continuous observation HMM-based speaker            
independent recognizer. 

1   Introduction 

The growth of the Internet and mobile communication systems has stimulated a great 
effort to realize speech processing applications in these networks. A particularly impor-
tant problem is concerned with Automatic Speech Recognition (ASR) in a server sys-
tem, based on the extracted and quantized acoustic parameters at the user terminal. Such 
systems, usually known as Distributed Speech Recognition (DSR), are very attractive 
due to the complexity and large memory requirements of ASR systems. 

Speech coding schemes used in mobile communication systems and IP networks op-
erate at low bit rates and utilize, in general, LPC (Linear Predictive Coding) algorithms 
based on a speech production model. In this model, an excitation signal is applied to an 
all-pole filter (characterized by the LPC parameters), that represents the spectral enve-
lope information of the speech signal. Usually, the LPC parameters are transformed to 
LSF (Line Spectral Frequencies), due to attractive properties of the  latter to the quanti-
zation and interpolation procedures. Speech coders employed in cellular and IP net-
works use these parameters to caracterize the speech spectral envelope. 

In distributed ASR systems, it is preferrable to directly use the codec parameters than 
to extract them from the decoded signal [1]. Since these parameters are not the most 
adequate ones for the remote recognition system, it is important to consider and exam-
ine different codec parameter transformations, in order to improve the recognition per-
formance. The main contribution of this paper is to provide a global analysis of different 
speech features reported in the literature, aiming at improving the performance of DSR 
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systems. Moreover, the results are presented at two frame rates: 100 Hz (typical of 
speech recognizers) and 50 Hz (usually employed by speech codecs). 

Features obtained from the LPC and LSF parameters are described in Sections 2 
and 3, respectively. Experimental results are presented and analyzed in Section 4.    
Finally, conclusions are summarized in Section 5. 

2   Recognition Features Obtained from Transformations of LPC 
Parameters 

This section deals with the recognition features that can be extracted directly from the 
LPC parameters, without the need to reconstruct the speech signal. This approach is 
attractive for DSR due to the speech decoding structures used in mobile and VoIP 
(Voice over IP) systems. In these structures, LPC parameters are obtained in a stage 
prior to speech reconstruction. This means that speech features extracted in this stage 
are computationally more attractive. Moreover, as we have previously mentioned, the 
use of codec parameters is more efficient for speech recognition than generating    
features from reconstructed speech. 

Recognition features that can be obtained from the LPC parameters are the LPCC 
(LPC Cepstrum) and the MLPCC (Mel-Frequency LPCC) [2]. The LPCC are       
computed from the LPC parameters by means of a recursive equation, and the 
MLPCC are derived from a first-order all-pass filtering operation. 

2.1   LPC Cepstrum (LPCC) 

The extraction process of the LPCC features from the LPC coefficients is formulated 
in the z -transform domain, using the complex logarithm of the LPC system transfer 
function, which is analogous to the cepstrum computation from the discrete Fourier 
transform of the speech signal [2]. The i-th LPCC parameter is given by the following 
recursive equation 
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where ia  is the i-th LPC parameter, p is the LPC system order and G is the gain    

factor of the system. 

2.2   Mel-Frequency LPCC (MLPCC) 

The MLPCC feature is obtained by transforming the real frequency axis of the LPCC 
to the mel frequency scale. This is performed by a bank of  n  first-order all-pass    
filters, where n  is the number of LPCC features [3]. The filters have their first-order 
all-pass transfer function )(zψ  [4] given by 



524 V.F.S. de Alencar and A. Alcaim 

1

*1

1
)( −

−

−
−=
az

az
zψ  

(2) 

where a  is the all-pass filter coefficient and *a  is the complex conjugate of a . Each 

LPCC parameter, ic , is processed by a different filter. 

Since the purpose of each filtering operation is to approximate the mel scale       
frequency, it is important to analyze the relationship of the transfer function given by 
(2) and the transformation of the frequency axis. In order to simplify the filter         

implementation, let a  be a real number [5]. Now rewrite ψ , as a function of Ωje , as 

( ) )(Ω−Ω = θψ jj ee  (3) 

where Ω is the real frequency. From (2) and (3), we can derive the mel scale          
frequency as a function of the real frequency Ω : 

( )
( ) −Ω+

Ω−=Ω
aa

a

2cos1

sen1
arctan)(

2

2
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Changing the value of a  it is possible to adjust )(Ωθ  to the mel scale curve. At an 

8kHz sampling frequency, the value of a  that best approximates the mel scale curve 
is 0.3624 [5]. 

The outputs of the filter bank are the MLPCC features. 

3   Recognition Features Obtained from Transformations of LSF 
Parameters 

The Line Spectral Frequencies (LSFs) are often used for speech coding due to their 
high coding efficiency and their attractive interpolation properties [6]. 

Extracting recognition features from the LSFs avoids a speech decoding operation, 
as well as a conversion of LSF to LPC. A distributed speech recognition system that 
adopts this strategy becomes computationally more efficient than any other one based 
on speech reconstruction or LPC parameters. The recognition features which can be 
obtained from LSFs are the PCC (Pseudo-Cepstral Coefficients) [7], MPCC         
(Mel-Frequency PCC) [7], PCEP (Pseudo-Cepstrum) [1] and the MPCEP            
(Mel-Frequency PCEP) [1].  

It is worth to mention that these features, which are directly obtained from the LSFs, 
correspond to approximations of the LPCC and MLPCC features. Using these approxi-
mations we avoid to recover LPC parameters to obtain the recognition features. 

3.1   Pseudo-Cepstral Coefficients (PCC) 

The PCC is computed directly from the LSFs. However, its derivation is based on the 
LPCC. Mathematical manipulations and approximations allow it to be expressed in 
terms of the LSFs [7]. The n-th PCC is given by the equation 



 Transformations of LPC and LSF Parameters to Speech Recognition Features 525 

( )
=

+−+=
p

i
i

n
n nw

nn
c

1

cos
1

)1(1
2

1
ˆ  

(5) 

where iw  is the i -th LSF parameter. 

3.2   Pseudo-Cepstrum (PCEP) 

Using the mathematical expression of the PCC features, it is somewhat trivial to     

obtain the PCEP [1]. They are derived from the PCC by eliminating the ( )n

n
)1(1

2

1 −+  

term. Note that this term does not depend on the speech signal, i.e., it does not depend 
on the LSF parameters. The n-th PCEP expression is given by 
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It is fair to expect a good spectral performance of the PCEP because they provide a 
spectral envelope very similar to the one provided by the Cepstrum, wich is generated 
from the original speech signal [1]. The PCEP features have the advantage of         
presenting a computational load even lower than the PCC. 

3.3   Mel-Frequency PCC (MPCC) 

To obtain the MPCC features from the PCC, the LSFs iw  are replaced by m
iw , wich 

are defined by the transformation 
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This expression transforms the frequency axis of a particular set of parameters to 
the mel scale frequency axis [8]. The MPCC features are expressed by 
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where m
nĉ  is the n-th MPCC. 

3.4   Mel-Frequency PCEP (MPCEP) 

Following the same procedure described for the MPCC, we can express the MPCEP 
features by 
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where m
nd̂  is the n -th MPCEP. 
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4   Experimental Results 

The goal of the experiments carried out in this work is to determine which speech 
recognition features represent a good trade-off between recognition performance and 
computational load. Of course, the analysis is performed having in mind that they will 
be used in distributed speech recognition systems. Figure 1 illustrates the features   
extractors and systems to be investigated in this section. It should be remarked that 
the quantization effects are not being taken into account in this work. We focus on a 
global comparative analysis of the features at two different frame rates. 

 

 

Fig. 1. Features extractors and ASR systems 

According to Fig. 1, the following feature extractors will be examined: 

• Feature Extractor (1) – provides MFCC (Mel-Frequency Cepstrum              
Coefficients) features [9]-[10] from the original speech signal in 10 ms and in 
20 ms frame intervals 

• Feature Extractor (2) – provides the PCC, PCEP, MPCC and MPCEP features 
from the LSFs in 10 ms and in 20 ms frame intervals 

• Feature Extractor (3) – provides the LPCC and MLPCC features from the LPC 
parameters in 10 ms and in 20 ms frame intervals 

It is worth to remark that the MFCC is generated from the original speech signal. It 
is being considered here, in order to have a performance benchmark for the other   
features. It is also worth noting that the MFCC is usually employed in speech         
recognition systems that do not operate in communication networks. Note that this 
feature cannot be used in communication networks where there is no additional       
information transmission to the remote ASR system besides the one sent by the       
encoder. 

In all experiments, the feature extractors will generate one set of 10 parameters 
plus its derivatives ( Δ  parameters) representing a total of 20 recognition features. 

In the simulations carried out in this work, the speech frames have 25 ms duration 
and the frame rate is either 100 Hz or 50 Hz, depending on the desired rate of the LPC 
or LSF extractions. 

The 100 Hz frame rate was chosen because this is the usual value employed by 
speech recognizers to provide good performance. The 50 Hz frame rate was chosen 
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because this value is usual in voice coders operating in IP networks and mobile       
environments.  

The ASR system considered in our experiments, is a speaker-independent, isolated 
word recognizer. The speech database is composed of 50 male speakers and             
50 female speakers, each one repeating three times the digits 0,1,2,3,4,5,6,7,8,9 and 
the word “meia” in Portuguese. This represents a total of 3,300 words. A distribution 
of 70% and 30% of the speech database was used for training and testing,                 
respectively. 

The recognition systems use five-state continuous observation HMMs (Hidden 
Markov Models) with a mixture of three Gaussians per state. They were implemented 
with the HTK (HMM Toolkit) software [9]. 

Table 1 shows the recognition performance results when the features are extracted 
at each 10 ms and at each 20 ms.  This corresponds to 100 Hz and 50 Hz frame rate, 
respectively. It can be seen that the 20 ms feature generation yields a much lower  
performance (around 5 %) when compared to the 10 ms feature extraction. We can 
also verify that the mel scale features (MLPCC, MPCEP and MPCC) always provide 
better performance than the real frequency features (LPCC, PCEP e PCC). This      
difference is about 3 %. Moreover, it can be observed that the speech recognition   
features for distributed environments (MLPCC, MPCEP e MPCC) show fairly good 
results when compared to the MFCC, obtained from the original speech signal. The 
difference in recognition rate is around 1 %. 

Table 1. Recognition performance 

Frame Rate LPCC PCC PCEP MLPCC MPCC MPCEP MFCC

100 Hz 95.80% 94.60% 95.00% 98.30% 97.50% 98.20% 99.40%

50 Hz 90.80% 90.20% 90.40% 93.80% 93.10% 93.70% 95.00%  

It is important to remind that the MPCEP and MPCC features are obtained at the 
decoder first stage directly from the LSFs. On the other hand, the MLPCC features 
can only be generated at the second stage of the decoder, i.e., after the LSF/LPC   
conversion. These characteristics make the MPCEP and the MPCC computationally 
more efficient than the MLPCC. This is particularly interesting for systems that     
provide recognition services and do not intend to simultaneously reconstruct the 
speech signal. It can also be observed from Table 1 that the maximum performance 
loss of the the MPCC and the MPCEP, compared to MLPCC is 0.7%, at a frame rate 
of 50 Hz. 

An interesting conclusion that can also be drawn from Table 1 is that the MPCEP 
features always overperform the MPCC, besides being simpler than the MPCC. 

Finally, comparing the MPCEP and the MLPCC feature performances of Table 1, 
it can be seen that the difference in recognition rate is only 0.1% at both frame rates. 
This particular result is of major concern if we also take into account the               
computational complexity. Note that the MPCEP is an approximation to the MLPCC 
and provides a great computational saving over this feature. 
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5   Conclusions 

We have analyzed the impact of various speech features over the performance of 
speech recognizers. The features were obtained from transformations of the LSF and 
LPC parameters. The results presented in this paper can be useful to distributed 
speech recognition systems operating in mobile and IP communication networks. We 
have concluded that the MPCEP feature, obtained from LSFs, is the one that presents 
the best trade-off between recognition accuracy and computational load. Comparing 
the recognition performances for features extracted at 100 Hz and 50 Hz frame rates, 
we have observed a degradation of approximately 4% of the latter relative to the first. 
Note that the 50 Hz frame rate is the usual condition in speech codecs. It is clear, 
therefore, that additional processing techniques, such as parameter interpolation, have 
to be applied in order to achieve results that might be closer to the ones obtained at 
100 Hz frame rate. 
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Abstract. With the advent of very large redshift surveys, automatic
redshift measurement is becoming increasingly important. This paper
presents a similarity measure based cross-correlation method for the red-
shift determination of quasar spectra. Cross-correlation is measured only
for the redshift candidates that are determined by the emission line fea-
tures of the observed spectrum. The similarity measure is defined as
the weighted sum of several similarity evidences. Compared with the
traditional cross-correlation based methods, our method can be used
for higher redshift determination. Compared with the methods based on
spectral line matching, our method is less sensitive to the quality of spec-
tral line extraction. Experiment results indicate the high performance of
the method.

1 Introduction

The development of fiber-based spectrographs capable of observing hundreds of
celestial objects simultaneously has led to many large redshift surveys such as
SDSS, 2DF, LAMOST etc. Because of the sheer size of these surveys, it is be-
coming very important to develop methods of reliable and automated spectral
recognition. An astronomical spectrum consists of continuum, spectral lines and
noises. The continuum is produced by continuous radiation along wavelength,
and it is the low frequency ingredients of a spectrum. Spectral lines include ab-
sorption lines and emission lines, which are produced by some atoms in celestial
objects for absorbing or radiating energy at fixed wavelengths.An observed spec-
trum is shown in fig.1, where the horizontal axis denotes wavelength, the vertical
axis represents relative flux, the smooth thick curve denotes the continuum, and
the spectral lines are indicated. Because of the movement away from the earth of
celestial objects, the wavelengths of spectral lines in observed spectra are usually
larger than those in the rest frames. That is the redshift phenomenon. Redshift
is one of the most important parameters of celestial objects. It can be computed
by the formula Z = (λ − λ0)/λ0, where λ stands for the wavelength of a spec-
tral line in the observed spectrum, λ0 for its corresponding wavelength in the
rest frame, Z for redshift. Quasars (QSO) are the brightest and furthest celestial
objects detected up to now. They play a very important role in the search of the
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universe, and are given more and more attention. Redshift determination of an
observed QSO spectrum is a main task in QSO recognition.

Fig. 1. An observed spectrum

The observed QSO spectra have the following characters: firstly, the spectra
are usually contaminated heavily by noise so that the spectra vary drastically
from their rest frames; secondly, the observed wavelength range is limited, gener-
ally from 370nm to 780nm about, which is a part of overall wavelength of QSO;
finally, there are very few spectral lines in most spectra for their large redshifts.
These characters make it very difficult to determine the redshift automatically.

Existing automated methods for redshift determination can be divided into
two classes. The one is based on cross-correlation [1,2], the other is based on spec-
tral line matching. The most common technique [1] of the first class is the cross-
correlation of the observed spectrum with a set of templates, and the redshift is
determined by the location of the largest peak in the cross-correlation functions.
PCAZ [2] generalizes the cross-correlation approach by replacing the individ-
ual templates with a simultaneous linear combination of orthogonal templates
gained by using principle component analysis (PCA). Although these methods
are regarded as the most successful methods of automatic redshift measurement,
unfortunately, they can be used only for those galaxy spectra with small red-
shifts. The typical methods in the second class include the approaches of Hough
transform based [3] and density estimation based [4]. In these methods, spectral
line extraction is a key step. However, due to aforementioned characters of the
QSO spectra, the result of spectral line extraction usually is not satisfactory
so that the result of redshift determination is not reliable. In order to reduce
the dependence on the spectral line extraction in redshift determination, this
paper presents a novel cross-correlation method by combining the two classes
of methods. It determines the redshift candidates by the result of the spectral
line extraction firstly, and then measures the cross-correlation for the redshift
candidates. The novelty of the proposed method includes the following:
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1. Cross-correlation is measured only for the redshift candidates.
2. A new similarity measure is proposed, it can measure the similarity be-

tween two spectra more reasonably.
3. The new thresholding in feature extraction can improve the quality of

spectral line extraction.
The remainder of this paper is organized as follows. Section 2 introduces the

preprocessing of spectra. Section 3 introduces the feature extraction. Section 4
describes the proposed method. Section 5 discusses experimental results. This
paper is concluded in Section 6.

2 Preprocessing

The preprocessing of spectra includes sky subtraction, continuum subtraction
and de-noising.

Usually the spectra show a number of residual sky features in the regions of
strong atmospheric emission and absorption lines. Where these are the strongest
features in the spectrum, there is a danger that the correlation between the
strong lines in the template and the sky residual will be greater than the corre-
lation between the template and the much weaker spectra. We remove these sky
residuals by median filter in 6 nm bands around 557 nm, 630 nm etc.

Continuum subtraction reduces the smoothly varying background to zero
and essentially has the same effect as filtering out the long-period Fourier com-
ponents of the spectra. Without continuum subtraction, the cross-correlation
function shows a peak representing the cross-correlation of the two continua,
with a small spectral cross-correlation peak superimposed. In addition, the in-
tensities of spectral lines are not shown truly for the existence of continua. The
continuum is fitted from the observed spectrum by a median filter with a filter
window 60 nm wide. We divide the observed spectrum by the continuum, and
subtract one from the spectrum.

The noise in astronomical spectra can be roughly regarded as random white
noise, so soft- thresholding [5] is used for noise removal.

The middle part in fig.2 shows the result of the preprocessing of the spectrum
shown up in fig.2.

3 Feature Extraction

We call the spectrum after preprocessing line spectrum. Usually there are many
pseudo spectral lines on line spectra because of the heavy noise contamination
and the rough continuum fitting. The feature used in our method is the feature
wavelengths of the emission lines. How to extract all spectral lines from line
spectra is a hot potato. Spectral line extraction usually includes two steps: at
first, the line spectrum is thresholded; secondly, we search for the locations of
local maxima on the line spectrum, which are regarded as the feature wavelengths
of spectral line candidates. Because the intensity at peak of every spectral line
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is different, it’s difficult to choose an appropriate universal threshold. If the
threshold is too high, it’s possible that no spectral line is obtained. Conversely,
if the threshold is too low, many pseudo spectral lines will be obtained. Therefore,
the conjunction of local thresholding and universal thresholding by the formula
(1) is adopted here.

s(i) =
{

s(i), s(i) > T (i)&s(i) > T0

0, else
i = 1, 2, · · · (1)

Where s(i) is the intensity of the ith point on the spectrum, T (i) is the local
threshold at that point, T0 is the universal threshold, which is the lower limit
for intensities at the peak of spectral lines. We set T0 = 1.5 ∗ rms, where rms =√∑n

i=1 s(i)2

n denotes the root mean square (RMS) of the array{s(i), i = 1, 2, · · · , n}.
For a point on the spectrum, we take a fixed-width window centered by the

wavelength at the point and compute the RMS of the intensities of all the points
in the window, and choose c ∗ RMS as the local threshold for that point. By
experience, the window width is 100 nm and c = 2.5 in this paper. We found
in experiments that the result of the feature extraction was less sensitive to the
variation of the window width due to the sparse distribution of spectral lines.

Fig. 2. Preprocessing and feature extraction (up: original spectra; middle: the spectra
after preprocessing; low: spectral lines)

The thresholds are shown in the middle part of fig.2 and the emission line
candidates are shown low in fig.2.
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4 Redshift Determination

4.1 Redshift Candidate and Similarity Measure

Let L = {λi, i = 1, 2, . . . , N} denote the feature wavelengths obtained from
the observed spectrum. Let L′ = {λ′

i, i = 1, 2, . . . , M} denote the feature wave-
lengths of all emission lines on QSO template. Set

zc = λ/λ′ − 1 (2)

where λ ∈ L, λ′ ∈ L′.

Definition 1: If zc ≥ 0, we define zc as a redshift candidate of the observed
spectrum.

Let d−dimensional vector X and Y denote spectra A and B respectively.
We evenly divided the two spectra into K parts. Let X = [X1, · · · , XK ] and
Y = [Y1, · · · , YK ]. Set

rAB =
K∑

i=1

wi(XiY
T
i )
/
(‖Xi‖ ‖Yi‖) (3)

Where
K∑

i=1

wi = 1,widenotes the weight.

Definition 2: Define rAB as the similarity measure between spectra A and B.

4.2 Redshift Determination

Redshift determination based on similarity measure is composed of the following
four steps:

Step1: Perform the continuum subtraction for the QSO template.
Step2: Determine the redshift candidates of the observed spectrum by for-

mula (2).
Step3: Shift the QSO template after continuum subtraction according to

every redshift candidate and compute the similarity between the shifted template
and the observed spectrum of the sky and continuum subtraction.

Step4: Choose the redshift candidate corresponding to the highest similarity
as the redshift of the observed spectrum.

Remark1: The proposed similarity measure becomes the traditional one with
K = 1. Because the observed spectra always vary drastically from the rest
frame, if the similarity is measured traditionally, it’s possible that the similarity
corresponding to the redshift is lower than others due to the high local correlation
caused by noise disturbance or by the two strong lines corresponding to some
redshift candidates. Similar to the evidence theory [6], the similarity measure
proposed is the weighted sum of several similarity evidences. The principle of
setting the weights is that the smaller the angle between Xi and Yi, the higher
the weight wi.
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4.3 Comparison with the Traditional Cross-Correlation Based
Methods

This method is different from the traditional cross-correlation based methods
(here called CCM) in the following aspects. Firstly, CCM is based on the least
squared criterion, so it requires the wavelength range of the templates and the
observed spectrum must be identical, while our method has not the limitation
because it only needs to shift the template according to the redshift candidates.
Due to the limitation, CCM only can be used for low redshift spectra (gener-
ally with redshifts lower than 0.3), while our method also can be used for high
redshift spectra. Secondly, in fact, the cross-correlation in CCM is measured for
the samples produced by uniform sampling in a redshift interval, which can be
regarded as the redshift candidates in our method. It’s evident that the number
of the redshift candidates is smaller in our method than in CCM. Because the
value corresponding to the redshift is not necessarily the highest peak of the
cross-correlation function for those spectra with high noise contamination, the
error risk is lower in our method than in CCM.

5 Experiments

In this section, both simulated spectra and observed spectra are used to ver-
ify the effectiveness of the proposed method. The QSO template, as shown in
fig.3, is from Vanden Berk et al [7]. Because we can’t get the templates used in
CCM, in all the subsequent experiments, we don’t report the comparison with
it. The density estimation method (called DEM) is a typical method based on
spectral line matching. It includes the following steps: firstly, the spectral lines
are extracted and used to determine the redshift candidates; secondly, the den-
sities of the candidates are estimated; finally, the average of the candidates in a
neighborhood of the candidate with maximal density is regarded as the redshift.
The comparisons with DEM are reported. In the experiments, the spectra are
divided into four segments for the similarity measure, and the weight is set to
be 0.1 : 0.2 : 0.3 : 0.4 under the principle in the remark 1 .

5.1 Experiment with Simulated Spectra

In this experiment, the simulated spectra are generated by shifting the QSO
template with redshift values ranging from 0−2 with a step of 0.01. All simulated
spectra are digitized and linearly interpolated to the wavelength range of 380−
742nmwith a step of 0.5nm.

A Guassian noise with 0 mean and σ standard deviation (noise level) is added
to the spectra. The correct rate vs. SNR (SNR=1/σ) is plotted in fig.4. All the
results in fig.4 are the average value of 100 independent trials. It can be seen
from the figure that the correct rate is increased with the raising of SNR and
the correct rate reaches 97% above at the SNR of 6. This indicates that the
proposed technique is robust and effective.
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For a comparison with DEM, the corresponding result from DEM is also
plotted in fig.4. We clearly see that the two methods are incomparable at every
noise level. This is mainly because there are few spectral lines on the QSO
spectra when redshifts are larger than 0.5, and it is difficult for a method based
on spectral line matching to determine the redshift correctly under this condition.

Fig. 3. The quasar template Fig. 4. Correct rate vs. SNR

5.2 Experiments with Observed Spectra

In the following experiments, the test data includes 3056 observed QSO spectra
from SDSS data release2. The redshifts of these test spectra vary from 0 to 5.

Fig. 5. DEM Fig. 6. The proposed method

Comparisons with DEM: Fig.5 shows the results from DEM. Fig.6 is from
the proposed method. The horizontal axes denote the results obtained by the two
methods, and the vertical axes denote the redshifts from SDSS. The points on
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the line (y = x) denote the obtained redshifts are coincident with the redshifts
from SDSS. The correct rates in Figs. 5, 6 are 24.8% and 94.2% respectively.
The results show that the proposed method is superior to DEM. From the fig.5,
we can see that the error is mainly for those spectra with redshifts larger than
0.5. This indicates DEM is also not fit for high redshift spectra.

All methods based on spectral line matching have a high requirement for
the quality of the spectral line extraction. When there are more pseudo spectral
lines and fewer spectral lines in the result of spectral line extraction, it’s difficult
to get the right results for redshift determination. Comparatively, the quality
of the spectral line extraction has a lower effect on our method. In principle,
even if there is only one spectral line in the result of spectral line extraction, the
redshift can be determined correctly. However, it’s unlikely that every observed
spectrum agree with the template. As a whole, the proposed method overcomes
the defect of the methods based on spectral line matching.

Table 1. The correct rates under different tolerated error by different strategies

K=1 K=2 K=3 K=4 K=5 K=6 K=7
ε = 0.01 83.5% 86.1% 87.4% 87.1% 86.7% 85.9% 85.1%
ε = 0.02 89.5% 91.8% 93.1% 93.2% 92.5% 92.1% 91.7%
ε = 0.03 90% 92.4% 94% 94% 93.5% 93.1% 92.5%

Comparisons Among Different Similarity Measure Strategies: In this
part, different similarity measure strategies are compared. We evenly divide the
spectra into K = 1 ∼ 7 parts respectively. The weights are chosen as 1/K in every
similarity measure. Tab.1 shows the correct rates under different tolerated error
ε. From the Tab.1, we can see that under every tolerated error, the correct rate
is increased with the K varying from 1 to 3, while it is decreased with the K
varying from 4 to 7. The result by the traditional similarity measure (K =1) is
the weakest. This proves the proposed similarity measure is more effective and
reasonable than the traditional one.

6 Conclusion

Up to now, nearly all the existing methods of redshift determination are for
galaxy spectra with small redshifts, there hasn’t been a successful technique
for QSO spectra published in the literature. In this paper, we presented a new
cross-correlation method for redshift determination of QSO spectra based on
similarity measure. The similarity measure proposed, which is similar to the
evidence theory, is more reasonable than the traditional ones. The proposed
method overcomes the defect that high redshift spectra can’t be processed by
the traditional cross-correlation based methods. Compared with the methods
based on spectral line matching, our method is less sensitive to the quality of
spectral line extraction. Experiment results have demonstrated the proposed
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method is robust and effective. We think that the idea of the similarity measure
proposed can also be used in other areas that need similarity measure. Further
works will be dedicated to confidence analysis and error estimation.
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Abstract. Hierarchical hidden Markov models (HHMMs) can be used
for time series segmentation. However, it is difficult to obtain a desir-
able segmentation result, because the form of learning for HHMMs is
unsupervised. In the paper, we present a semisupervised learning algo-
rithm for HHMMs. It is semisupervised in the sense that the supervisor
teaches segmentation boundaries but not segment labels. The learning
performance of the proposed algorithm is demonstrated through an ex-
periment using music data.

1 Introduction

The hierarchical hidden Markov model (HHMM) was proposed by Fine et al.
[1] as a generalization of the hidden Markov model (HMM) with a hierarchical
structure. HHMMs can be used for time series segmentation. Here, segmentation
refers to the segmentation of a sequence into a number of sub-sequences, and
the sub-sequences are referred to as segments.

HHMMs have a great potential in segmentation, because HHMMs can model
time series with switching dynamics where each segment has its own dynam-
ics. However, it is difficult to obtain a desirable segmentation result in actual
problems using HHMMs, because the meaning of dynamics is subjective, or task
dependent, and the form of learning for HHMMs is unsupervised.

In the paper, we present a semisupervised learning algorithm for HHMMs. It
is semisupervised in the sense that the supervisor teaches segmentation bound-
aries (i.e. when the dynamics changes), but not segment labels (i.e. what dynam-
ics it is). For many time series data, it is much easier for humans to tell when
the dynamics changes than to tell what the current dynamics is.

As a related work, Cohen segmented facial video sequences based on emotion
using the Multilevel-HMM [2]. However, he used segmented data with segment
labels for learning.

2 Hierarchical HMMs

2.1 Review of HHMMs

We briefly review the hierarchical HMM[1,3]. An example of a HHMM is presented
in Figure 1. HHMMs have three kinds of states: internal states, production states
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Fig. 1. Example of a HHMM. Circles,
trapezoids and squares denote internal,
production and end states, respectively,
and the solid, dashed and dotted arrows
denote horizontal, vertical and forced
transitions, respectively.

and end states. State transitions are of three types: vertical, horizontal, and forced
transitions. We describe how to generate a sequence from the HHMM as follows:

1. Initialize the time index (t = 1), and start at the root state.
2. Vertical transition: perform a transition to a lower state from the current

(internal/root) state. If the transited state was internal, repeat vertical tran-
sition.

3. Emitting an observation: emit the observation Ot by the production state,
and then add 1 to the time index.

4. Horizontal transition: perform a transition within the same level. If the tran-
sited state was internal, return to 2. If the transited state was a production
state, return to 3 . Otherwise (i.e. transited to end state), go to 5.

5. Forced transition: perform a transition to the parent (i.e. calling) state. Then,
go to 4.

We assume for simplicity that all production states are at the bottom of the
hierarchy. We also assume that the root state and the first level states do not
have transitions to themselves.

2.2 Notations for HHMMs

d denotes the level of hierarchy: the level of the root state is d = 0, and the
maximum level of hierarchy is d = D. qD

t denotes the production state emitting
the observation Ot at t , and qD−1

t denotes its parent state. In order to simplify
notations, let qd

t:t′ = {qd
t , . . . , qd

t′}, Ot:t′ = {Ot, . . . , Ot′}(t < t′).
In addition, we introduce F d

t , as defined by Murphy [3]: F d
t = 1 means that

the state transition to the end state was performed at level d and time t, and
F d

t = 0 means that the state transition was not performed.
The model parameters b(i, v), Ad(i, j), and πd(k, i) denote the observation

density of the ith state, which indicates the probability of emitting observation
v, the horizontal transition probability into the jth state from the ith state at
level d, and the vertical transition probability into the ith state from the kth
state at level d, respectively (the forced transition probability is always 1.0).

2.3 Segmentation by HHMMs

We assume that the segmentation occurs when q1
t (i.e. level 1 state) makes a

horizontal transition. Segmentation is performed by finding the most likely state
sequence maxq1:D

1:T ,F 1:D
1:T

P (q1:D
1:T , F 1:D

1:T |O1:T ). It can be found by converting the
HHMM to an HMM, which has megastates [q1:D

t , F 1:D
t ], and then using Viterbi

algorithm of the HMM.
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3 Semisuprevised Learning Algorithm

A segment boundary is defined as the time between one segment and the next.
The segment boundary information is described as τt: τt = 1 when there is a
segment boundary between Ot and Ot+1, and τt = 0 otherwise (i.e. when Ot and
Ot+1 belong to the same segment).

We present a parameter learning algorithm from time series data with seg-
ment boundary information. The algorithm is an iterative algorithm that con-
tains two steps in each iteration: an inference step and a parameter update step.
In the inference step, the posterior probability of the hidden variables {qd

t , F d
t }

is calculated from evidence variables (i.e. observations and segment boundary
information: O1:T , τ1:T−1). In the parameter update step, the parameters are
updated from the posterior probability of the hidden variables.

3.1 Converting to an HMM

In order to simplify formulation, we first convert the HHMM to an HMM[3]. The
HMM is created using the HHMM stack (vector) state q1:D

t = [q1
t , . . . , qD

t ]′, to
yield the HMM (mega) state. If the megastate is I, then the stack state is q1:D

t =
[i1, i2, . . . , iD]′. The HMM parameters, the transition probability Ā(I, J), the ob-
servationdensity b̄(I, v), and the initial state probability π̄(I)), are given as follows.

Ā(I, J) =defP (q1:D
t+1 = I|q1:D

t = J) =
∑D

d=0A
∗(I, J, d) (1)

A∗(I, J, d) = P (q1:D
t+1 =J, F 1:d

t =0, F d+1:D
t =1|q1:D

t =I)

=
{∏D

d′=d+1[A
d′

(id
′
, end)πd′

(jd′−1, jd′
)]Ad(id, jd) if d �= D

AD(iD, jD) if d = D

b̄(I, v)def= P (Ot=v|q1:D
t =I)=b(iD, v) (2)

π̄(I)def= P (q1:D
1 =I)=π0(0, i1)

∏D−1
d=1 πd(id, id+1) (3)

3.2 Inference Step

In the inference step, we use an algorithm like the forward-backward procedure
of the HMM. We define the forward probability α, the backward probability β,
and derive the recursion formula as follows:

α(I, t) def= P (q1:D
t = I, O1:t, τ1:t−1)

=
∑

JP (q1:D
t−1 =J, O1:t−1, τ1:t−2)P (q1:D

t =I|q1:D
t =J)

× P (Ot|q1:D
t =I)P (τt−1|q1:D

t−1 =J, q1:D
t =I)

=
∑

Jα(J, t − 1)Ā(J, i)b̄(I, Ot)ρ(J, I, t − 1) (4)

β(I, t) def= P (Ot+1:T , τt:T−1|q1:D
t =I) =

∑
Jβ(J, t+1)Ā(I, J)b̄(J, Ot+1)ρ(I, J, t) (5)
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where ρ(I, J, t), a Boolean function to prevent a state transition in contra-
diction to the segment boundary information, is given as

ρ(I, J, t)def= P (τt|q1:D
t =I, q1:D

t+1=J) (6)

=
{

P (q1
t = q1

t+1|q1:D
t = I, q1:D

t+1 = J) if τt = 0
P (q1

t �= q1
t+1|q1:D

t = I, q1:D
t+1 = J) if τt = 1 =

⎧⎨⎩
1 if τt = 0, i1 = j1

1 if τt = 1, i1 �= j1

0 otherwise

The posterior probabilities of {qd
t , F d

t } are obtained from α and β as follows.

ξ∗(I, J, d, t) def= P (q1:D
t = I, F 1:d

t = 0, F d+1:D
t = 1, q1:D

t+1 = J |O1:T , τ1:T−1)

= P (q1:D
t =I, O1:t, τ1:t−1)P (q1:D

t+1 =J, F 1:d
t =0, F 1:D

t =1|q1:D
t =I)P (Ot+1|q1:D

t+1 =J)

× P (Ot+2, τt+1:T−1|q1:D
t+1 = J)P (τt|q1:D

t = I, q1:D
t+1 = J))/P (O1:T , τ1:T−1)

=
[
α(I, t)A∗(I, J, d)b̄(J, Ot+1)β(J, t + 1)ρ(I, J, t)

]
/
∑

I′α(I ′, t)β(I ′, t) (7)

γ∗(I, d, t) def= P (q1:D
t = I, F 1:d

t = 0, F d+1:D
t = 1|O1:T , τ1:T−1)

=
{∑

J ξ∗(I, J, d, t) if t=1, ..., T−1(
1 − A(id,end)

)∏D
d′=d+1A(id

′
,end)α(I,T )/

∑
I′α(I ′,T ) if t=T

(8)

3.3 Parameter Update Step

The model parameters are updated as follows.

γ(i, d, t) def= P (qd
t = i, F d+1

t = 1|O1:T , τ1:T−1)

ξ(i, j, d, t) def= P (qd
t = i, F d

t =0, F d+1
t =1, qd

t+1=j|O1:T , τ1:T−1)

ξe(i, d, t) def= P (qd
t = i, F d

t = 1, F d+1
t = 1|O1:T , τ1:T−1)

χ(k, i, d, t) def=
{

P (F d
t−1 = 1, qd−1

t = k, qd
t = i, |O1:T , τ1:T−1) if t = 2, 3, . . . , T

P (qd−1
1 = k, qd

1 = i|O1:T , τ1:T−1) if t = 1

Âd(i, j) =
∑T−1

t=1 ξ(i, j, d, t)∑T−1
t=1 γ(i, d, t)

, Âd(i, end) =
∑T

t=1 ξe(i, d, t)∑T
t=1 γ(i, d, t)

π̂d(k, i) =
∑T

t=1 χ(k, i, d, t)∑
i′
∑T

t=1 χ(k, i, d, t)
, b̂(i, v) =

∑
1≤t≤T s.t. Ot=v γ(i, D, t)∑T

t=1 γ(i, D, t)

where {γ, ξ, ξe, χ} is calculated by marginalization of {γ∗, ξ∗}. For example,

ξ(i, j, d, t) =
∑

L s.t.ld=i

∑
H s.t.hd=jξ

∗(L, H, d, t)

3.4 Extension to Incomplete Information

In the above, we discussed learning from complete information on segment
boundaries. Here, we extend the formulation when the information is incomplete,



542 N. Gotou, A. Hayashi, and N. Suematu

i.e. when only a (known) part of the time series is segmented. The extension is
simple. If there is no information between t and t + 1 (τt = null) , then we
simply set ρ(I, J, t) = 1 in (6). Note that if τt = null for 1 ≤ t ≤ T , then our
semisupervised learning algorithm becomes an unsupervised learning algorithm
originally developed for HHMMs by Fine and Murphy.

4 Experiment

As a test data, we used a song, ’I want to hold your hand’ (The Beatles, 1963).
The source CD audio is converted to 2.7562 KHz mono format, and then sub-
divided into 74.3 ms frames at a rate of 4.4 ms. There were 3289 frames in
total. Each frame is Hamming windowed and then parameterized using the Mel-
frequency cepstral coefficients (MFCC) (with first 5 harmonic numbers) to yield
a feature vector [4].

The segment boundaries were given by a supervisor based on phrase. The
model structure is illustrated in Figure 2(a). Since submodels at the second level
share the observation density (at the third level), the only differences in the

(a) Model structure
0 1000 2000 3000

time

st
at

e

(b-1) Supervised learning

0 1000 2000 3000
time

st
at

e

(b-2) Semisupervised learning
0 1000 2000 3000

time

st
at

e

(b-3) Unsupervised learning

Fig. 2. (a) Model structure presenting only vertical transitions. The horizontal transi-
tions and the end state are omitted. (b) Viterbi segmentation result of all data. Solid
curves are segmentation results of 10 trials, vertical dashed lines indicate the segment
boundaries based on the phrase given by supervisor.
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submodels are their transition probabilities, which determine the segmentation
result.

We compared the segmentation results of the three learning algorithms.
(1) semisupervised learning with complete information: The training data was
{O1:1649, τ1:1648}. (2) semisupervised learning with incomplete information: The
training data was {O1:3289, τ1:1648}. τ1649:3288 = null. (3) unsupervised learning:
The training data was {O1:3289}.

In model parameter learning, we used random initial parameters (but the
initial transition probability to the end state was limited to less than 0.0001).
We then segmented O1:3289 using the learned model. We performed 10 trials. The
segmentation results of the 10 trials are shown in Figure 2(b), which shows the
most likely state sequence for the first level states. We can see that the semisu-
pervised learning with complete/incomplete information gave better result than
the unsupervised learning, thanks to the segment boundary information. We can
also see that the semisupervised learning with incomplete information is slightly
better than that with complete information. We conjecture the reason as fol-
lows. Since the data size is small, the observation sequence without segment
boundaries O1650:3289 helps to learn the better model.

5 Conclusions

We have presented a semisupervised learning algorithm for HHMMs to segment
time series data. The learning performance of the proposed algorithm has been
demonstrated through an experiment using music data.
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Abstract. Compared with high sample-rate speeches, low sample-rate
speeches lose all high frequency components that outrange the Nyquist
frequency, which might severely impair the speeches’ sound effects. To
address this problem, this paper proposes a novel High-frequency (HF)
restoration method of low sample-rate speech based on Bayesian infer-
ence, which turns the restoration problem into a maximizing a posteri-
ori estimation. With this method, the relation between high frequency
components and low frequency components is first extracted from the
training set. The compatibility between neighboring audio frames is also
modelled by a one dimensional Markov Random Field. Then the ex-
tracted knowledge is adopted in reconstructing the original high sample-
rate signal for the testing low sample-rate audio. Experiments prove the
applicability and effectiveness of this method.

1 Introduction

Although the high frequency components of a typical speech audio has little
power compared with its lower frequency components, they still preserve rich
information and determine the speech audio quality to a large extent. This can
be proved by the fact that we always describe low sample-rate audio that has few
high frequencies as obscure and blur while associating high sample-rate audio
that contains abundant high frequencies with clear and bright.

In many real audio systems, however, high frequencies are quickly attenu-
ated and suppressed due to various reasons. This usually results in deteriorated
sound effects. To solve this problem, many EQ-based mechanisms have been
introduced to boost and compensate the high frequencies in the audio indus-
try. While these methods alleviate the problem, they can only be adopted to
emphasize existing but attenuated high-frequency content of audio files. The in-
creased need for cross-platform working has posed a new set of problems related
to low sample rates. For example, we would expect that low sample rate speech
from the telephone can have the same quality as the high sample rate audio of
CD. However, this cannot be simply achieved by upsampling[6], which carefully
remove all spectral components beyond the input signal bandwidth with a low

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3686, pp. 544–552, 2005.
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pass filter. To address this problem, in [2], an excitation algorithm is presented in
order to extrapolate the high frequencies that outrange the Nyquist frequency
from the existing lower frequency content. However, lacking the original high
sample rate audio, information concerning the high frequencies is not presented
by low sample-rate audio. This means that they just guess the high frequency
content in a heuristic way. Therefore, artifacts that are irrelevant to the speaker
would be inevitable in this system.

On the other hand, however, as one basic assumption in speech recogni-
tion, the spectrum of a specific speaker’s voice has a relatively stable pattern of
composing, which indicates that the high frequency components and the low fre-
quency components in one’s voice are related in a certain way. Therefore, if the
relation between high frequency components and low frequency components can
be learned from a training set, then the missing high frequency components in a
low sample-rate audio can be inferred based on this knowledge. Inspired by the
idea, we propose a novel HF restoration method of low sample-rate speech based
on Bayesian inference, which turns the restoration problem into a Maximizing a
Posteriori (MAP) estimation, and estimate the original high sample-rate speech
audio from the training audio.

The rest of this paper is organized as follows. Section 2 describes the princi-
ples and the algorithm of the proposed method in details. Experimental results
are shown in section 3. Finally, the concluding remarks and future research plans
are given in section 4.

2 Bayesian Framework for HF Restoration of Low
Sample-Rate Speech

In this section, we first introduce the Bayesian Framework for HF restoration
of low sample-rate speech. The two factors, likelihood and prior, which deter-
mine the optimization objective are then analyzed, followed by an algorithm to
optimize them. Finally, the feature selection of audio signal is discussed.

2.1 The Bayesian Framework

Consider an observed low sample-rate speech audio L composed by n overlapped
frames, i.e., L = {l1, l2, ..., ln}, and denote the corresponding high sample-rate
speech audio by H = {h1, h2, ..., hn}. Then the problem of restoration can be
simply described as: infer H with a given L.

For a specific speaker’s voice, the low frequency components relate proba-
bilistically to the high frequency components. Such a probabilistic relation can
be conveyed by the training audio. A reasonable deduction is that the test-
ing audio of the same person should also preserve this relation. Therefore, the
process of inferring H can be comprehended as, given L, to find the optimal
series of {h∗

1, h
∗
2, ..., h

∗
n} for H∗ as the reconstructed speech audio, such that the

probability P (H |L) would be maximized, i.e.,

H∗ = argmax
H

(P (H |L)) (1)
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This is a typical problem of MAP estimation. By Bayesian Theorem, it follows
that

H∗ = arg max
H

(P (L|H)P (H)) (2)

where, P (L|H) is called Likelihood, i.e., the probability of a given H producing
L; P (H) is called Prior, i.e., the probability of occurrence for the estimated H .

2.2 Likelihood and Prior

The likelihood function P (L|H) describes the probability of a high sample-rate
audio producing the corresponding low sample-rate audio. It can be written as

P (L|H) =
n∏

i=1

p(li|hi) (3)

where, p(li|hi) is the probability of hi producing li and depends on the transform
between the two. Intuitively, if a high sample-rate audio frame approximates to
the observed low sample-rate frame after downsampling, then the likelihood
would approximate to 1, per contra to 0. Therefore, it is desirable to model the
transform with a Gaussian probabilistic function, i.e., we define p(li|hi) as:

p(li|hi) =
1
Z

exp{−||Dhi − li||2/σ2} (4)

where, D is a downsampling operator, || · || is a certain distance measure to
describe the difference between Dhi and li, σ2 is the variance, and Z is a nor-
malization constant. We denote {||Dhi−li||2/σ2} by φ(li, hi). Therefore, P (L|H)
can be writen as:

P (L|H) = 1
Z exp{−Φ(L, H)} = 1

Z exp{−
n∑

i=1

φ(li, hi)}

= 1
Z exp{−

n∑
i=1

||Dhi − li||2/σ2}
(5)

Formula (4) suggests a straightforward nearest neighbor algorithm for this
task. For each low sample-rate frame li(i ∈ 1, 2, ..., n), we search in the training
set Htrain for the high sample-rate frame htrain,j(j ∈ 1, 2, ..., m) which can best
approximate it after downsampling. htrain,j is then used to replace li as the
restored high sample-rate frame hi. It should be emphasized that, in practice,
to ensure the low frequency component hl

i of hi unchanged after upsampling,
only the high frequency component hh

train,j of htrain,j is used for replacement
and is taken as the restored high frequency component hh

i of hi. Then hl
i, which

is generated by interpolation from li, is added to hh
train,j to generate hi, i.e.,

hi = hh
train,j + hl

i.
However, this simple method cannot preserve the smooth connection at frame

joints because it ignores the consistency of neighboring frames. In fact, the lo-
cal frame information alone is insufficient for HF restoration, which indicates
that neighboring primitives must be taken into consideration. Therefore, we
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propose to model the HF restoration of low sample-rate speech problem with a
one-dimensional Markov Random Field (MRF), so as to properly represent the
compatibility between frames in a non-parametric way.

The MRF model for HF restoration is shown in Figure 1. Each node in the
figure denotes an audio frame. Here, we let the low sample-rate frames be obser-
vation nodes, L, while the high sample-rate frames be hidden nodes, H . The lines
indicate statistical dependencies between nodes, where function φ is the likeli-
hood energy function defined above, and function ψ describes the compatibility
of each two neighboring high sample-rate frames. Similarly, two neighboring
frames are more compatible if they agree better in the overlap region, then the
prior potential takes small value consequently. Therefore, we define the function
ψ as:

ψ(hi, hi+1) = ||hi − hi+1||2hi∩hi+1
(6)

Fig. 1. Illustration of the MRF model for HF restoration of low sample-rate speech

Notice that if each frame is taken as a state and the transition probability
between states is defined as a function of ψ, then this model is equivalent to
a HMM, which is broadly used in audio modelling. The MRF model for HF
restoration of low sample-rate speech also facilitates the computation of the
frame prior. By Hammersley-Clifford Theorem, each MRF has a joint probability
in Gibbs form[1]. This is so-called Markov-Gibbs Equation. Therefore, the prior
P (H) can be expressed as:

P (H) =
1

ZH
exp{−Ψ(H)/T } (7)

where, ZH is a normalization constant, T is a control parameter. If only one-
order neighborhood is considered, then Ψ(H) can be expressed as the following
function of the prior potential:

Ψ(H) =
∑

i∈{1,2,...,n−1}
ψ(hi, hi+1) (8)

Hence,

P (Hhi) =
1

ZH
exp{

∑
i∈{1,2,...,n−1}

||hi − hi+1||2hi∩hi+1
/T } (9)
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To summarize, with the MRF model for HF restoration and Hammersley-
Clifford Theorem, we decompose the complex computation of the joint prior
probability into the computation of the local prior potentials ψ(hi, hi+1), (i ∈
1, 2, ..., n − 1). Then the constraint of consistency and compatibility between
frames is also guaranteed in this way.

2.3 Posteriori and Its Computation

Combine formulae (2)(5)(7), it follows the expression for the posteriori P (H |L),
i.e.,

P (H |L) = 1
Z×ZH

exp(−(Φ(L, H) + Ψ(H)/T ))

Then the optimization objective is equivalent to

H∗ = arg min
H

(Φ(L, H) + Ψ(H)/T ) (10)

Therefore, in the Bayesian framework, the HF restoration of low sample-rate
speech can be realized through 4 steps, as shown in table 1.

Table 1. Flow chart for HF restoration of low sample-rate speech in the Bayesian
framework

1. Divide the training audio Htrain and the testing audio L into overlapped frames;
2. Separate the high frequency components Hh

train from the training audio Htrain;
3. Upsampling the testing audio L by interpolation method to get the low frequency

components H l of the high sample-rate output;
4. Search in Hh

train for the optimal combination Hh∗ of hh
train,j(j = 1, 2, ..., m), such

that the formula (10) can be minimized by H∗, which is the sum of H l and Hh∗.
Then H∗ is the result of restoration.

The 4th step of the flow compares {Φ(L, H) + Ψ(H)/T } for each possible
combination of hh

train,j . However, the complexity of this computation increase
exponentially as the number of frames grows. To find a good tradeoff between
efficiency and effect, we adopt a one−pass algorithm[4], which only searches for
the frame that can best match the previously selected high frequency frame and
the current testing frame. We find that the one-pass algorithm is of satisfying
quality and utility for this problem, as it can both give good results and be
performed in real-time.

2.4 Audio Feature

To measure the difference between two audio frames for matching computation,
we need to specify the distance measure in formula (4). Here, Euclidean distance
measure is adopted. However, it is inappropriate to measure the Euclidean dis-
tance directly using the samples in each frame due to the possible phase shifts
and large sample size. Therefore, it is desirable to extract features from each



A Bayesian Method for HF Restoration of Low Sample-Rate Speech 549

frame and use them to compute the distance instead of using samples directly.
In this paper, we adopt the features of MFCCs.

MFCCs features are widely used in the field of speech recognition. They
are proved to be very effective in modelling the spectrum magnitude of audio
signals. The extraction of these features takes into account the human auditory
characteristics by adopting filter banks and transforms that are similar to human
auditory systems. A more detailed introduction of MFCCs is presented in [5].

3 Experiments and Results

In this section, experiments on human speech are presented to test the above
HF restoration method.

In the experiments, we record the speech of one male speaker in a common
meeting room with no other sound source. To improve the speech audio quality,
we filter the audio file with a denoiser using the CoolEdit software. We also
carefully remove all continuous blank frames that exceed 0.5s in length to make
the speech audio more compact. This results in a 10 minutes speech audio pool
with little backgrounds noise. The format of the original speech audio is 48kHz,
16bits and mono-channel. From the audio pool, we randomly select 4 minutes
continuous speech as the training audio, and a distinct 20 seconds continuous
speech as the testing audio. Testing audio is then downsampled to 6kHz. Both
the training audio and the testing audio are divided into 20ms frames with 5ms
hop-size. The choice of parameter T and σ in formula (4) and (7) is empirically
dependent. In fact, we can set one parameter to be 1 and estimate another. In
the experiments below, we set σ to be 1 and estimate T by a simple heuristic
search, which is set to be 0.15 and proves suitable for this problem.

Figure 2(a) shows the restored high sample-rate audio (middle) for the testing
set in the first 2 seconds in time domain, in contrast with the original audio
(above) and the upsampling result (below). Here, upsampling method is used
as a comparison model to produce results that preserve exactly the same sound
effects as the input low sample-rate speech. Therefore, comparisons can be made
at the same sample-rate. Compared with the original audio, the upsampling
result loses many fine details in that some small lumps and spindle structures
of the original audio degenerate to lines. Such lumps and spindle structures are
related to the most rapidly fluctuant components of the audio wave and therefore
correspond to the audio high frequencies. While the HF restored speech by our
method recovers these details quite well, which means the matching mechanism
is quite effective in retrieving the high frequencies.

In addition, the spectral configurations of these three audios are compared in
Figure 2(b). It is obvious that the high frequencies beyond 3kHz rapidly decay in
upsampling audio, while the spectra of our restored audio is of approximately the
same configuration as that of the original audio. This provides a more convincing
proof that the proposed method can well capture the relation between high
frequency components and low frequency components of the speaker’s voice,
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Fig. 2. Comparative Experiments Results. (a). Comparison in time domain. (b). Com-
parison in frequency domain. increases.

instead of guessing the high frequency content in a heuristic way. Therefore,
artifacts that are irrelevant to the speaker can be safely avoided.

To evaluate the quality of the HF restored audio, we adopt the MSE criterion
that is frequently used in Speech Enhancement [3]. This criterion computes the
mean square error (MSE) between the logarithms of the spectra of the original
and estimated signals. Generally, this criterion is believed to be correlated with
the quality of the speech signal and more perceptually meaningful than the MSE
between the original and estimated signal waveforms. We compute MSE value
for each frame and average over all frames. For validation consideration, we
also average over 10 runs with randomly selected 4 minute continuous training
set and 20 seconds continuous testing set. This produces the MSE values for
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Fig. 3. The MSE value decreases as the length of training set increases

the upsampling audio and our HF restored audio, which are 0.2641 and 0.1862
respectively. This result indicates that the quality of the restored speech does
improve. Furthermore, the experience of human auditory test supports the same
conclusion, i.e., compared with the upsampling audio, the restored audio by our
method sounds more clear and bright with less blur and obscureness that exist
in the low sample-rate audio.

Experiments also reveal that, the HF restored results are closely related to
the length of the training set. For evaluation, training audio with different sizes
are taken to compute the MSE values between output and the original audio.
Experimental results are given in Figure 3. It shows that when the length of
training set is small, MSE takes large values, while it decreases rapidly as the
length increases. When the length exceeds 80 seconds, the curve levels off except
some fluctuations within a small range. This also explains the reason why we
choose a small training set: 80 seconds would possibly be a sufficient length for
this task. However, much more experiments are needed to draw a more confir-
mative conclusion.

4 Conclusion and Future Work

This paper proposes a novel High-frequency restoration method for low sample-
rate speech based on Bayesian inference. With this method, the problem of HF
restoration is turned into a MAP estimation, by which the original high sample-
rate audio can be estimated as the optimal solution to formula (2). Compared
with the upsampling methods, this method can properly reconstruct the high
frequency components of the original audio instead of introducing artifacts that
are irrelevant to the speaker. The experimental results demonstrate the validity
and effectiveness of this method.
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Admittedly, the current method is not perfect yet. Although the quality of
restored audio is better than that of the upsampling result, there are still much
to improve compared with that of the original audio. To further improve the
method, our future work would focus on selecting a combination of features that
can better reflect the characteristic of the original audio. It also makes sense to
test our method on other kinds of audio data such as music, etc.
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Abstract. The nonlinear Multiuser Detection (MUD) in Direct Se-
quence Code Division Multiple Access (DS/CDMA) system can be
viewed as a two-class classification task. A new classification method
called Probabilistic Tangent Subspace (PTS) is introduced to be used as
an MUD. Due to the mobility of communicator, wireless communication
channels are in fact time variant. The uncertainties of the time-varying
channel’s coefficients cause the uncertainties of the Multiuser Interference
(MUI). On the other hand, the probabilistic tangent subspace method is
designed to encode the pattern variations. Therefore, we are motivated
to adopt this method to develop a classifier as a multiuser detector for
time-varying channels. Simulation results show that this MUD performs
better than that based on Support Vector Machine (SVM) for Rayleigh
fading channel in DS/CDMA system.

1 Introduction

In Direct Sequence Code Division Multiple Access (DS/CDMA) system [9], all
users transmit at the same carrier frequency in an uncoordinated manner. Among
these users, only one is the desired user and the others are all interfering users.
Therefore, this causes Multiuser Interference (MUI)[10]. Because of MUI, it is
difficult to recognize information bits of the desired user from the received se-
quence. Therefore, to cope with this problem, Multiuser Detector (MUD) [10]
has been proposed to detect the users of interest for DS/CDMA systems.

There are two kinds of MUDs: one is linear detector and the other is nonlinear
case. The linear detectors include linear minimum mean square error (MMSE)
MUD [3] [4] and linear minimum bit error rate (BER) MUD [5] [6]. However,
Linear detectors can only work when the signal classes are linearly separable. In
fact, in DS/CDMA system, the nonlinear separable cases are common. Then the
nonlinear detectors are proposed to solve this problem. The nonlinear multiuser
detection essentially can be viewed as a classification task. So, we use pattern
recognition methods to design detectors, including neural networks MUD [7] [8]
and Support Machine Machine (SVM) MUD [2].

Due to the mobility of communicator, wireless communication channels
are in fact time variant rather than time-invariant Additive White Gaussian
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Noise (AWGN) channels. For example, most digital communication channels are
Rayleigh fading channels [11]. The uncertainties in the time-varying channel’s
coefficients cause the uncertain distortions of the transmitted signals’ amplitude
and phase. These distortions will increase the complexity and the uncertainties
of the MUI, that is why an MUD performs better in AGWN channels than that
in Rayleigh fading channels.

In this paper, the nonlinear detector is considered. For time-varying channels,
neural network methods often require long convergence time and a large num-
ber of neurons, which make the implementation expensive. While SVM method
regards the patterns as invariant and tolerates only small variations of input
patterns while keeping the class label unchanged. However, it is more desirable
to take into account the effects of variations of the channels. This calls for the
adoption of invariant classification techniques.

There has been much research addressing to invariant classification problem
in machine learning and pattern recognition fields. These methods consider the
pattern variations and can give the invariant classification results while the vari-
ations are large. we interpret the channel’s time variations as the uncertainties
of its coefficients, which correspond to the uncertainties of pattern variations.
This interpretation motivates us to use these invariant algorithms as an MUD
for time-varying channel.

There have been some invariant algorithms for pattern variations, such as
Tangent Distance (TD) [13] [14] and Virtual-Support Vector Machine (V-SVM).
But these two methods need the prior knowledge of the variations, which is
difficult for time-varying channel because of its uncertainties of the channel
confidences. To cope with these problems, we introduce Probabilistic Tangent
Subspace (PTS) method [1] to the multiuser detection problem in time-varying
channel for DS/CDMA system. PTS method is a novel and practical way which
can encode the variations and need no prior knowledge of the channel. The sim-
ulation results demonstrate that PTS MUD gives better performance than SVM
MUD for the time-varying channel.

The rest of the paper is organized as follows. In Section 2, we describe the
model of DS/CDMA system and introduce the multiuser detection viewed as pat-
tern recognition problem. Section 3 gives the details about the PTS algorithm.
Simulation results will be given in section 4. Finally, we conclude in section 5.

2 MUD for DS/CDMA System

2.1 System Model

For many Code Division Multiple Access (CDMA) systems, it is instructive to
examine the structure of the signature waveforms employed, namely, Direct Se-
quence Spread Spectrum (DS/CDMA) [10]. Spread-spectrum signaling formats
feature large duration-bandwidth products. Generally, Barker sequence, M se-
quence, Gold sequence and Hadamard-Walsh sequence can all be used as the
signature code sequence in DS/CDMA system [12].
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The Model of discrete-time model of synchronous DS/CDMA downlink is
illustrated in Fig. 1.

Fig. 1. Discrete-time model of synchronous DS/CDMA downlink

In a Rayleigh channel, by passing through a chip-matched filter, followed by
a chip-rat sampler, the discrete-time output of the receiver during one symbol
interval can be modelled as

rrr(k) = h(k)
N∑

n=1

Anbn(k)sssn + eee(k) (1)

where, eee(k) is ambient channel noise with E
[
eee(k)Heee(k)

]
= σ2III. N is the number

of active users. An is the received signal amplitude of the nth user. h(k) is the
Raleigh channel’s coefficients. bn(k) ∈ {±1} is information bit from the nth user.
M is processing gain, sssn is M -by-1 signature code sequence of user n

sssn = [sn,1, · · · , sn,M ]T (2)

and sssT
nsssn = 1.

For convenience, we will assume that the user 1 is the user of interest. Con-
sequently, sss1 denotes the signature waveform of desired user 1. Our MUD is
required to detect the information symbol of user 1 b1.

2.2 MUD Viewed as Classification Problem

Through the above analysis, the received sequence rrr is corrupted by the inter-
fering users and the uncertainties of the time-varying channel’s coefficients. In
the actual applications, the task of the MUD at a bit period is only to detect
the information bit of the desired user (User 1). So the multiuser detection prob-
lem can be viewed as a classification problem. Based on this point, the received
symbol rrr(k) is mapped onto a feature space and the input of the classifier is the
features. The output of the MUD should match as better as the information bit
of user 1 b1(k).
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Due to the information symbol sequence of desired user 1 b1 ∈ {+1,−1},
the multiuser detection can be viewed as a two-class classification tasks. We
define the feature vector according to received signal rrr(k). As the time-varying
channel’s coefficients are complex, rrr(k) is M -by-1 complex vector. Therefore, in
our scheme, we concatenate the real part and the imaginary part of rrr(k) as the
features. Then, the features yyyF (k) ∈ R

2M can be defined as

yyyF (k) = [R{rrr(k)}, I{rrr(k)}]T
= [R{r1(k)}, · · · ,R{rM (k)}, I{r1(k)}, · · · , I{rM (k)}]T, (3)

and the label is b1(k).
Based on supervised classification method, we first train a classifier using

some prior received symbols. Then we use the classifier as a one-shot MUD.
The training process is out-line. However, detection process is on-line, we can
adaptively classify the received signal. Therefore, Our scheme is an adaptive
MUD.

3 Probabilistic Tangent Subspace Method

Probabilistic Tangent Subspace (PTS) [1] is based on Tangent Distance algo-
rithm. Its basic assumption is that tangent vectors can be approximately rep-
resented by the pattern variations. In [1], three subspace models are proposed,
including the linear subspace, nonlinear subspace, and manifold subspace mod-
els. The features of each sample yyyF (k) ∈ R

2M . If we assume that the feature
space R

2M is linear, we can apply the linear subspace method called PTS-I to
design the MUD.

3.1 Linear Subspace: PTS-I

Set the training sequence yT = {yi}m
i=1. For each yi, the features are yyyF ⊂ R

2M .
First we form the tangent vector set S according to

S = {z|z = y − yr, if c(y) = c(yr) and y ∈ N (yr)} (4)

where c(y) denotes the class label of sample y. N (yr) indicates the neighbor set
of prototype yr.

If μ is the mean vector of z, and Σ is the covariance matrix of z, then the
Mahalanobis distance is

d(z) = (z − μ)TΣ−1(z − μ) = uuuTΛ−1uuu =
2M∑
i=1

uuu2
i

λi
(5)

where Λ = diag{λ1, · · · , λ2M} is the eigenvalue matrix of Σ. And, uuu = UT(z−μ),
where U is the eigenvector matrix of Σ.
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Table 1. Algorithm for PTS-I MUD

Training:
Training set: T with the label L
Step 1: Obtain Σ by the tangent vector set;
Step 2: Perform eigen-decomposition (PCA) Σ = UΛ−1UT.
Step 3: Estimate the weight coefficient ρ.

Classification (Detection):
Test sample: rrr(k) ∈ R
Step4 : Project zr = rrr(k) − yr;
Step 5: Compute the error ε2(·);
Step 6: Compute the approximate Mahalanobis distance d̂(zr);
Step 7: Repeat Step 4-Step 6 for each rrr(k);
Step 8: Return the label of rrr(k).

PTS-I represents S as a linear space. The principal subspace of S is spanned
by the first p components, which is principal component analysis (PCA) on S.
Then, the Mahalanobis distance d(z) can be approximated by

d̂(z) =
p∑

i=1

uuu2
i

λi
+

2M∑
i=p+1

uuu2
i

λi
=

p∑
i=1

uuu2
i

λi
+

1
ρ

2M∑
i=p+1

uuu2
i =

p∑
i=1

uuu2
i

λi
+

1
ρ
ε2(z) (6)

where ρ is a weight coefficient.

ρ =
1

2M − p

2M∑
i=p+1

λi (7)

While classifying a sample yt, we project the linear variation zr = yt − yr

into the principal subspace. If the Mahalanobis distance d̂(zr) is the shortest,
the class label of yt is the same as that of yr.

3.2 The Algorithm of the PTS-I

Firstly, m received signals are used for training. After training, the following
K received signals are detected using PTS-I MUD. T = {rrr(k)}m

k=1 ⊂ R
2M

denotes the training set and the training label set is L = {b1(k)}m
k=1 ∈ {+1,−1}.

R = {rrr(k)}K+m
k=m+1 denotes the test set. The algorithm of the PTS-I [1] which is

used to design the MUD is presented in Table 1.

4 Simulation Results

In this section, we conducted simulations to evaluate the performance of the
PTS-I MUD. We simulate the performance PTS-I MUD while the Signal-to-noise
ratio (SNR) of the desired user 1 is varying. The increase of the SNR means the
decrease of the other interfering users’ interference. Also, for comparison, we
simulate experiments on SVM MUD, which is proposed in [2].
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Fig. 2. The comparison of BER for PTS-I MUD and SVM MUD at different SNR level
of the desired user 1

We use a Rayleigh fading channel [11] to model the time-varying channel. The
normalized Doppler frequency spread is set to be 3.4× 10−3 Hz. Gold sequences
[12] of length M = 31 are used as signature code sequences of all users. There
are ten active users in the DS/CDMA system. User 1 is desired user. Among
other nine interfering users, five users have an SNR of 30 dB each, three users
have SNR of 40 dB each, and another user has an SNR of 50 dB.

In the following, training set size is 500 signals, and test size is 5000 signals.
We increase the SNR of the desired user 1 and the simulations at each SNR level
of desired user 1 are averaged over 100 independent runs. Fig. 2 shows the results
of Bit Error Rates (BERs) at each SNR level of desired user 1. BER denotes
the total error bit rate of the two classes. At high SNR, the MUI is weak, so
the BER is low. By comparing the BERs for the two MUD, it is obvious that
the PTS-I MUD outperforms the SVM MUD at each SNR level of the desired
user 1.

5 Conclusions

In this paper, we apply two-class PTS-I classifier as an adaptive MUD for time-
varying channel in DS/CDMA system. The uncertainties of the channel’s coef-
ficients are interpreted as the uncertainties of pattern variations. Therefore, in
this scheme, the time variations of the channel can be partly encoded by the x
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PTS-I method. Simulation results demonstrate that this MUD provides satis-
factory performance and is superior to the SVM MUD.
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Abstract. This paper describes a new feature extraction method contributing to 
improvement of the performance of a handwritten Chinese character 
recognition system. By using enhanced weighted dynamic meshes based on 
nonlinear normalization, this method not only avoids the zigzags and other 
undesirable side effects introduced in the original Yamada et al.'s nonlinear 
normalization method but also avoids additional feature normalization process 
in the original Lian-Wen Jin et al.'s and WU Tian-lei et al.'s dynamic mesh 
method. Experiment on HCL2000, a handwritten Chinese character database, 
shows that our method achieves superior performance. 

1   Introduction 

During last few years, considerable progress has been made in research on 
handwritten Chinese character recognition ([1] and [2]), and pattern matching 
methods has become the main topic of research in this field. In pattern matching 
methods, statistical features are extracted from handwritten character, and the 
discriminative capability of these features is important to the performance of an 
overall character recognition system. 

Chinese characters have large number of categories, very complex shape structures 
and many similar characters as compared with Roman alphabet. For off-line 
handwritten Chinese characters, there are many kinds of shape variations involving 
variation of size and density, partial displacement, stroke translation, stroke 
inclination, stroke length variation, stroke width variation, broken and connected 
strokes, and so on. These characteristics, especially the shape variations, make 
recognition of off-line handwritten Chinese character one of the most difficult 
problems in the area of character recognition. To perform reliably in the presence of 
all these sources of variability, an off-line handwritten Chinese character recognition 
system must extract stable features that preserve enough useful information needed to 
distinguish characters correctly. Many methods, such as nonlinear normalization ([3], 
[4] and [5]) as a preprocessing step and dynamic mesh method ([6] and [7]) at feature 
extraction stage, were proposed.  
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Nonlinear normalization is to make feature projection histogram by projecting a 
certain density feature at each point onto horizontal- or vertical- axis and equalize 
feature densities by re-sampling the feature projection histogram. By correcting 
nonlinear shape variations and homogenizing the two-dimensional line density, this 
preprocessing method improves the stability and reliability of features extracted in 
following steps and improves the performance of pattern matching classifier. But in 
the meantime, it introduces some undesired deformations, like change in stroke 
directions, zigzags at stroke edge, change in relative location of strokes, increase of 
strokes’ cracks and change in thickness of strokes, etc. (see Fig. 1). These 
deformations may have a considerable impact on feature’s ability to represent the 
original character image, and further affects the recognition accuracy of the total 
system. 

Dynamic mesh method at feature extraction stage is to divide original image into 
several nonuniform meshes according to the density image of input image. By 
combining density equalization and nonuniform mesh division, this approach not only 
homogenizes the two-dimensional line density but also avoids the deformation 
introduced by nonlinear normalization. Because of nonuniform mesh division, the 
number of pixels in each mesh is not equal, so feature normalization is necessary after 
feature extraction. In this normalization process, each pixel is treated equally, so some 
useful information such as local area stroke density is lost and furthermore affects the 
accuracy of the total system. 

 

Fig. 1. Some undesired distortion introduced by nonlinear shape normalization – some stroke 
distortion, some zigzags at stroke edge, etc. Left one of each set is input image and right one is 
normalized image. 

In this paper, we propose a new feature extraction method using weighted dynamic 
mesh based on nonlinear normalization. Firstly the inverse-mapping function is 
calculated based on the density image according to our given density definition. The 
next step is to divide normalized image into uniform meshes, equivalent to dividing 
the original image into dynamic nonuniform meshes. At last, the features extracted in 
each mesh are accumulated according to the inverse-mapping function. In this way, 
each pixel in dynamic meshes achieves respective weight factor. So no more 
additional normalization is needed. This method keeps the regional weighting 
information, avoids the deformation introduced by nonlinear normalization, so it can 
represent the original pattern more effectively, and performs better in classification 
process. Another advantage of this method is that it can be conveniently applied to all 
the existing mesh division and feature extraction method without increasing the 
computation cost. 

The flowchart graph for this feature extraction method goes as follows: 
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2   Feature Extraction with Weighted Dynamic Mesh 

In this section, we introduce the typical process of feature extraction by weighted 
dynamic mesh based on nonlinear normalization. The Process goes as following four 
steps. 

Step 1 – Calculating Inverse-Mapping Function 

In this step, inverse-mapping function will be calculated based upon nonlinear 
normalization. There are many density definitions ([4] and [5]) available for nonlinear 
normalization. Lee and Park[5] compared the performance and computational 
complexity of existing nonlinear normalization methods and experimental results 
indicated that Yamada et al.’s method based on line density[4] performed better while  
 

 

Fig. 2. Definition of improved line density and character density features 
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having a higher computational cost and side effects of zigzags. For more suitably 
representing the structural characteristic of Chinese character and reducing the 
computational cost, we use improved line density by line interval. 

To describe the proposed method, we introduce the notation. Let B(i,j) be an input 
binary character image, whose size is I×J, i=1,2……I and j=1,2……J. Let h(i,j) and 
v(i,j) be horizontal and vertical line density of pixel (i,j), respectively. In our method, 
h(i,j) and v(i,j) is horizontal and vertical distance between neighboring strokes, 
respectively. (See Fig. 2) 

Let FH(i,j) and FV(i,j) be two characteristic density features of pixel (i,j). For pixels 
in background area, whose binary value is 0, characteristic density features are given 
as 

( ) ( )

( ) ( )

1
,

,

1
,

,

H

V

F i j
h i j

F i j
v i j

=

=
 (1) 

For pixels in pattern area, whose binary value is 1, characteristic density features 
are given by the average value of all the characteristic density features of pixels on the 
same row or the same column, and they reflect stroke densities at different area of 
character image effectively. The feature projection functions on x-axes and y-axes are 
defined as 
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Where aH and aV  are constants. 
Let (i’,j’) be the corresponding pixel in normalized image of pixel (i,j) in input 

image, and it can be calculated as (forward-mapping function) 

1

1

1

1

( ) ( ) 0.5 ,
( )

( ) ( ) 0.5 .
( )

i

H I
m

m

j

V J
n

n

I
i f i H m

H m

J
j f j V n

V n

=

=

=

=

′ = = × +

′ = = × +

 (3) 

Where A  is the floor of A. The inverse-mapping function can be define by 
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In this way the inverse-mapping function, which mapping pixel (i’,j’) in 
normalized image to pixel (i,j) in input image, is presented. We can see from Eq.(3) 
and Eq.(4) that each pixel in normalized image has one original pixel in input image, 
but due to the discrete nature of input image and normalized image, more than one 
pixel in normalized image may be mapped to the same one pixel in input image. In 
the following steps we will make use of this characteristic of inverse-mapping 
function. 

Step 2 – DEF Feature Extraction 

The directional element feature[9] is one of the most effective features in off-line 
handwritten Chinese character recognition. Here we extract directional element 
feature for every pixel on stroke edge in input image. 

Chinese characters consist of four kinds of elementary strokes: horizontal strokes, 
vertical strokes, left diagonal strokes and right diagonal strokes. The directional 
element feature tests for the presence of these strokes in binary image. Operation for 
this process includes the following two steps. 

1) Contour extraction 
Only pixels on contour will be used to extract feature vector. 

2) Dot Orientation extraction 
 In this process, four types of line elements - vertical, horizontal and two 
oblique lines slanted at ±45°, are assigned to each pattern pixel on the 
contour. For a center pattern pixel in a 3×3 mask, twelve cases are 
considered (See Fig.3). Here, eight neighbors are used to determine the 
direction of a pattern pixel. If the other two pattern pixel and the center pixel 
are on a line, one type of element is assigned; otherwise, two types of 
elements are assigned simultaneously. 

When this step is completed, four directional element features f0, f1, f2, f3 are 
generated for every stroke edge pixel (i,j) in input image.  

Step 3 – Uniform Mesh Division in Normalized Image 

At the rough classification stage and the fine classification stage, normalized image is 
divided into 5×5 and 8×8+7×7 uniform meshes, respectively. (See Fig.4) 
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Fig. 3.  12 connection types of stroke edge pixels corresponding to the four elementary strokes 

 

Fig. 4.  5×5 and 7×7+8×8 uniformly divided meshes on normalized image 

Let mesh(m,n) be one of the M×N meshes divided above in normalized image, the 
grid line for mesh(m,n) can be define as 

( ) ( )

( ) ( )

1 2

1 2

1
,

1
,

m m
x m I x m I

M M
n n

y n J y n J
N N

−= × = ×

−= × = ×
 (5) 

Where m=1,2……M and n=1,2……N 
Then mesh(m,n) can be defined as:  

( ) ( ){ }1 2 1 2, , | ( ) ( ), ( ) ( )mesh m n i j x m i x m y n j y n′ ′ ′ ′= ≤ ≤ ≤ ≤  (6) 

Where i’=1,2……I and j’=1,2……J 

Step 4 - Final Feature Accumulation 

Using the inverse-mapping function calculated in 2.1, we accumulate features for 
points extracted from input image in corresponding meshes of normalized image to 
compose the final feature vector F. Feature accumulation for the element Fd(m,n) of 
vector F  goes as 
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Where m=1,2……M and n=1,2……N, fd(i,j) is the dth directional element feature 
extracted for point (i,j) in 2.2, d=0,1,2,3 denote the four element directions. So the 
final feature F is a vector of size M×N×4 for M×N meshes division. For stroke 
density varies in different subareas, the times features in subarea is accumulated 
varies; therefore the number of pixels considered in each dynamic mesh are equal and 
further feature normalization is not necessary and the ability of representing original 
pattern is kept effectively. 

3   Discussion  

The main motivation of Yamada et al.’s nonlinear normalization method[4] is to 
correct nonlinear shape variations and to homogenize the two-dimensional line 
density so that the feature extracted is more stable and reliable for classification. 
However, due to the discrete nature of image and nonlinear sampling, undesired 
aliasing is introduced. Those aliasing, involving zigzags and so on, may have 
considerable impact on feature extraction. This is the main problem of this method. 

Conventional dynamic mesh method[6] can be treated as a special case of weighted 
dynamic mesh proposed in this paper in which the weighting factors for all the pixels 
are equal. This method avoid the aliasing problem presented above, but feature for each 
pixel is accumulated only once in a dynamic mesh, and as the size of dynamic mesh 
varies the number of pixels considered in it varies, so additional feature normalization is 
necessary and some useful discriminative information is lost in this process. 

Weighted dynamic mesh method proposed here combines the advantages of above 
two methods and avoids main problem of them. By using inverse-mapping function, 
we effectively homogenizing the two-dimensional line density without introducing 
any aliasing, and we make full use of original stroke shape characteristic; 
furthermore, information of local stroke density is well preserved and used and further 
feature normalization is avoided. It is more suitable for off-line handwritten Chinese 
character recognition. 

4   Experiment 

In this section, we apply the proposed feature extraction method to recognition system 
and compare it with Yamada et al.’s nonlinear normalization method[4] and Lian-Wen 
Jin et al.’s conventional dynamic mesh method[6] by experiment. HCL2000[8] 
handwritten Chinese character library collected by PRIS Lab, Dept. of Information 
Engineering, Beijing University of Posts and Telecommunications, Beijing, 
P.R.China. There are 1,000 sets of handwritten Chinese character samples written by 
1,000 Chinese people respectively in the library. Each set contain all the 3,755 daily 
used Chinese characters and some information about the writer (sex, age, job etc.). All 
samples are binary images of size 64 by 64. Some samples of off-line handwritten 
Chinese character used in our experiment are shown in Fig.5. In our experiment, the  
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Fig. 5.  Some handwritten Chinese character samples in HCL2000 database 

first 700 sets (marked as xx001~xx700) out of the 1,000 sets of HCL2000 were used 
for training, and the other 300 sets (marked as hh001~hh300) were used for testing. 
The 3,755 daily used Chinese character categories were used in our experiment. 

There are 3,755 categories of daily used Chinese character, so we need a pre-
classifier to reduce computational cost and speed up the classification process. Here 
we use 5×5 uniformly divided meshes to extract feature vector of size 100, and apply 
Euclidean discriminant function[10] to choose 30 candidates from 3,755 categories for 
fine classification later. 8×8+7×7 uniformly divided meshes are used to extract 
feature vector of size 452 for fine classifier, and improved Euclidean discriminant 
function is used to make the final decision from the 30 candidates. Let x=(x1,x2……xn) 
be an n-dimensional input feature vector, and u=(u1,u2……un) be the standard feature 
vector of a category. The improved Euclidean distance is given by 

( ) ( )2

1

,
n

i i

i i

x u
D x u

σ θ=

−
=

+
 (8) 

Where i  denotes the standard deviation of jth element, and  is a constant. By 
taking account variations of handwritten characters in the Euclidean distance, our 
improved Euclidean distance of Eq.(8) can detect small changes in character shape 
and improve the accuracy of overall recognition system with little increase in 
computational cost. Here we compare the performance of three feature extraction 
methods: nonlinear normalization method, conventional dynamic mesh method and 
weighted dynamic mesh method proposed in this paper. The result of this comparison 
is shown in Table 1. 

The recognition rate of system using Weighted Dynamic Mesh method proposed in 
this paper is 92.72%, 1.14% higher than the recognition rate of system using 
conventional dynamic mesh method, and 3.36 higher than the recognition rate of  
 

Table 1. Performence comparison of three methods 

Feature Extraction Method Recognition rates (%) 
Nonlinear Normalization method 89.36 

conventional Dynamic Mesh method 91.58 
Weighted Dynamic Mesh method proposed in this paper 92.72 
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system using nonlinear normalization method. From the point of view of error rate, 
ER of the new method proposed here reduced 13.5% than that of conventional 
dynamic mesh method. The experimental result shows that the proposed new feature 
extraction method is effective for handwritten Chinese character recognition. 

5   Conclusion 

In this paper, a new feature extraction method for handwritten Chinese character by 
weighted dynamic mesh based upon nonlinear normalization is proposed. This 
method has the advantage of avoiding undesired stroke distortion in the peripheral 
region introduced by nonlinear normalization and making full use of local density 
information of input image. Experiments on the HCL2000 handwritten Chinese 
character library have shown that the method outperforms existing nonlinear 
normalization and dynamic mesh methods. In future study, we will investigate the 
application of this feature extraction approach to other mesh division methods and 
other feature types. 
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Abstract. In this paper, we introduce a new approach to the computer 
transcription of handwritten Pitman shorthand as a rapid means of text entry (up 
to 100 words per minute) into today’s handheld devices, almost at the rate of 
speech.  It is different from previous applications of the same framework from 
two aspects: - firstly, a novel idea of using geometric attributes other than 
phonetic attributes in the abstraction of a phonetic Pitman’s shorthand lexicon is 
proposed.  Secondly, a Bayesian network representation for the organisation of 
shorthand-outline models is introduced, in which natural variability of Pitman 
shorthand is defined via different nodes and links.  Using a probabilistic 
Bayesian network, the system shows a noticeable robustness not only in 
transcribing a variety of genuine handwriting, but also in estimating missing 
vowel components that may have been omitted in speed writing. The accuracy 
of the new approach (92.86%) is a considerable improvement over previous 
applications. 

1   Introduction

To allow handheld devices to replace desktop computers for running tasks, a means of 
rapid text entry is necessary, preferably at a comparable or superior rate to typing on a 
keyboard. The transformation of a standard “QWERTY” keyboard into miniature 
ones in handheld devices make text input very slow (less than 10 words per minute 
(wpm)) [1].   Over the past 15 years, solutions that provide slow data input into 
handheld devices have been carried out by means of handwritten recognition systems: 
- Unistroke, Qucikwriting[2], and predictive text input methods such as Tegic’s T9 
and POBox[1].  Whilst these techniques speed up to an average rate of 25 to 40 wpm, 
the bottleneck of handheld computing still remains the same.  As Handheld devices, 
like PDAs, become increasingly popular as business appliances, the higher the 
demand becomes for fast data input, particularly for mobile note takers such as 
journalists. Today’s stenographers cannot take advantage of handheld computing, 
especially in speed writing, as none of the existing systems enable transcription of 
shorthand.  
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In fact, extensive research [3][4][5] on the computer transcription of handwritten 
Pitman’s shorthand has been carried out for over two decades.  However, the 
recogniser system being unable to detect smooth junctions and a lexicon post 
processor being unable to detect missing vowel components within an outline, limit 
the usefulness of existing systems.   Recently, Yang et al [6][7] introduced a new rule 
to detect a smooth junction of a shorthand outline and the new rule improved the 
classification accuracy by 55%.  Another recent work by Nagabhushan et al [8][9] 
concentrated on the linguistic post processing of shorthand outlines into orthographic 
English words with the use of modified dictionaries and concluded that further work 
is required in the homophones (outlines which are written similarly but have different 
representations) resolution area.  In addition, recent research highlights a critical need 
to cover the loss of data due to phoneme conversion in the linguistic post processing 
and to establish an efficient probabilistic framework in which uncertainty and 
dependency between components are well defined.   

In this paper, a novel approach to the post processing of handwritten Pitman 
shorthand by the use of probabilistic Bayesian networks is discussed. Firstly, an 
overview of the whole system of online recognition of handwritten Pitman shorthand 
is given and the need for primitive attributes, rather than phoneme attributes, in the 
linguistic post processor is explained along with examples. Then a closer view of 
Bayesian network implementation is discussed and experimental results and further 
work are stated at the end of the paper.  

2   Overview of the Whole System 

The system consists of two main components: - a recognition and a transcription 
engine. The recognition engine operates at a low level in which segmentation and 
classification of pattern primitives are carried out and the transcription engine 
operates at higher level in which segmented primitives are transliterated into related 
English words.  

Handwritten vocalised outline 
for the word “henceforward” 

/H/ 

/N/ 

/S/ 

/F/ 

/R/ 

/W/ 

/D/ 

Basic Pitman’s notations 

Fig. 1. A sample Pitman shorthand outline for the word “henceforward” 

In order to give the reader a quick understanding on the phonetic construction of 
Pitman shorthand, basic shorthand notations and a script written by a stenographer is 
shown in Figure 1.  Pitman outlines can be categorised into two groups: - vocalized 
outlines and short-forms. A sample script depicted for the word “henceforward” in 
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Figure 1 is a vocalised outline as its construction adheres to phonetic rules, whereas 
short-forms are single pen strokes especially defined for the 100 most frequently used 
English words without following any phonetic rules.  

An input outline is firstly distinguished between a vocalised outline (if there is any 
vowel notation) and a short-form (if there is no vowel notation). The major role of the 
recognition engine is to detect the dominant points of a vocalised outline and segment 
it into the most relevant fragments. Then, the segmented primitives are processed via 
a neural network classifier and a ranked list of pattern primitives, along with related 
pattern categories, is produced.  The role of the transcription engine is to take these 
classified pattern primitives and estimate the most likely candidate words for a written 
outline via outline models of the Bayesian network. The candidate words are then put 
through a sentence level interpreter and the best interpretation for a given outline is 
finally output using contextual information.   

With short-forms, a template-matching approach is used to recognise a limited 
number of symbols and a ranked list of words for a written short-form is produced at 
the end of the matching process. In order to choose the correct representation of a 
written short-form, the candidate words are also forwarded to the sentence level 
interpreter and the final selection is done by the use of contextual knowledge. 

In further sections, a closer view of the implementation of the outline model based 
on a Bayesian network is discussed. Firstly, reasons why a primitive attribute is 
preferred over a phonetic attribute to ensure a correct interpretation are discussed. 

3   Primitive Attributes vs. Phonetic Attributes  

To clarify the difference between “primitive attributes” and “phonetic attributes”, 
refer to an example given in Figure 2.  

                               /F/+/IY1/+/CH/+/ER0/ 
                  (a)                                   (b)                                           (c)  
 

Fig. 2. (a) A sample shorthand outline for the word “feature” (b) Two primitives included in an 
outline for the word “feature” (c) Four phonemes included in an outline for the word “feature” 

A Bayesian network in our system is based on primitive attributes. The reason why 
the Bayesian network operates on primitive attributes rather than phoneme attributes 
is due to the large number of production rules of Pitman shorthand invented for speed 
improvement purposes.  These allow multiple ways of pronouncing a single outline if 

 
A primitive attribute relates to a segmented geometrical feature of an outline such 

as a loop, a circle, a curve or a stroke.  Figure 2 (a) shows a sample shorthand outline 
for the word “feature” and the outline includes two primitive attributes i.e., a 
downward long curve  and a dot as shown in Figure 2 (b)). A phonetic attribute 
relates to a phonetic representation of an outline and a sample outline in Figure 2 (a) 
represents four phonemes i.e., a consonant /F/, a vowel /IY1/, a consonant /CH/ and a 
vowel /ER0/ as shown in Figure 2 (c).   
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there is a minor difference between geometric features such as size, length, thickness 
or the inclination of a stroke. Accurate expression of size, length, or inclination is 
practical for printed script; however it is less practical in human handwriting, 
especially if the script is written at speed.  In order to clarify the increase in ambiguity 
due to the conversion of primitives into phoneme values, the following examples are 
shown.   

Example 1: Appearance variation  

Basic Pitman’s shorthand 

/S+ R/ 
 
/S  T + R/ 
 
/W/ 

Handwritten outline for 
    a combination of  
    phoneme /S T R/  

 
(a)       (b) 

 
Fig. 3. Illustration of the incidence of phoneme variation due to confusion between a circle and 
a loop 

Example 2: Length variation 
As shown in Figure 4(a), different lengths of a curve represent different phonemes in 
Pitman shorthand according to a “double-stroke” rule, saying that if a curve is 
immediately followed by syllables /TER/, /DER/, /THER/ or /TURE/ the curve should 
be doubled in length and notations for /TER/, /DER/, /THER/, /TURE/ should be 
omitted.  While writing at speed, length is not always clearly shown in some outlines.  
In the phonetic based approach, the sample outline shown in Figure 4 (b) can be 
interpreted wrongly as /F IY1/ (e.g., the word “fee”) instead of /F IY1 CH ER0/ (e.g., 
the word “feature”) if the curve /F/ is not recognised as a long curve.  

As  shown  in  Figure  3(a),  typical notations for a combination of phonemes /S R/, /S 

T R/ and /W/ are a combination of an upward stroke  with a preceding circle , 
loop  and hook respectively.   Assume that a user writes an outline of /S T R / 
with no clear distinction between a circle, loop and hook as shown in Figure 3 (b), 
and assume that the circular primitive is classified as a circle  primitive instead of a 
loop  primitive by the recogniser, the /T/ phoneme is then lost in the output, 
resulting in an outline written with three phonemes /S T R/ being wrongly interpreted 
as an output with two phonemes /S R/.  Similarly, if a loop  primitive of a written 
outline (Figure 3(b)) is classified as a hook  by the recogniser, an outline 
representing the three phonemes of /S T R/ is interpreted as a single phoneme of /W/.  
According to experimental results, more than 50% of small hooks, loops and circles 
are thus confused and the direct conversion of primitives, which are prone to minor 
classification errors, into phonetic values leads to a wrong interpretation.    

In the primitive based approach, a normal-length curve and a double-length curve 
are simply remarked as a curve and therefore the word “feature” and the word “fee” 

contain the same types of primitives (i.e., a curve  and a dot ).  Therefore, a 
candidate list for the sample outline in Figure 4 (b) includes the word “feature” as 
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well as the word “fee” and a correct word can be extracted with the use of contextual 
knowledge in the sentence level transcription.  

In brief, conversion of phoneme attributes from inaccurate handwritten primitives 
allows the wrong candidates to appear at an early stage which subsequently further 
affects the transcription processes.  Therefore, our new approach works on a primitive 
level in which the system does not understand any phonetics, but is efficient at 
interpreting phonetically written Pitman shorthand.  The system does support 
generalization of large vocabularies via conceptual building blocks as in the phonetic 
representation, but the primitive attributes are more appropriate to cope with the 
unique features of Pitman shorthand.  

Double length and 
normal length outlines 

Handwritten outline for 
the word “Feature” 

/F IY1 CH ER0/ 
e.g, feature 

/F IY1/ 
e.g, fee 

(a)     (b) 

Fig. 4. Illustration of the incidence of phoneme variation due to length confusion 

4   Bayesian Network  

Bayesian network [10] is a directed acyclic graph where each node represents a 
mutually exclusive and collectively exhaustive set of random variables where the 
links signify probabilistic dependency between the linked variables.  It has been a 
remarkable tool in the domain of pattern matching for its outstanding ability in 
defining natural variability. Implementations of Bayesian networks in the domain of 
computer vision such as signature verification [11], and handwritten character 
recognition [12] have been addressed and the positive results of the work supports our 
motive for applying the same tool in resolving similar problems (natural variability)
in the recognition of handwritten Pitman’s shorthand. 

Implementation of the network in our system is described in the following three 
categories: -   

1. An outline model: a network clearly showing the relationship and distribution of 
pattern primitives in the formation of a shorthand outline.  In general, an outline 
model corresponds to one or more words and a lexicon is a collection of more 
than one outline model in the system. 

2. Inference: an algorithm updating the likelihood of individual primitives contained 
in an outline model with some evidence and a priori probability. 

3. Learning and selection: strategies to estimate an optimal likelihood of a primitive 
appearing in a particular outline model based on the training data and to select the 
best outline model that maximises the conditional probability of a given set of 
input primitives.  
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4.1 Outline Model 

An Outline Model is constructed by concatenating segmented primitives of a holistic 
outline according to their writing order with specified dependency.  In every outline 
model, vowel primitives are located around a tail section of the model, as they are 
written only after the construction of a whole consonant kernel. Therefore, primitives 
contained in an outline model do not adhere to a linguistic order. The network is 
constructed in a hierarchical structure such that the root node corresponds to an 
outline o and the leaf nodes Pi (i = 1, 2,..n) correspond to primitives contained in the 
formation of the outline o. Our network architecture is similar to a structure defined in 
signature verification work by Xiao [11].  The network is constructed with three types 
of nodes, which are related to three types of dependency between a primitive and a 
root node.  These three types of nodes are: - “Unique” node, “Virtual” node and 
“Hidden” node. 

Fig. 5. Illustration of the creation of a virtual node and a hidden node of an outline model with 
the aid of a screenshot of a demo system 

To clarify the creation of a virtual node and a hidden node, consider the example 
illustrated on a screenshot of our demo system in Figure 5.   The processing order of 
the system in Figure 5 is Box-A (i.e., ink collection and pre-processing), Box-B (i.e., 
feature extraction and classification), Box-C (i.e., Outline-model processing), and 
Box-D (i.e., candidate list creation) respectively. Detail explanation of the pre-
processing, feature extraction and classification can be found in our recent publication 
[6] and the creation of an outline model is explained in this section.  In fact, Bayesian 
network based outline models in Box-C are either updated during the training process 
or looked up for the N-best candidate words during the interpretation process. The 
current example in Box-C illustrates a sample outline model for the word “make” and 
the model includes two virtual nodes (denoted as “V”) and one hidden node (denoted 
as “H”) as shown.   

Writing area
An input outline for 
the word “make” 

Classification output
1st row: 3 possible primitives 
of the 1st segment 
2nd row: 3 possible primitives 
of the 2nd segment 

Transcription 
output
 e.g., make 

        Outline model   
     of the word  “make” 

C

BD

A
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The creation of “Virtual” nodes relates to an assumption that “If a particular 
primitive (e.g., the first primitive  of the sample outline model in Box C) is 

dependent on another primitive (e.g., the second primitive  of the sample outline 
model in Box C) and there is an optional relationship between them (i.e., either at 
most one or none of them can be true at a time), there is a mechanism that controls the 

values of  and , resulting in a virtual node V.”  In general, a virtual node 
relates to consonant primitives in our system. 

The creation of “Unique” nodes relates to an assumption that “If a particular 
primitive appears in every sample of an outline, the primitive can be considered as 
independent of other primitives and be linked directly to the root node.” 

4.2   Inference Algorithm 

The inference process of a Bayesian network involves updating the belief of nodes 
(e.g., primitives in our case) given some evidence and priori probabilities [11].  It is 
called the belief of a primitive denoted as BEL(P).  Among a variety of belief 
updating algorithms that support the Bayesian network, our work applies the message 
passing algorithm developed by Pearl[10] in which the belief of every node in the 
network is taken as the product of  and  messages, where  is a message received 
from each of its parents (if any) and  is a message received from each of its children 
(if any).  

In our system, before the arrival of any evidence, each node is initialised with  
and  messages.  The initialisation of  and  message depends on the type of node in 
the network. If it is a leaf node,  is set to , the message received from its parents and 
 is set to the confidence score of the node obtained from the training data. None of 

the  or  messages are initialised for virtual nodes or hidden nodes as they represent 
judgemental evidence. The root node is the topmost one in the network and does not 
have any parent; therefore a  message is set to (0.5,0.5) assuming there is an equal 
chance of taking a TRUE or FALSE value for this node.  

Upon the arrival of evidence, belief updating is done by the formula (1) derived by 
Xiao[11]: - 

                                 BEL (x)=  (x)  (x)                                                 (1) 
 

where  is a normalization factor, (x) is a combined message received from all the 
children of node X and (x) is a combined message received from all the parents of 
node X.  

Depending on the type of a node, (x) is calculated differently.  If it is a Root 
Node, (x) can be defined by the formula derived by Pearl [10] : -  

 

The creation of “Hidden” nodes relates to an assumption that “If a particular 
primitive (e.g., a vowel primitive  of the outline model in Box-C) appears or 
disappears from time to time and the variation does not adhere to any rule (e.g., 
omission of vowel components in an outline according to writers’ experience and the 
omitted locations are unpredictable), we can assume that there is a hidden mechanism 
that controls the value of  primitive, resulting in a hidden node H”.  In general, a 
hidden node is related to vowel primitives and the /R/ primitive in our system.  
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                            (x)=∏
j

Y xj ))((λ                                          (2) 

where Yj(x) is a message that a node X received from its child node Yj.
If a node is a hidden node, (x) is defined as : -  

(x) =    Yj(x) if a child Yj of the hidden node X is true                 
               0.1 otherwise                                                   (3) 

If it is a virtual node, (x) is defined as : - 
(x) =     Yj(x) if a child Yj of the virtual node X is true 

0.001  otherwise                           (4) 

4.3   Learning and Selection  

The Learning process includes finding the optimal maximum likelihood estimate of 
training parameters, and using these estimates to construct new outline models that 
are not included in the training data. Among a variety of learning algorithms that 
support a Bayesian network, the use of an appropriate algorithm depends on the 
structure of the network (whether it is known or unknown) and the evidence of nodes 
(whether they are fully or partially observable).  In our system, an outline model is 
firstly constructed based on the knowledge of a primitive lexicon, and therefore the 
structure of the network is known. Consonant nodes are always observable in the 
training data and the likelihood of a consonant primitive P to be confused with 
another consonant primitive Q can be formulated as: - 

     P(P|Q) = N(P=TRUE,Q=q)/N(P)                             (5) 

where, N(P)= N(P=TRUE, Q=TRUE) + N(P=TRUE,Q=FALSE).  This method is 
generally denoted as Maximum Likelihood Estimate (MLE). 

Vowel primitives are not fully observable in the training data and the estimate of a 
vowel primitive is not use to train a new outline model in our system.  The likelihood 
of vowel primitives included in the new outline model is set according to the 
confidence score of a lexicon.   
The Searching process includes finding an outline model that produces the highest 
posterior probability given the input primitives. If the ith outline model is denoted as 
Oi and the input primitives as P1, P2,.., Pn, the posterior probability of a written 
outline can be formulated as: 

               P(Oi| P1, P2,.., Pn) = P(Oi)P(P1, P2,.., Pn|Oi)                           (6) 

Outline models are searched by two level of filters: - firstly models with high joint 
probability of the first and last primitives are selected as potential candidates, which 
can be denoted as  

         argmaxi P(BNi|Fi, Li) =argmaxiP(BNi)P(Fi| BNi )P(Li| BNi)                   (7) 

where BNi is the ith outline model, and Fi and Li are the first and last primitives of the 
ith outline model.  This is a unigram approach investigated in our previous work [13] 
that takes the knowledge of the first and last primitives as a selection factor. 

For the second level filter, a model with the highest posterior probability is chosen 
as a correct representation for a set of input primitives and can be denoted as  
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       argmaxi P(BNi|P1, P2,..,Pn)=argmaxi P(BNi)P(P1,P2,..Pn|BNi)                     (8) 

where BNi is the ith outline model and P1, P2,..Pn are a set of input primitives given by 
the recognition engine.  

5   Experimental Results  

We carried out a small experiment to test the improvement made by the Bayesian 
network and to compare the results with our previous “Approximate Pattern 
Matching” approach [14].  The test is evaluated from the aspect of genuine 
handwriting and the experimental results are shown in Table 1 by comparing the two 
approaches.   

In order to test the transcription performance depending on different writers, we 
collected 423 Pitman shorthand outlines written by three shorthand writers.  A 
WACOM ARTZII digitizing tablet (active area 12 inches x 12 inches; coordinate 
range 30480 x 30480; resolution 1mm; sampling rate set at 200 points per second) 
was used.  The outlines include the whole range of Pitman primitives and are 
composed of nine similar sentences with 47 words.  60% of the data is used for 
training and 40% is used for testing purposes.  

The transcription performance of the two approaches is shown in Table 1 and the 
accuracy rate is based on number of correctly recognised words. For example, if the 
word “fee” is recognised as the word “feature”, then the recognition accuracy is 0%.  

As shown in Table 1, the best rate achieved by the Bayesian network approach is 
92.86% with the 7.14% error rate mainly due to inconsistent writing i.e. outlines which 
are legible to human readers, but are not consistent with the writing rules of Pitman 
shorthand. In order to test the transcription of an outline with missing vowel 
components, we randomly omitted vowel notations from the test data and evaluated 
the output.  The test showed that a candidate list produced an intended word, however 
the ambiguity of the list rises by 15% on average due to the omission of vowel 
components and it is a remit of our collocation analyser to choose the most relevant 
word in a sentence level transcription.  

Table 1. Experimental results of Bayesian network approach and Pattern Matching approach 

Average Transcription 
Accuracy of an intended 
word in a candidate list 

Bayesian Network 
based approach with 
the use of primitive 

attributes 
(New approach) 

Pattern Matching based 
approach with the use of 

phonetic attributes 
(Our Previous approach) 

Overall  92.86% 84% 
In the presence of 

vowel omission or 
confusion 

100% 0% 

In the presence of 
inconsistent writing 

0% 0% 

In the presence of 
classification error 

100% 100% 
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6   Conclusion

A novel approach on Bayesian network representation for the transcription of 
handwritten Pitman shorthand is described. The use of primitive attributes prevents 
unnecessary ambiguity of an early transcription stage and experimental results show 
that the approach is highly efficient in recognizing genuine handwritten Pitman 
shorthand.  The current approach is tested with a small amount of outline models (47).  
A large amount of training data is required for the real time transcription of 
handwritten Pitman shorthand with an average vocabulary of 20k words.  The 
approach is promising, and improvements on the training algorithm can prevent 
exponential time complexity.   Our further work is focused on the implementation of a 
training algorithm to represent a large lexicon of any domain with the use of a small 
training data set.  This includes further data collection and extensive testing to analyse 
the performance of the system in any domain.  
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Abstract. Based on the study of the specificity of historical printed books and 
on the main error sources of classical methods of page layout analysis, this pa-
per presents a new way to achieve an indexation of ancient printed documents. 
We have developed an approach based on the extraction and the quantification 
of the various orientations that are present in printed document images. The 
documents are initially splitted into homogenous areas in which we analyze 
significant orientations with a directional rose. Each kind of information  
(textual or graphical) is typically identified and labelled according to its  
orientation distribution. This choice of characterization allows us to separate 
textual regions from graphical ones by minimizing the a priori knowledge. The 
evaluation of our proposition lies on a document image retrieval using layout 
extraction criteria and can also be used to precisely localize graphical parts in 
various types of documents. The system has been tested with success over  
several ancient printed books of the Renaissance. 

1   Introduction 

In this paper, we present a work corresponding to a collaboration between three re-
search  laboratories dealing with document image analysis and the “Centre d’Etude 
Superieur de la Renaissance” of Tours. The CESR is a training and research centre 
which receives students and researchers wanting to work on all the different domains 
of the Renaissance using a rich library of historical books. The CESR wants to create 
a Humanistic Virtual Library but, until now, only bitmap versions of historical books 
that have been scanned or photographed are accessible. So, since a few years, the 
center is trying to build a more powerful system to index and diffuse their collections 
through the web.  
    In this context, we present first a study of historical book specificities in order to 
infer some invariant characteristics used during the automatic analysis of their layout. 
Then, we describe the classical extraction methods that are usually applied on such 
documents by focussing on their drawbacks.   
    In a second part, we present a new approach of ancient printed documents layout 
characterization that is robust to noise (in the background but also in the printed text 
or the graphical areas) and completely independent of the employed typography, the 
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characters size, the presence of graphical parts and of any particular editorial chief. It 
means that interest regions can be localized everywhere in the page with a total typog-
raphy free consideration. Finally, we show how it is possible to separate text from 
graphics without any a priori knowledge on the nature of the books and of the typo-
graphical tools. We only need some strong hypotheses of text alignment and regular-
ity. In the last part of the paper, we present a synthetic document image retrieval that 
illustrates the relevance of our layout analysis method. 

2   Context of the Study 

2.1   Characteristics of the Study 

The historians have accumulated many European ancient printed document collec-
tions. Those books come from different countries (France, Germany, Italy, Hol-
land,…) and different centuries (from the middle of the 15th to the end of the 17th). 
Books from the 16th century are characterized by a wide variety of forms and con-
tents, even if it was the beginning of the rationalization and codification of texts, of 
typography that provided an improved reading comfort. 
    At the beginning of printing, the fonts and the layouts of the pages were very close 
to the handwritten books [1]. Later, these printed documents were handcrafted and the 
technical constraints of the past reduced the regularity of book production (variations 
in spacing and margins, random alignment, etc.). These documents contain many 
defects due to the manufacturing process and the conditions in which these books 
were conserved. The variability of page layouts is due to either technical inaccuracies 
or liberties taken by the printer. There are no exact rules, but most of the time a body 
text part covers the majority of the page area with generally some notes in the mar-
gins. The page can also contain graphical parts of various sizes and some ornament 
patterns. In the text, we can find known structures like the titles and the subtitles, the 
paragraphs, the page numbers, and other more particular structures like the Catch-
words. The styles used can alternate, with normal style, justified or aligned on the left. 
Another characteristic of old printed books comes from weak separations between 
blocks of text (notes in the margins and body text for example). Lastly, we can notice 
that on some documents layout rules are always not respected. For example, an illus-
tration can overflow into the margins. To adjust all the lines on a page, the printer 
could vary the line spacing and the margins. This lack of regularity makes automatic 
layout analysis difficult. On the other hand, such century books are printed using only 
strokes and line-art graphics, which can be more easily segmented. Moreover, from 
one country (or century) to another the printed techniques and layout edition rules 
were quite different. That is why our corpus presents great variability in pages layout 
that does not exist in contemporary books. 

2.2   Evaluation of the Existing Methods on Ancient Books 

The quality of new segmentation methods has significantly increases those last ten 
years. Consequently, the software that are devoted to contemporain documents recog-
nition are often unsuitable to the processing of books of the Renaissance period even 
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if we corrected the skew and the curvature due to the book binding using Book-
restorer software for example. 
    The methods of structure extraction employed by software dealing with contemporary 
books can be classified in 3 main categories: bottom-up, top-down and mixed methods 
[2]. 
    Typical segmentation and information retrieval approaches lie on usual features 
analysis that are generally based on a connected components analysis or morphological 
and directional filtering as it is presented in other existing works [3, 4]. These traditional 
bottom-up methods are not adapted to the historical books with all their specificities 
presented in section 2.1 (especially non constant spaces between shapes). Thus, the 
great difficulty of their use lies on the introduction of many parameters that often lead to 
prohibitive processing times. 
    In the same way, the top-down and mixed methods [5,6,7] (horizontal and vertical 
projection, multi-resolution analysis) endures the same weakness: they need to much a 
priori knowledge about the documents to be effective (number of columns, width of 
margins, kind and place of ornamental letters…). So, whatever the method is, our tests 
have shown that these methods are not robust to the variability of our corpus. 
    That’s why, we have decided to use texture-based approaches. Gabor filters, autocor-
relation function, fractal or wavelet analysis are interesting methods because they allow 
a text/graphic separation without using any kind of structural information. In that con-
text, we have finally chosen to use the autocorrelation function that allows us to charac-
terize large area of text and graphics despite digitalization defaults, text skewness and 
other kinds of ancient document noises (ink dots, background spots…). 

2.3   Overview of Our Approach  

The aim of our system is to realize a robust indexation system that is adapted to large 
heterogeneous collections of ancient books. It must be adapted to an end-user, non-
specialist in document or image analysis. Thus, no threshold, document model and 
explicit structure have to be taken into account in the user interface. Due to this high 
level of constraints, we reduce the indexation process to help the user to build its own 
indexation. This one is finally based on both his own expertise and on the results of 
image analysis process. This process has been divided into three parts: 

− Unsupervised automatic extraction of homogenous areas in the images using 
only orientation features (by labelling pixels).  

− Classification of the different page layouts for one book using the position and 
the labels of the different extracted areas.  This classification should also under-
score different book layout styles. 

− Interactive process allowing precise segmentation and semantic labelling of his-
torical book elements. 

    This paper describes mainly the first stage of the automatic process. This first stage 
is a labelling process that organizes pages into different large classes of areas: back-
ground, text and non-text. This stage does not need any a priori information (except 
that text is horizontal). 
    After being resized, a simple separation of foreground and background based on 
homogeneous high grey level pixels estimation is applied. It can not be considered as 
a document binarization but it must be seen as a page separation into two main 
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classes. Then, the image is crossed by a window that extracts specific orientations 
information and marks each foreground pixel in two main classes: the text and the 
graphics classes. 

3   Page Layout Characterization 

Our approach lies on the estimation of relevant directions of significant parts of the 
image: the initial image is then splitted into homogenous regions in which we analyze 
significant orientations with a directional rose that has been initially proposed by 
Bres[8]. 

3.1   Directional Rose Computation 

The directional rose computation lies on the use of the autocorrelation function, which 
correlates the image with itself, highlights periodicities and orientations of texture. 
This function has been widely used in a context of texture characterization, [9]. Its 
definition for a bi-dimensional signal is the following. 
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    The autocorrelation function ),( jiCxx , applied to an image I, combines this image 

I with itself after a translation of vector (i,j). The different translations that are  
considered by the function give information on the different privileged directions in 
the image. With this principle, it is possible to detect orientations of the texture in the 
different parts of the image. For example, the translation of a line in the same  
direction leads to a great correspondence and is expressed by a great value of  
autocorrelation in the line direction. Inversely, in the orthogonal direction of this line 
the resulting value will be low. The autocorrelation underlines the objects’  
overlapping that is obtained by translation. This principle can be generalized to a set 
of objects having a common direction: in our work, we use it to show that text lines 
can be characterized by a horizontal privileged direction and can also be considered 
with a possible skew variation. The determination of relevant orientation is based on 
the application of successive gliding masks in the original image in which we  
compute an autocorrelation function that reveals periodicities and orientations in 
image. The principle of the autocorrelation computation lies on the frequencies  
decomposition of the analyzed image with a Fourier Transform (FFT) which avoids 
the highly complex development of the correlation. The Plancherel Theorem [10] is at 
the basis of this simplification.  

The autocorrelation result can be analyzed by the construction of a directional rose 
that reveals significant directions in the analyzed block image. The rose computation 
is based on the mean value that is computed from the autocorrelation result. Let’s 

consider 'I  the block of the image and {(x,y)} the set of coordinates in this image. 

We also consider θ as privileged direction in the area. The mean value θE  is then 

defined by the following formula: 
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    The directional rose represents the sum R(θi) of different values ),( jiCxx  (de-

fined in formula 1) in a given θi direction. So, the directional rose corresponds to the 
polar diagram where each direction θi that is supported by the Di line, is represented 
by the sum R(θi). For all points (a,b) of the Di line we have the following relation: 
From this set of values, we only keep relative variations of all contributions of each 
direction. So, the relative sum R’(θi) is the following : 
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    Figure 1 shows some examples of directional roses corresponding to 3 different 
initial images. 

 

Image 

  

Rose 

  

Fig. 1. Directional roses 

3.2   Directional Rose Analysis 

Due to its mathematical definition, the rose has interesting properties. In a situation of 
homogenous directions’ repartition of the pixels in an image, the rose is a perfect 
bowl (fig 2 part a). If we add a horizontal line (fig 2 part b), the fact that we only keep 
relatives variations (formula 4) implies that the rose has two invariant characteristics: 
one "peak" for the horizontal orientations (0° and 180°) and the same intensity for all 
the other directions (it gives an impression of "bowl").  
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Fig. 2. Text characterisation   

A homogenous text area has the same property: all directions are perceptible with a 
great regularity (that is systematically quantified by a variance measure) and the most 
important are the horizontal direction that is characterized by a significant characteris-
tic peak with an invariable maximal amplitude (figure 3a. If the text is not homoge-
nous: different sizes of text, non constant spaces….) in the studied area, the formula 4 
implies that the size of the "bowl" can decrease or even disappear (figure 3b). 

 

 

Fig. 3. Graphics characterization 

    The detection of graphical parts lies on this two following observations: if there are 
no horizontal significant directions, then we assume that the region contained in the 
analysed window is a graphical part with a great confidence rate (figure 3c). In the 
same way, if the main direction is horizontal without a characteristic "peak", then we  
 
 



586 N. Journet et al. 

 

can conclude that the region is a graphical part (figure 3d). All the other kinds of roses 
do not allow pixels labelling: it is often due to border zone analysis or to an area 
where there is not text enough to produce a significant "peak" or a "bowl". 

3.3   Evaluation of the Robustness of the Rose 

In our method, we always resize the images to be processed on a constant sized im-
age. Our tests confirm the mathematical theory: the resolution of the image does not 
change the shape of the rose. 
    We have also brought some tests about the robustness of our rose analysis algo-
rithm on degraded parts of some images as shown in figure 4. 

 

  

Fig. 4. Rose of a degraded text region 

    Our tests have shown that the rose is not sensitive to noise or image distortion but a 
minimum of 4 text lines is necessary to detect a text area. That is why in our method, 
the size of the analysis area is constant (128X128 pixels) while image sizes can be 
variable. Actually, the users have the choice to resize the image manually in order to 
have the minimum lines required in a 128X128 pixel analysis area or to use a constant 
size for the image (800x900 pixels). Then, the analysis area (a window) is moved 
iteratively all over the pixels of the image so as to give a label to each of them (back-
ground, text, non-text, unknown). 

4   Targetted Applications and Experimental Results 

4.1   Labelling Results 

In most images, all the different parts are well detected using the directional rose 
analysis. The main problem comes from non constant transitions that exist between 
blocks and from very huge characters sizes in some titles. Except these two special 
cases, our method gives quite good results and allows us to realize our purpose: a 
relevant separation of the pages into pre-labelled regions that also highlights the 
document visual content with a robust extractor (with same results whatever are the 
typography, the fonts, the background noise and the resolution). 
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Fig. 5. Examples of results 

    In the following results, the colors of the pixels are organized as follow: for text 
and graphics parts we choose respectively blue and red colors. The figure 5 shows a 
short panel of typical results. 
    A more consequent test has been realized on over 100 pages from five different 
books of the Renaissance.  The results provided by our algorithm have been compared 
with a perfect labelling according to a human (our ground truth). So, for text parts, the 
number of letters which were correctly, wrongly or miss detected has been manually 
enumerated.  For graphical parts, the number of graphical pixels which are correctly, 
wrongly or not detected has also been manually enumerated. Detection results are 
summarized in table 1. 

Table 1. Detection results (% of correct/wrong/missed detection parts) 

Text parts Graphical parts 

95/3/2 88/10/2 

4.2   Page Comparison 

We think that the complex problem of ancient document images indexation can be 
simplified by a global analysis of all pages of a book before taking any kind of physi-
cal or logical conclusion. As Shin and Maderlechner in [11,12] we want to compute a 
page classification. 
    With this page layout classification, we hope to extract editorial rules, special text 
(with specific typography) or graphical features to adapt the following processing.  
    By using only the percentages of text and non text pixels obtained with our algo-
rithm, we compute a similarity measure between images. Then, it is possible to find 
pages with similar layout by providing a request image (as in content based image 
retrieval). A simple distance is computed by the comparaison of the labelling of two 
images pixel by pixel using a Hamming distance (figure 6). 
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 Fig. 6. Pages comparison using only percentages of text and non text pixels 

4.3   Precise Page Layout Analysis 

The other possible use of the labelling deals with the location of illustrations that must 
be as precise as possible (sharpness of contours and in the frontiers of graphical 
parts). Our approach provides valuable information about the possible position of the 
graphical parts as shown in figure 7. 

 

 

Fig .7. Graphical parts segmentation using our labeling 
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    While being focused successively near all the red areas our experiments show that 
it is possible to merge this information with an algorithm of extraction of connected 
components. Thus, by analyzing the labels of pixels contained in all the selected con-
nected components, it is possible to extract in a very fine way the graphical entities 
without any parameters about the size of the graphical elements in historical books. 

5   Conclusion 

In the first part of the article, we have highlighted the sources of errors of the tradi-
tional methods of page decomposition using a characterization of page layout in the 
historical books. Then we present an efficient method for pixel labelling adapted to 
ancient printed documents. The originality of our approach lies on the development of 
a new extraction and analysis tool which separates textual and graphical areas from 
different kinds of ancient document images without any knowledge like thresholds, 
models, or structure information. The resulting document labelling is employed as a 
new feature for a relevant pages comparison. Current results are very promising.  
The content based classification of an entire book is a direct perspective of this  
contribution.  

Acknowledgements. To CESR-CNRS (France) for providing the images 
www.cesr.univ-tours.fr. 
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Abstract. Software analysis techniques, and in particular software “de-
sign recovery”, have been highly successful at both technical and business-
level semantic markup of large scale software systems written in a wide
variety of programming languages, and in particular have proven efficient
and scalable in assisting the resolution of the “year 2000” problem for
billions of lines of legacy source code. In this work we describe a first
experiment in applying the same technical solutions and tools that have
proven so successful in software markup to the more general problem
of semantic markup of text documents. In this early report we describe
our adaptation of the software analysis techniques, propose a general
domain-independent architecture for semantic markup using them, and
demonstrate its feasibility in a limited but realistic domain of application
by comparison with both raw and tool-assisted human semantic markers.

1 Introduction

Semantic markup [1] is the annotation of world-wide web or other natural lan-
guage documents to assign explicit real-world semantics to portions of the doc-
ument in order to allow for rapid identification of documents and parts of docu-
ments relevant to a particular question or purpose. Semantic markup represents
the essential difference in the vision of the “semantic web” [2].

Given the number and scope of documents on the world-wide web, transi-
tion to the semantic web vision cannot be achieved without large-scale efficient
automation of semantic markup [3]. It seems clear that full natural language
understanding systems will not be ready for this task for some time, and thus
lightweight, approximate methods may be our best hope for this immediate and
pressing need.
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2 Software Analysis and Design Recovery

Another domain in which such an immediate and pressing need for large scale
analysis of source texts has been faced is legacy software source analysis, which
successfully faced the “year 2000” problem only a few years ago. Some of the
most successful techniques for automating solutions to that problem utilized
“design recovery” [4], the analysis and markup of source code according to a
semantic design theory, to assist in this problem [5].

Design recovery from source code poses many problems in common with
natural language text processing: the need for robust parsing techniques, because
real documents do not always match the grammars of the languages they are
written in; the need to understand semantics of the source text according to a
semantic theory or ontology; semantic clues drawn from a vocabulary for the
domain; contextual clues drawn from the syntactic structure of the source text;
and inferred semantics from exploring relationships between semantic entities
and their properties, contexts and related entities.

Formal processes for software design recovery utilize a range of tools and
techniques designed and proven to address these challenges for many billions of
lines of legacy software source code [6]. One of these is the generalized parsing
and structural transformation system TXL [7], the basis of the automated year
2000 system LS/2000 [5].

In this work we propose to leverage the highly efficient methods and tools
already proven in the software analysis and markup domain as the basis of a
new lightweight method for semantic analysis and markup of natural language
texts, in the hope that we can attain similar performance and scalability while
yielding good quality approximate results.

3 A New Architecture

The architecture of our solution (Fig. 1) is based on the LS/2000 software anal-
ysis architecture [5], generalized to allow for easy parameterization by a range
of semantic domains. The architecture explicitly factors out reusable domain-
independent knowledge such as the structure of basic entities (email and web
addresses, monetary formats, date and time formats, and so on) and language
structures (object, document, paragraph, sentence and phrase structure), shown
on the left hand side, while allowing for easy change of semantic domain, char-
acterized by vocabulary (category word and phrase lists and contra-lists) and
ontology (entity-relationship schema and interpretation), shown on the right.

The process uses three phases. In the first stage, an approximate ambigu-
ous context-free grammar is used to efficiently obtain an approximate phrase
structure parse of the source text using the TXL parsing engine. Using robust
parsing techniques borrowed from compiler technology [8], this stage results in a
deterministic maximal parse even for badly malformed text. As part of this first
stage, basic entities such as email addresses, web addresses, monetary amounts,
dates, times and other word-equivalent objects are recognized grammatically as
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Fig. 1. Architecture of our semantic markup process

would be done in a programming language parser (Fig. 2). The parse is linear in
the length of the input and runs at compiler speeds. In our first experiments this
parse is relatively coarse-grained, ignoring language structure below the sentence
and verb-clause level.

In the second stage, initial semantic markup of the document is derived us-
ing a wordlist file specifying both positive and negative indicators for semantic
categories (Fig. 3). Indicators can be both literal words and phrases (e.g., “air
conditioning”) and names of parsed entities (e.g., “email”). Phrases are marked
up once for each category they match - thus at this stage a sentence may end
up with many different (even conflicting) semantic markups. Vocabulary word
and entity lists are derived from the ontology for the target semantic domain. At
present this is done by hand, but work is underway on automating vocabulary
and schema construction from a formal ontology. This stage uses the structural
pattern matching and source transformation capabilities of the TXL transfor-
mation engine in much the same way as it is used for software markup [9] to
yield a preliminary marked-up text in XML form (Fig. 4).

The third stage uses the XML marked-up text to populate an entity-relation-
ship database according to an ER schema approximating the ontology for the
domain. The schema is provided as an XML template (Fig. 5) derived (at present
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% International phone number grammar
tokens

longnumber "\d\d\d\d\d\d\d\d*"
zeronumber "0\d\d*"

end tokens

define phone
'+ [anynumber][opt zerocode][opt phone_separator]

         [repeat number_separator+][anynumber]
   | '+ [anynumber][opt zerocode][opt phone_separator][repeat longnumber+]
   | '( [opt space][opt '+][anynumber][opt space]')[space_number]
         [repeat separator_number]
   | '( [opt space][opt '+][anynumber][opt space]')[opt space]
         [repeat longnumber+]
   | [anynumber] [opt phone_separator] [repeat longnumber+]
   | [zeronumber][opt phone_separator][longnumber]
   | [zeronumber] [separator_number] [repeat separator_number+]
   | [repeat number_separator][longnumber]
   | [number_separator][number_separator][repeat number_separator][anynumber]
   | [opt '+][longnumber] [repeat space_number]
end define

Fig. 2. Part of TXL grammar for phone number objects

term : date
       [rented by] minimum maximum month months short long term terms 
       holidays holiday days lets let period periods
    |  { money price }

Fig. 3. Prototype category wordlist description for the “term” concept. This wordlist
specifies that a phrase or sentence may relate to the “term” concept if it contains a
“date” object and/or one or more of the words and phrases listed, and does not contain
any objects of the “money” category or the “price” concept.

3348 <type><location> Very elegant apartment located in Piazza Lante, 
just a walk from Fosse Ardeatine and 10 minutes to Colosseum by bus 
(Bus stop in the square) </location></type>. <facility> 75 smq in a 
charming, and full furnished environment </facility>. <type><facility>
The apartment has a large and well-lit living room with sofa bed a dining 
area, a large living kitchen with everything you need, a bathroom with tub,
a large double bedroom </facility></type>. <facility> TV, hi-fi and a 
washing machine </facility>. <facility><price> 1.200 euro a month, 
utilities not included </price></facility>. <contact> Write to 
pseudonym@somewhere.it or phone to 347.7894321 </contact>

Fig. 4. Example result XML-marked up accommodation advertisement. Low-level ob-
jects such as email and phone numbers, while recognized and marked-up internally, are
intentionally not part of the result since they are not in the target schema.

by hand) from the ontology for the target domain. Sentences and phrases with
multiple markups are “cloned” using TXL source transformation to appear as
multiple copies, one for each different markup, before populating the database.
In this way we do not prejudice one interpretation as being preferred; rather
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<ad>
    <location></location>
    <price></price>
    <contact></contact>
    <facility></facility>
    <term></term>
    <type></type>
</ad>

Fig. 5. Database template schema for accommodation advertisements

we assume that a single sentence or phrase may in fact be a reasonable answer
for all of the semantic categories it is marked as. The result of this stage is an
entity-relationship database in XML format suitable for importing into standard
database tools such as MySQL or MS Access.

Both the XML marked-up text and the database are products of our process,
the former yielding an approximate semantic markup of the original document
text and the latter serving as a query answering service yielding relevant sen-
tences and phrases from the document text in response to database queries.

4 A First Experiment

As a first proof-of-concept experiment in the application of our new method, we
have been working in the domain of travel documents, and in particular with
published advertisements for accommodation drawn from online newspapers.
This domain is typical of the travel domain in general and poses many prob-
lems commonly found in other text markup problems; partial and malformed
sentences, short-forms, location-dependent vocabulary, monetary, date and time
conventions, and so on.

In order to make a realistic test of the generality of the method, we restricted
ourselves to some constraints: no proper nouns or location-dependent phrases in
our vocabulary, raw uncorrected text, and no formatting or structural cues. The
human markers against whom we were testing could take full advantage of all
of this knowledge in their results, but the tool could not.

In the first instance we used a set of several hundred advertisements for
accommodation in Rome drawn from an online newspaper. The task was to
identify and mark up several categories of semantic information in the adver-
tisements according to a given accommodation ontology, which was reduced
by hand to an entity-relationship schema in XML format for input to our
system (Fig. 5). The desired result was a database with one instance of the
schema for each advertisement in the input, and the marked-up original adver-
tisements (Fig. 4).

5 Early Results

The evaluation of semantic markup presents a particularly difficult problem. Be-
cause human opinions on the “correct” markup can vary widely, ideally we should
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compare our automated results against a wide range of high quality human opin-
ions. However, in practice the cost of the human work involved is prohibitive for
all but the largest companies and projects.

In order to evaluate our initial experimental results, we designed a modest
but cost-effective three stage validation. At each stage, we were interested in
measuring the precision, recall, fallout, accuracy and error (using the definitions
of Yang [10]) for the tool’s automated markup compared to human opinions.
The tool was allowed 38 randomly chosen advertisements as a “training set”,
although no real training took place - rather, after encoding the target ontology
into the tool’s vocabulary and schema tables, the tables were allowed to be tuned
to do well on this first set by hand.

In the first stage, the tool and each of two human markers were asked to
mark up a sample set of ten advertisements different from the training set used
to tune the tool for the domain. The tool was then compared against each of the
human markers for this set separately (Fig. 6a), and then calibrated against each
of the two as definitive (Fig. 6b,c). By comparison with these (widely differing)
two human annotators, the system exhibited a high level of recall (about 92%
compared to either human, higher than either human compared to the other),
but a lower level of precision (about 75% compared to either human, whereas
they each exhibit about 89% compared to the other). However, the system was
able to show a 92% accuracy rating compared to either human, extremely high
for such a simple system.
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Fig. 6. First stage experiment - system vs. unassisted human markup
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Fig. 7. Third stage experiment - system vs. assisted human opinions

In the second stage evaluation, we were interested in measuring the effect of
the initial automated markup of the tool on human markup efficiency. The time
taken by an unassisted human marker to semantically annotate a new sample
of 100 advertisements was measured, and compared to the time taken by the
same human marker when asked to correct the automated markup created by
the tool. In this first evaluation he human marker was observed to use 78% less
time to mark up text with assistance than without, a significant saving. Because
the system was shown in the first evaluation to be more aggressive than humans
in markup, the majority of the correction work was removing markup inserted
by the tool. With an appropriate interface for doing this easily, the time savings
could be even greater than we observed.

In the third stage, we gave the human annotators the advantage of correct-
ing automatically marked up text from the tool to create their markups, and
compared the final human markup to the original opinion of the tool. For this
test, three sets of documents were used in addition to the original training set,
one new set of 10 advertisements from the same online newspaper, another set
of 100 from Rome, and a new set of 10 from Venice. The summary of results so
far is shown in Figure 7. Accuracy for all of the Rome sets is about 98%, and in
the new set from Venice, a completely different location, the accuracy was mea-
sured as over 95% with similar precision. A drop in recall to 80% is indicative
of locality effects from the original training set - a wider set will be needed to
make a general tool for advertisements.

Obviously these tests on this one small domain are insufficient to make any
meaningful statements about the generality or applicability of our new architec-
ture and method, and we are presently moving on to large scale tests in both
this and other domains, including travel websites, news stories and academic
publications in the coming months.

At best what we can say so far is that the results of our small study do
validate that there is a real potential for a fast lightweight method based on
the software design recovery model. Even without local knowledge and using
a very small vocabulary, we have been able to demonstrate accuracy compara-
ble to the best heavyweight methods, albeit thus far on a very limited domain.
Performance of our as yet untuned experimental tool is also already very fast,
handling for example 100 advertisements in about 1 second on a 1 GHz PC.
Performance has also been validated as linear on sets ranging from 38 to 7,600
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advertisements (about 2,500 to 500,000 words), at a rate of about 53 kb/sec on
a 1 GHz PC.

6 Related Work

Many systems have been shown to do well for various kinds of assisted or semi-
automated semantic tagging of large corpora. SHOE [11] and Ontobroker [12] for
example are pioneering tools providing machine assistance for manual semantic
markup, and AeroDAML [13] automatically generates DAML annotation sug-
gestions for Web pages given an ontology.

Recent work includes fully automated techniques more directly comparable
to ours. SemTag [3] for example has been able to process enormous amounts
of data, reporting accuracy measures of about 79% in identifying instances of
a given set of known entities in web pages. Using compiler-style tokenization of
source text followed by a search for entities of the very large TAP taxonomy,
SemTag expends much of its effort in disambiguating multiple tags using local
context. By contrast our system aims primarily at higher level markup, and tries
to minimize ambiguity using a combination of structural information from the
parse and contra-indicators in the vocabulary.

The KIM (Knowledge and Information Management) platform [14] is de-
signed for the purpose of implementing the full semantic web vision. Compiler-
style tokenization begins the process, followed by a split into sentences and
part-of-speech tagging. A gazetteer and ontology-augmented pattern-matching
grammars encode rules for markup of a large set of entities of general in interest.
In our system phrase structure is identified by the parse, and rules are driven
by simple word occurrences.

S-CREAM (Semi-automatic Creation of Metadata) [15] uses a framework
that includes a learnable information extraction component. Users hand-annotate
a corpus for training the learner, which infers markup rules for a subset of a given
ontology. S-CREAM utlilizes the same front end and basic set of steps as KIM,
its distinguishing feature being its automated inference of annotation rules from
the training set.

Our work differs from all of these approaches in three fundamental ways -
first, it uses an extremely lightweight but robust context-free parse in place of
tokenization, regular expressions and part-of-speech recognition. Second, it does
not use a gazetteer or knowledge base of known proper entities, rather it in-
fers their existence from their structural and vocabulary context, in the style of
software analyzers. And third, it has already been shown to handle higher-level
semantic markup for concepts above and depending on entities rather than just
the entities themselves.

Information extraction [16] is a closely related problem to semantic markup
with an even larger base of published work. Rather than markup of the doc-
uments themselves, the goal of information extraction is the population of a
template with slots for information to be extracted from semi-structured
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documents such as web pages. This corresponds to the third step in our pro-
cess (population of the database schema after semantic markup).

In general, techniques used for information extraction use patterns based on
syntactic and semantic constraints in some ways similar to our initial phrase
and object parsing stage. While much of the work in the information extraction
community is aimed at ”rule learning”, automating the creation of extraction
patterns from previously tagged or semi-structured documents [17] and unsuper-
vised extraction [18], issues our work does not address, the actual application of
the patterns to documents is in many ways similar to our method.

In particular, ontology-based methods such as Embley et al’s [19] are in some
ways quite similar, using a relational schema as the target structure where we
use an entity-relationship schema, and using keyword lists and constraints quite
similar to our own vocabularies. The major differences lie in the implementa-
tion - whereas Embley’s method relies primarily on regular expressions, ours
combines high-speed context-free robust parsing combined with simple word
search.

Wrapper induction methods such as Stalker [20] and BWI [21] which try to
infer patterns for marking the start and end points of fields to extract, also relate
well to our work. When the learning stage is over and these methods are applied,
their effect is quite similar to our results, identifying complete phrases related
to the target concepts. However, our results are achieved in a fundamentally dif-
ferent way - by predicting start and end points using phrase parsing in advance
rather than phrase induction afterwards.

7 Conclusions and Future Work

Obviously this work is only beginning. At most we have thus far demonstrated
that applying software design recovery techniques to semantic markup of doc-
uments is feasible and has potential. It is also clear that these techniques can
retain their efficiency in this new domain, exhibiting very fast linear performance
even without tuning, and it seems likely that they could provide high levels of
markup accuracy.

However, the work set out for us now is clear - testing and validation of our
method on large corpora and richer conceptual spaces so that a more meaningful
comparison with the state of the art can be done. While our method has done
well for our small but realistic first domain of application, it is by no means clear
that it will retain such high levels of accuracy as we scale to larger and richer
domains.

There are still a number of techniques used in software analysis that we have
not taken advantage of - alias resolution, unique naming, architecture patterns,
markup refinement and so on. In future we hope to explore these other techniques
to improve our semantic annotation architecture as well.
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Abstract. A multi-classifier formed by specialised classifiers for noise pro-
duced by an image is shown in this work. A study has been carried out in the 
case of structure noisy images. Classifiers based on neighbourhood criteria are 
used in this work, the zoning global feature and the Euclidean distance too. The 
experiments have been carried out with images of typewritten digits, taken from 
forms of the Bank of Spain. Trying to obtain a strong database to support the 
experiments, we have added noise to the images of the digits. The recognition 
rate improves from 64.58% to 96.18%. 

1   Introduction 

Human intervention in full scale digitization of documents is tedious because of the 
large amount of documents to be processed. Nowadays there are some recognition 
systems in the market (OCR) for typewritten texts but still they create many prob-
lems. The document digitization process is usually made starting with the isolated 
characters and sometimes this isolation process produces some image disturbances. 
The noise characters can be obtained through a bad quality of digitization or as a 
result of a bad segmentation [1] [2] [3]. 

Many authors use systems based on the combination of classifiers. These systems 
have different aims [4]: Efficiency [5] [6], improved performance [7] [8] [9], gener-
alisation [10]. Besides, [4] [11] makes a survey of some of the possibilities to com-
bine classifiers and the rules to combine them. Another classifier combination strate-
gies are given in [12] [13]. In our case, we need a multi-classifier in order to combine 
classifiers with a different purpose. Each classifier will specialise in a type of problem 
or distortion and together, by means of a decision rule, will provide a result by com-
mon consent. 

Another point discussed in this item makes reference to the disturbances produced 
by digitization or segmentation defects, which will result in noisy or blurred numbers, 
with thickness defects or cuts with loss of structure. Each one of these disturbances 
has been solved independently, that is with sub-systems which provide a good rate of 
success with some disturbances but with different results before other types of distur-
bances. 

The basic aim of the proposed model of this work is to obtain a multi-classifier 
formed by specialised classifiers for each type of noise produced by an image.  Each 
classifier gives a decision, depending on the applied process adequate for the type of 
noise it is treating and which, supposedly, has the image. The decisions adopted by 



602 A. Cortes, F. Boto, and C. Rodriguez 

each classifier will be treated jointly in a global discriminating function. Should an 
individual classifier treat images of patterns outside its specialisation, normally the 
decision of that classifier will not be very reliable and the global discriminating func-
tion will disregard the classifier for these patterns. 

The paper has the following structure. Section 2 describes the model, section 3 
shows types of disturbances and section 4 a study of the model proposed with noisy 
digits. 

2   Specification of the Model 

This is a general description of a Multi-classifier (Multi-stage and Multi-specialist) 
model [10]: 

 MC (s, {S0 …... SS}) 
 where s is the number of stages of the multi-classifier and {S0 …. Ss} the 

stages for the multi-classifier 
 A stage is defined as: 
 Si(nci, {Ck, ….. ,C1} fi) 0  i  s 
 where nci is the number of channels, {Ck, ….. C1} is the set of channels of 

that stage and fi  the decision function of stage i. 
 A channel is defined as: 
 Ck (ipk, frk, Nk) 

 Where ipk is the inverse transformation applied to that channel, frk is the type 
of feature, and Nk the learned set (net) used in channel k. One or several channel can 
be repeated in different stages. If channel Ck is performed in Si  and Sj for j > i, the 
classification result for Ck is the same in both stages. 

Each classifier or channel k returns a confidence value and its output classes 
(Classk1 and Classk2) of the two nearest patterns (2-NN classifier [14] [15]), with its 
corresponding distances, Dk1  and Dk2, given that Classk1 Classk2. The distance be-
tween to patterns is defined as: given a learned pattern belonging to class Classk (R1, 
R2, ….. RD) within a dimensional space D and an entry or test pattern also belonging 

to class Classk (P1, P2, ….. PD) , the Euclidean distance is defined as 
=

−
D

i
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0
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The confidence value of each classifier is defined as 
2
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k

k
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In all the experiments described in section 4 only multi-specialist systems are used 
(figure 1), so the channels in the multi-classifiers perform in parallel (the number of 
stages is one, s = 1). The feature used (frk) is the zoning global one [5] with 8x5 di-
mensionality. A decision function determines which classifier provides the classifica-
tion result as a combination rule. The decision function (F) is the same for all the 
experiments in this work: decided class Classk1 of k channel, with the best confidence 
value (Vk). 
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Fig. 1. Multi-specialist classifier description 

3   Types of Disturbances 

In digitization systems, due to different reasons, we often find that the obtained digit 
has some structural deformation, added information or some type of disturbance 
which makes recognition difficult and even annuls it (figure 2). 

 

                          
 

Fig. 2. Some examples of image disturbances: Blurred, salt and pepper, thick and annex lines 

The usual recognition systems have high levels of success with well conformed 
digits, but the problem arises when recognising badly segmented digits or digits with 
a bad digitization, even weakened by defective writing instruments (matrix printers 
generate sources difficult to be recognised). 

All these disturbances can appear, either alone or combined with the other, which in-
creases the complexity of the problem because to obtain an adequate inverse disturbance 
to make the used feature more reliable and discriminating becomes really difficult. 

B A C 
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The basic idea we propose to solve these disturbances or deformations is to create 
the inverse process to the deformation in order to return it to its original state or to 
approach the standard shape of the digit, such as [10] proposes. 

The feature used, zoning (that is similar to a low-pass filter) and morphological 
transformations [16] [17], tried to solve the blurred, salt and pepper and thick images 
(figure 2A). 

Structure disturbances generally appear due to a bad segmentation and it takes the 
form of points, annex lines or parts of these digits (Figure 2B). The inverse transfor-
mation for this problem is to try to suppress the part blocking the correct recognition 
by cutting the image. 

In this work we present our solution for the images presented in figure 2A and 2B. 

4   Study of Specialisation of Digits with Noise 

A study has been carried out to verify the properties of the specialisation of the classi-
fiers or channels in the case of noisy images. 

The learning data base and test data base are different. The learned set used for all 
channels, which we call NET, has been created ad-hoc, with well defined images of 
typewritten digits of Microsoft sources (concretely 1001 images). The test data has 
images of typewritten digits, taken from forms of the Bank of Spain: 14.750 test dig-
its, out of a total of 100.000, of different sources, have been considered and the 
classes are uniformly distributed. 

We have added noise to images of digits, trying to obtain a strong database to sup-
port the experiments. Annex lines have been added to 14.740 images, both in their 
upper and lower parts, simulating typical segmentation errors, where images have 
noise coming from the cell including the digit. In images with annex lines, both in 
their upper or lower parts, three groups will be found: little noise (10%), moderate 
(20%) noise, and excessive noise (30%), as the amount of noise is variable in real 
cases, depending on the segmentation error. 

The disturbed images considerably decrease the reliability of the system because 
the characteristics of the noisy images confuse the classifier.  

The system proposed for the recognition of this type of disturbance contemplates 
the need to obtain the original image or noise free image, cutting the same in its upper 
or lower part in a percentage depending on the noise level. 

The table 1 shows the classifiers or channels used in this study. The difference 
among them is the applied process previous to the recognition (ipk). For example, in  
C5 it is supposed that the image has lower noise in a moderate amount, then the image 
is cut 20% in order to take off the noise of the image. 

The simulator of the multi-classifier used has enabled us to specify the parameters 
of each stage as well as their combination parameters. 

The study contemplate several possibilities. In the first place, if the system had 
knowledge of where it is and how much noise the image has, it would know where to 
cut to eliminate the noise and how much it should cut, consequently, the recognition 
would be made easier. The following figure (figure 3) shows results with this premise 
for the case of upper noise, the behaviour in case of lower noise would be the same. 
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Table 1. Chanels used in the experiments 

Ck frk Nk ipk 

C1 Zoning 8x5 NET ∅ 

C2 Zoning 8x5 NET cut 10% upper part 
C3 Zoning 8x5 NET cut 10% lower part 
C4 Zoning 8x5 NET cut  20% upper part 
C5 Zoning 8x5 NET cut 20% lower part 
C6 Zoning 8x5 NET cut 30% upper part 
C7 Zoning 8x5 NET cut 30% lower part 
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100

No garbage little moderate excessive

C1 C2 C4 C6

 
 

Fig. 3. Results for the case of upper noise. Axis X represents the level of noise of the images 
and axis Y the percentage of success of the four channels individually, cutting the images 0%, 
10%, 20% and 30% respectively. 

We can see that the classifier that tries to take only the original image (C1) reduces 
the reliability while the disturbance of the image increases, and, on the contrary, chan-
nel C6 increases the rate of success when the noise is higher. It is amazing that chan-
nel  C4 provides the best average recognition of the four, with 96.60% of success in all 
the images. A good result has also been attained and the fact is that, if all the data 
regarding the noise included in the image would be known, a certitude of 99.76% 
would be reached, facing 64.58% obtained with channel C1. 

Naturally, the reality is different and we are not going to know always where, and 
much less how much noise there is. 

In the first place, we have created two multi-classifiers. They are defined as fol-
lows: MC1 (4, {S1}) and MC2 (4, {S2}), being S1 (4, {C1, C2, C4, C6}, F) and S2 (4, 
{C1 C3, C5, C7}, F). This means that only the channels of upper or lower noise are 
competing in an independent way, together with channel C1. A function determines 
whether the input image has noise in its upper or lower part so some images are the 
input to MC1 and some others to MC2. This is a theoretical study because it is no easy 
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to determine where is the noise in the image but some segmentation systems provide 
this information. 

The following table shows the results of these two systems. The columns indicate 
the amount of noise of the digit presented to the system. The two multi-classifiers 
together attain an average recognition of 97.14%. 

Table 2. Results for MC1 and MC2 

 NO noise Little Moderate Excessive Average 
MC1 99,46 99,31 98,18 93,99 97,74 
MC2 99,46 99,45 97,42 89,87 96,55 

Average 99,46 99,38 97,8 91,93 97,14 
 

Now, we study a multi-classifier where there is no knowledge of the situation or 
the amount of noise in the image. Seven classifiers will compete in parallel for the 
recognition of each image, images noise free, with little, moderate and excessive 
noise. The proposed multi-classifier is defined as MC3 (1, {S3}) being S3 (7, {C1, C2, 
C3, C4, C5, C6, C7}, F). 

The table 3 presents the results for this multi-classifier, and the attained results for 
each type of noise can be seen, with an average recognition of 96.18% for all the 
images. 

 

Table 3. Results for MC3 
 

 No noise Little Moderate Excessive Average
Upper 99,47 99,12 97,75 92,64 97,25 
Lower 99,47 99,17 95,55 86,26 95,11 

Average 99,47 99,16 96,65 89,45 96,18 
 

The average percentage of success attained is much higher, comparing it with the 
results attained by the system with only a classifier, which treats the images as they 
come (C1). This mono-classifier system reached an average success of 64.59% for 
images with upper, and lower noise and noise free, but now this recognition rate soars 
to 96.18% thanks to the multi-classifier parallel system. 

Figures 4 and 5 show the behaviour of the multi-classifier system (MC3) with two 
different input images. The inverse transformations applied (ipk), the output class 
(Classk1) and the confidence value (Vk) are shown for each channel. In the figure 4 the 
best channel is the C1 and the channel C6 has the best confidence value in the figure 5. 
This is an example that illustrates the goodness of the system when the image has 
noise and when it have not: the noisy images have a not very good confidence value 
in the classification, it can see in figure 5. Furthermore, the channels with inverse 
perturbations provide a low confidence in good images (figure 4). 
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Fig. 4. System behaviour in the case of images with salt and pepper. The output class and the 
confidence value are shown for each classifier. 

Fig. 5. System behaviour with different types of noise. The output class and the confidence 
value are shown for each classifier. 

5   Conclusions 

The noisy patterns has been one of the problems in the pattern recognition. While the 
human recognition don’t have too much problems to recognize this kind of patterns, 
OCR systems have poor recognition in this field. 

For us the specialization in the recognition, for all kind of noise is the base. That is 
because we treat each case of noise separately in parallel and then a criterion decide. 
So the system provide two results, the expected class of the pattern and what kind of 
noise has the image, depending on which specialist has responded. 
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We have study different specializations, the difference of each one is the knowl-
edge of the context. If the type of noise is known the recognition is easier because the 
system know what is the most efficient specialist. But when the context information is 
smaller the specialists have to decide between them in a multi-classifier. This is im-
portant in some segmentation systems where the knowledge of the context is possible. 

We have obtained a recognition rate of 96.18%, with noisy digits, the non special-
ist system obtains for the same data 64.58%. 

In the future, additionally image processing can be done in order to recognize an-
other types of noise (Figure 2C). 
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Abstract. In this paper, we propose a novel technique for automatic table detec-
tion in document images. Lines and tables are among the most frequent graphic, 
non-textual entities in documents and their detection is directly related to the 
OCR performance as well as to the document layout description. We propose a 
workflow for table detection that comprises three distinct steps: (i) image pre-
processing; (ii) horizontal and vertical line detection and (iii) table detection. 
The efficiency of the proposed method is demonstrated by using a performance 
evaluation scheme which considers a great variety of documents such as forms, 
newspapers/magazines, scientific journals, tickets/bank cheques, certificates 
and handwritten documents. 

1   Introduction 

Nowadays, we experience a proliferation of documents which leads to an increasing 
demand for automation in document image analysis and processing. Automatic detec-
tion of subsequent page components like tables gives a great support to fulfill the 
demand for automation. More specifically, in the case of a table recovery, a great 
support to compression, editing and information retrieval purposes can be given. 

Tables have physical and logical structure [1]. The physical structure concerns the 
location in an image of all the constituent parts of a table. The logical structure de-
fines the type of the constituent parts and how they form a table. Therefore, all parts 
in a table have both physical and logical structure. 

In this paper, we focus on the detection of all lines, both vertical and horizontal, 
along with their intersection, which will aid not only to detect a table which conse-
quently can be extracted out of a whole document but also to describe both the physi-
cal and logical structure, thus, inferring a table recognition process.  

In the literature, other researches have worked to accomplish the goals mentioned 
above. Zheng et al. [2] proposed a frame line detection algorithm based on the Direc-
tional Single-Connected Chain (DSCC). Each extracted DSCC represents a line seg-
ment and multiple non-overlapped DSCCs are merged to compose a line based on 
rules. During our experiments, we have compared this approach with our proposed 
approach for horizontal/vertical table line detection. Neves and Facon [3] have pre-
sented a method for automatic extraction of the contents of passive and/or active cells 
in forms. This approach is based on the analysis and recognition of the types of inter-
section of the lines that make up the cells. In the particular domain of business letters, 
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Kieninger and Dengel [4] propose the so-called T-Recs Table location that consists of 
block segmentation and table locator. The table locator is based on simple heuristics 
that concern the extracted blocks. Finally, Cesarini et al. [5] describe an approach for 
table location in document images where the presence of a table is hypothesized by 
searching parallel lines in the modified X-Y tree of the page. Furthermore, located 
tables can be merged on the basis of proximity and similarity criteria.  

In this paper, we propose a novel technique for automatic table detection in docu-
ment images that neither requires any training phase nor uses domain-specific heuris-
tics, thus, resulting to an approach applied to a variety of document types. Experimen-
tal results support the robustness of the method. The proposed approach builds upon 
several consequent stages that can be mainly identified to the following: (i) image 
preprocessing; (ii) horizontal and vertical line detection and (iii) table detection. In the 
following sections, we present our methodology for table detection in document im-
ages, as well as our experimental results that demonstrate the efficiency of the pro-
posed method. 

2   Methodology 

2.1   Pre-processing 

Pre-processing of the document image is essential before proceeding to the line and 
table detection stages. It mainly involves image binarization and enhancement, orien-
tation and skew correction as well as noisy border removal. Binarization is the start-
ing step of most document image analysis systems and refers to the conversion of the 
gray-scale image to a binary image. The proposed scheme for image binarization and 
enhancement is described in [6]. It is an adaptive approach suitable for documents 
with degradations which occur due to shadows, non-uniform illumination, low con-
trast, large signal-dependent noise, smear and strain. Text orientation is determined by 
applying an horizontal/vertical smoothing, followed by a calculation procedure of 
vertical/horizontal black and white transitions [7]. The proposed scheme for skew 
correction is described in [8] and uses a fast Hough transform approach based on the 
description of binary images using rectangular blocks. In the pre-processing stage of 
our approach, the process of noisy borders removal is based on [9] and employs a 
“flood-fill” based algorithm that starts expanding from the outside noisy surrounding 
border towards the text region. Fig. 1 illustrates the proposed pre-processing step. 

In the proposed methodology, we use a particular parameterization that depends on 
the average character height of the document image. Therefore, we proceed with an 
average character size estimation step that is more specifically required for adjusting 
all line detection algorithm parameters in order to achieve invariance to the scanning 
resolution or the character font size. Our main intentions are to exclude all short line 
segments that belong to character strokes and to approximate the maximum expected 
line thickness. We propose a method to automatically estimate the average character 
height based on calculating the surrounding rectangles height of the image connected 
components. We take the following steps: 

STEP 1: We pick a random pixel (x,y) that has at least one background pixel in its 4 
connected neighborhood. 
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STEP 2: Starting from pixel (x,y), we follow the contour of the connected component 
that pixel (x,y) belongs to. 

STEP 3: We repeat steps 1, 2 for all existing connected components until we have a 
maximum number of samples (MaxSamples). During this process we calculate the 
histogram Hh of the surrounding rectangles height h at the corresponding connected 
components. 

STEP 4: We compute the maximum value of the histogram Hh which expresses the 
average character height AH. An example of the estimated average character size is 
illustrated in Figure 2. 

 

    
(a)           (b)  (c)      (d) 

Fig. 1. Document image pre-processing example. (a) Original gray scale image; (b) resulting 
image after binarization and image enhancement; (c) resulting image after skew correction; (d) 
resulting image after noisy border removal. 

 

 
Fig. 2. The estimated average character height of a document image 

2.2   Line Detection 

A novel technique for horizontal and vertical line detection in document images is 
proposed. The technique is mainly based on horizontal and vertical black runs proc-
essing as well as on image/text areas estimation in order to exclude line segments that 
belong to these areas. Initially, a set of morphological operations with suitable struc-
turing elements is performed in order to connect possible line breaks and to enhance 
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line segments. The distinct steps of the proposed line detection technique are the fol-
lowing: (i) horizontal and vertical line estimation and (ii) line estimation improvement 
by using image/text areas removal. 

Horizontal and Vertical Lines Estimation. At this step, we make a first estimation 
of horizontal and vertical line segments. The final estimation of lines will be 
accomplished after a refinement of this result by removing line segments that belong 
to image/text areas. The proposed line detection algorithm is based on horizontal and 
vertical black runs processing as well as on a set of morphological operations with 
suitable structuring elements in order to connect possible line breaks and to enhance 
line segments. All parameters used in this step depend on the average character height 
AH that has been calculated in Section 2.1. Starting with the binary image IM (with 
1s that corresponds to text regions and 0s to background regions), we take the 
following steps: 

STEP 1: We proceed to a set of morphological operations of the image IM with suit-
able structuring elements. Our intention is to connect line breaks or dotted lines but 
not to connect neighboring characters (see Fig. 3). We calculate images IMH and IMV 
for horizontal and vertical line detection, respectively, as in the following Eq. 1, 2:  

 
IMH = IM ∪ (((IM  BHR) ∪ (IM  BHL)) ⊕ BH), 

 

where BHR = [111…1], BHL = [1…111], BH = 

1...1

..1..

1...1
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IMV = IM ∪ (((IM  BVD) ∪ (IM  BVU)) ⊕ BV), 
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         (a)             (b)   (c) 

Fig. 3. Morphological processing in order is to connect line breaks or dotted lines. (a) Initial 
image IM; (b) Resulting image IMH; (c) Resulting image IMV. 
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STEP2: All 1s of images IMH and IMV that belong to line segments of great length and 
small width are turned to a label values L. In the case of horizontal lines, all 1s of IMH 
that belong to horizontal black runs of length greater than AH and to vertical black 
runs of length less than AH are turned to L. In the case of vertical lines, all 1s of IMV 
that belong to vertical black runs of length greater than AH and to horizontal black 
runs of length less than AH are turned to L.   

STEP3: Images IMH and IMV are smoothed in horizontal and vertical directions corre-
spondingly in order to set to L all short runs that have a value different than L. In the 
case of horizontal lines, horizontal runs of IMH pixels with values not equal to L and 
length less than AH are set to L. In the case of vertical lines, vertical runs of IMV pix-
els with values not equal to L and length less than AH are set to L. 

STEP 4: Horizontal and vertical lines in images IMH and IMV, respectively, are de-
fined from all connected components with L-valued pixels having length greater than 
2 AH.  

Line Estimation Improvement by Using Image/Text Areas Removal. Image/text 
areas estimation is accomplished by performing an horizontal and vertical smoothing 
of image IMn  that has 1’s for pixels that do not belong to the detected horizontal or 
vertical lines. After this smoothing, all connected components of great height (> 3AH) 
belong to graphics, images or text. In this phase, tables will not appear as individual 
connected components in the final smoothed image since vertical and horizontal lines 
are excluded. More specifically, we take the following steps: 

STEP 1: We proceed to an horizontal smoothing of image IMV by setting all horizon-
tal runs with 0’s that have length less than 1.2AH to L. 

STEP 2: We proceed to a vertical smoothing by setting all vertical runs with 0’s that 
have length less than 1.2AH to L. 

STEP 3: Image/text areas IT are defined from L-valued connected components in the 
resulting IMV image having surrounding rectangle height greater that 3 AH. 

From all horizontal lines HL and vertical lines VL we exclude those that lie inside 
non line entities IT that have been estimated in the previous step. Fig. 4 illustrates the 
line detection step. 

2.3   Table Detection 

After horizontal and vertical line detection we proceed to table detection. Our table 
detection technique involves two distinct steps: (i) Detection of line intersections and 
(ii) table detection and reconstruction. 

Detection of Line Intersections. All possible line intersections (see Table 1) are 
detected progressively according to the following algorithm. First, we detect all inter-
sections with IDs 1-4. In this case, an end point of an horizontal line and another end 
point of a vertical line define a line intersection of this type if they have the minimum 
distance among others around a neighborhood. Thereafter, we trace for intersections  
with IDs 5-8. In this case, an end point of either an horizontal line or a vertical line is 
tested against another line point which is not an end point and corresponds to a verti-
cal line or an horizontal line, respectively. A line intersection of this type is defined 
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           (a)                        (b) 

   
           (c)              (d) 

    
           (e)              (f) 

   
          (g)             (h) 

Fig. 4. Horizontal and vertical line estimation: (a) Initial image; (b,e) horizontal and vertical 
line segments of great length; (c,f) line segments of great length and small width; (d,g) detected 
horizontal and vertical lines after smoothing; (h) line estimation improvement using image/text 
areas removal. 
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for such points that have the minimum distance among others around a neighborhood. 
Finally, we detect intersections with ID 9 that correspond to horizontal and vertical 
line crossing points. 

Table 1. Line intersections 

ID 1 2 3 4 5 6 7 8 9 

Line inter-
sections          

Table Detection and Reconstruction. Table detection and reconstruction involves 
the following steps: First, all pixels that belong to the detected lines are removed (see 
Fig. 5(c)). Then, all detected line intersections are grouped first horizontally and then 
vertically. Each group is further aligned according to the mean value of the vertical or 
horizontal positions for horizontal and vertical groupings, respectively. Finally, we 
achieve a table reconstruction by drawing the corresponding horizontal and vertical 
lines that connect all line intersection pairs. Table detection and reconstruction is 
illustrated in Fig. 5. 

3   Experimental Results 

The corpus for the evaluation of the proposed methodology was prepared by selecting 
102 images with a total of 2813 ground-truthed horizontal and vertical lines. It con-
sists of scanned forms, newspaper - magazines, scientific papers, tickets – bank 
checks, certificates and handwritten documents. Most of the images have severe prob-
lems such as poor quality, broken lines or overlapping text and line areas.  Represen-
tative results of the proposed methodology for line and table detection are illustrated 
in Fig. 6. In order to extract some quantitative results for the efficiency of the pro-
posed methodology, we calculated the recognition rate and the recognition accuracy 
for horizontal and vertical line detection and compared the results with those of the 
DSCC algorithm [2] which is a state-of-the-art algorithm for unsupervised horizon-
tal/vertical table line detection and the corresponding source code is available at [11]. 
The performance evaluation method used is based on counting the number of matches 
between the detected horizontal/vertical lines and the corresponding horizon-
tal/vertical lines appearing in the ground truth [10]. We use a “MatchScore” table for 
horizontal and vertical lines whose values are calculated according to the intersection 
of the resulting line pixels and the ground truth. A global performance metric can be 
detected if we combine the detection rate and the recognition accuracy results accord-
ing to the following formula: 
 

2 * Re

Re

DetectionRate cognitionAccuracy
GlobalPerformanceMetric

DetectionRate cognitionAccuracy
=

+
 (3) 
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(a)    (b) 

   
       (c)                      (d) 

Fig. 5. Table detection and reconstruction: (a) Initial image; (b) detected line intersections; (c) 
image without horizontal and vertical lines; (d) table reconstruction. 

 
 

  

  

(a) (b) 

Fig. 6. Line detection results: (a).Original image; (b) Detected lines 
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Fig. 7. Evaluation graphs for horizontal and line detection 

As shown at Fig.7, for all types of the examined scanned documents, we get higher 
recognition rates compared to the DSCC algorithm. The global performance metric 
for all images is 80.6%, while DSCC algorithm achieves 70.1%. 

4   Conclusions 

This paper strives toward a novel methodology for automatic table detection in docu-
ment images. The proposed methodology neither requires any training phase nor uses 
domain-specific heuristics, thus, resulting to an approach applied to a variety of 
document types. It builds upon several consequent stages that can be mainly identified 
to the following: (i) image pre-processing; (ii) horizontal and vertical line detection 
and (iii) table detection. Experimental results demonstrate the efficiency of the pro-
posed method. 

References 

1. Zanibbi, R., Blostein, D., Cordy, J.: A survey of table recognition. International Journal of 
Document Analysis and Recogntion (IJDAR), vol. 7 (2004) 1-16 

2. Zheng, Y., Liu, C., Ding, X., Pan, S.: Form Frame Line Detection with Directional Sin-
gle-Connected Chain. Proc. of the 6th Int. Conf. on Doc. Anal. & Recognition (2001) 699-
703 

3. Neves, L. , Facon, J.: Methodology of Automatic extraction of Table-Form Cells. IEEE 
Proc. of the XIII Brazilian Symposium on Computer Graphics and Image Processing 
(SIBGRAPI’00)  (2000) 15-21 

4. Kieninger, T., Dengel, A.: Applying the T-Recs Table Recognition System to the Busi-
ness Letter Domain. Proc. of the 6th International Conference on Document Analysis & 
Recognition, Seattle, (2001) 518-522 



618 B. Gatos et al. 

5. Cesari, F., Marinai, S., Sarti, L., Soda, G.: Trainable Table Location in Document Images. 
Proc. of the International Conference of Pattern Recognition, vol. 3 (2002) 236-240 

6. Gatos, B., Pratikakis, I., Perantonis, S.J.: An adaptive binarisation technique for low qual-
ity historical documents. IARP Workshop on Document Analysis Systems (DAS2004), 
Lecture Notes in Computer Science (3163), (2004) 102-113 

7. Yin, P.Y.: Skew detection and block classification of printed documents. Image and Vi-
sion Computing 19, (2001) 567-579 

8. Perantonis, S.J., Gatos, B., Papamarkos, N.: Block decomposition and segmentation for 
fast Hough transform evaluation. Pattern Recognition, vol. 32(5) (1999) 811-824 

9. Avila, B.T., Lins, R.D.: A new algorithm for removing noisy border from monochromatic 
documents. Proc. of the 2004 ACM Symp. on Applied Comp. (2004) 1219-1225 

10. Antonacopoulos, A., Gatos, B., Karatzas, D.: ICDAR 2003 Page Segmentation Competi-
tion. Proc. of the 7 th Int. Conf. on Document Analysis & Recognition (2003) 688-692 

11. Zheng Yefeng homepage (2005): http://www.ece.umd.edu/~zhengyf/ 



High Performance Classifiers Combination for
Handwritten Digit Recognition
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Abstract. This paper presents a multi-classifier system using classifiers
based on two different approaches. A stochastic model using Markov
Random Field is combined with different kind of neural networks by
several fusing rules. It has been proved that the combination of different
classifiers can lead to improve the global recognition rate. We propose to
compare different fusing rules in a framework composed of classifiers with
high accuracies. We show that even there still remains a complementar-
ity between classifiers, even from the same approach, that improves the
global recognition rate. The combinations have been tested on handwrit-
ten digits. The overall recognition rate has reached 99.03% without using
any rejection criteria.

1 Introduction

Multi-classifier systems have shown their high efficiency in different applications
[2,5,11]. The difference between classifiers can be explained by their specific
algorithms and particular perception of the training data. The advantages of
multi-classifier systems can largely be put ahead when several classifiers can
complement each one easily. The improvement given by a multi-classifier system
can also hide the lack of performance of each used classifier. When one classifier
achieves high quality results, how can other classifiers improve it without dis-
abling it? The problem is when the classifiers are already efficient and where the
complementarity is not huge and not easy to express. We present 7 different high
performance classifiers based on two different approaches. The first one used is
a stochastic model based on Markov Random Field. The second one is based on
neural networks. The purpose of this work is to show the relationship between
these two different techniques in a multi-classifier scheme. In the first part, the
multi classifier design will be explained while in the second part each classifier
will be described. In the third part the different combination schemes will be
shown. Finally, the gain obtained by the different techniques will be discussed.

2 Multi-classifier Design

The effectiveness of a multi-classifier system relies principally on combining com-
plementary classifiers. Several approaches have been proposed to construct dif-
ferent sets made up of complementarity classifiers. Among these methods, the

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3686, pp. 619–626, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



620 H. Cecotti, S. Vajda, and A. Beläıd

knowledge of the problem and the classifiers behaviors can influence the choice
of the classifiers. One of the other methods consists to manipulate the training
data to train a classifier with different training sets like the Adaboost algorithm
[4]. In this work, we use two accurate approaches in character recognition: a
stochastic model and a neural model. The purpose is to highlight the different
relationship between the methods. Four different classifiers have been created
with the first method and three with the second one.

3 Classifiers Description

Let a database DB of N mutually exclusive sets, DB = C1 ∪ C2 ∪ ... ∪ CN ,
where each of Ci, ∀i ∈ {1, .., N} represents a set of patterns called “Class”.
Each classifier or expert, denoted as e, assigns to a pattern x ∈ DB an index
j ∈ {1, .., N +1}, which represents x as belonging to the class Cj , if j �= N +1. If
the classifier does not recognize the class corresponding to x, then x is rejected
by e and j = N + 1. We note the classifier decision by e(x) = j. A classifier e is
defined by a triplet (τr , τs, τq) where τr, τs and τq are the recognition rate, the
error rate and the rejection rate respectively.

3.1 NSHP-HMM

The NSHP-HMM (Non Symmetric Half Plane Hidden Markov Model) is a pow-
erful stochastic tool, originally designed for handwritten word recognition but
used also with the same success in handwritten digit recognition [14]. The origi-
nality of this method resides in coupling a context based local vision performed
by a NSHP with a HMM giving horizontal elasticity to the model. It operates
on pixel level, analyzing pixel columns, which are viewed as the random field
realizations.

Let I be the image having m rows and n columns observed by the NSHP.
The joint field mass probability P (I) of the image I can be computed following
the chain decomposition rule of conditional probabilities:

P (I) =
n∏

j=1

m∏
i=1

P (Xij | XΘij ) (1)

As the equation 1 can be written as above, it is possible for the NSHP-HMM
to observe the image via its columns considering this like an observation entity.
As in our model the Θij was chosen as being a 3rd order neighborhood, the
NSHP-HMM is sub-divided in 4 NSHP-HMM. Such a division of the model is
necessary due the non-symmetric sampling of the image pattern. Each NSHP-
HMM can be considered as a separate classifier representing the different reading
senses (right to left, left to right, bottom to top and top to bottom) of the model.

3.2 Neural Networks

Neural networks are widely used for classification and have proved their high
efficiencies in many applications. The considered neural networks are based on a
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Fig. 1. NSHP-HMM models

multi-layer perceptron (MLP) with the classical back-propagation for the learn-
ing. Three neural networks have been created. The first neural network was
designed with only one hidden layer containing 500 neurons. This network is
fully connected. Such network has been applied with success for postal pin code
recognition [13]. The parameters of these neural classifiers have been fixed based
on different trial runs.

Convolutional Neural Network. This neural network is designed with a dif-
ferent topology. The goal of the topology based on convolutional neural network
is to classify the image given as input by analyzing it through different “re-
ceptive fields”. Each layer is composed of several maps, each one corresponding
to an image transformation. These transformations extract features like edges,
strokes, etc [8,16]. The neural network is composed of 5 layers. The first one
corresponds to the input image, normalized by its center and reduced to a size
of 29*29 pixels. The next two layers correspond to the information extraction,
performed by convolutions. The second and third layers are composed of 10 and
50 maps respectively. Each map describes a convolution and a sub-sampling. In
these maps, neurons share the input weights represented by a pivot neuron in
each map. The last two layers are fully connected and finally the last layer is the
output: 10 neurons, one output for each digit.

With this topology two neural networks have been created. This first network
has been trained with the original data patterns whereas the second one has been
trained with both the original patterns and the patterns with inversed colors.
This network was indeed trained to recognize black images on white background
and white images and black background. The purpose of this model was to
extract features linked to the contrast variation. Instead of letting the model

Fig. 2. Convolutional Neural Network topology
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learn its own discriminative feature set, the training set has been suited to learn
specific characteristics. The outputs of each classifier have to be normalized to
obtain values of the same range. While the first model is probabilistic and its
outputs correspond naturally to probabilities, the neural network outputs are
normalized by the Softmax function in order to obtain probabilities.

4 Combination Rules

In the case of several classifiers, the combination of D different classifiers denoted
ek, k ∈ {1, .., D} is defined as E. Each classifier assigns to a pattern x a decision
jk denoted by ek(x) = jk. The final solution j for the sample x is given by
E. Let v

(k)
i (x) be the real value computed by the classifier number k for the

sample x and the class Ci. This value can represent a probability, a confidence
value. It means the degree of membership to one class. In this work we will only
discuss about a particularly architecture: the horizontal combination scheme.
It corresponds to a topology where classifiers are performed in parallel. The
classifiers work independently and concurrently and a fusion module combines
their results.

4.1 Results Combination

The outputs of each classifier can be combined by simple rules. These rules merge
the outputs value of all the classifier for one class.

– Selection of the maximum result: ∀i ∈ {1, .., N}, v′i(x) = maxk=1,..,Dvk
i (x)

– Sum of the results: ∀i ∈ {1, .., N}, v′i(x) =
∑k=D

k=1 vk
i (x)

– Median of the results: ∀i ∈ {1, .., N}, v′i(x) = median(k=1,..,D)v
k
i (x)

E(x) =
{

i if vi(x) = maxk=1,..,Dv
′,k
i (x) and v′i(x) ≥ α

N + 1 otherwise

Where α ∈ [0; 1] is a threshold value. These methods allow to merge the results
of each classifier but none of them extract knowledge concerning each classifier
strength.

4.2 Majority Voting

The majority voting is an easy method to implement and it has shown good
results in the literature [1,7,10]. For a multi-classifier system E, the majority
voting can be expressed as follows:

(E(x) = i) ⇔ (|{k ∈ {1..D}, ek(x) = i}| ≥ ((D/2) + d)), 1 ≤ d ≤ (D/2)

If d = D + 2 then the voting corresponds to a consensus: all the classifiers agree
to the same solution.
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4.3 Behavior Knowledge Space

A behavior knowledge space is a D-dimensional space, each dimension corre-
sponding to the decision of one classifier [6]. Each classifier has as decision val-
ues the total number of classes N . Let x ∈ Ci be the character to be recognized
belonging to the class Ci. Let sk = jk, k = 1..D be the kst classifier among D
and jk its answer for the current character x. The probability that x ∈ Ci is
defined by the following formula:

Belief(Ci) =
P (s1(x) = j1, .., sD(x) = jD, x ∈ Ci)

P (s1(x) = j1, .., sD(x) = jD)

A cell of the BKS corresponds to the intersection of the individual classifiers
decisions. Each point of the BKS is noted by BKS(j1, .., jD), ji = 1..N ; and
contains a vector of size N: bks(j1, .., jD)(i), i = 1..N .

Let bks(j1, ..jD)(i) be the total number of characters x such that s1(x) =
j1, .., sD(x) = jD and x ∈ Ci, i = 1..N . Let T (j1, .., jD)(i) be the total number
of characters x such that s1(x) = j1, .., sD(x) = jD. The best representative class
of BKS(j1, .., jD): R is defined by:

R = argmax(bks(j1, .., jD)(i)), i = 1..N

If one cell of the BKS is empty then the pattern is naturally rejected. A small
database could be a problem to obtain a good generalization. Many empty cells
may occur if the database is not representative. As the BKS size increases ex-
ponentially with the number of classifiers, the data sets has to increase in the
same way [12]. For BKS cells where the most representative class is defined by a
low probability, meaning ambiguous cases, characters are rejected. R is rejected
if Belief(Ci) ≤ α where α is a threshold representing the desired recognition
quality.

5 Experiments

The system has been tested on the MNIST database. This well-known database
contains separated handwritten digit images of 28∗28 in gray level. The learning
set contains 60000 images and the test set contains 10000 images. In the learning
set, 50000 images are used for real learning; 10000 images are used to find the
best parameters. The first objective is to show the behavior of the different
combination methods for these classifiers. Let NSHP1, NSHP2, NSHP3, NSHP4
be the 4 flip of the NSHP-HMM. Let NN1 be the neural network with the fully
connected topology, NN2 and NN3 convolutional neural networks. The NN3
neural networks has been trained with both the initial MNIST database and the
MNIST database with inverted colors.

The Table 1 shows the results obtained for each classifier for the test
database. The different parts of the NSHP-HMM model obtain the lowest recog-
nition rates whereas the different neural networks give the best results. The best
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Table 1. Recognition rate for each classifier

NSHP1 NSHP2 NSHP3 NSHP4 NN1 NN2 NN3
Train 93.69 95.00 94.42 95.22 99.72 99.71 99.57
Test 93.44 94.91 94.00 95.25 98.54 98.73 98.41

classifier in the system is the convolutional neural network. While many clas-
sifiers process the images by extracting time-costly features, in our work the
considered classifiers are based on pixel level (i.e raw images). The recognition
rate of all these classifiers is still low compared to the actual best results reported
in the literature [3,8,9]. However, some of the top recognition percentages on the
MNIST database have been achieved by using different expansion of the initial
MNIST training database [15], or by using SV M , which still suffers of memory
space and computational speed issues for classification [9]. In our tests, only the
initial training database has been used for all of the 7 classifiers presented.

Table 2. Strength of each classifier

NSHP1 NSHP2 NSHP3 NSHP4 NN1 NN2 NN3
NSHP1 0 411 304 404 576 587 575
NSHP2 264 0 274 221 436 440 424
NSHP3 248 365 0 378 516 533 520
NSHP4 223 187 253 0 393 414 400
NN1 66 73 62 64 0 98 85
NN2 58 58 60 66 79 0 63
NN3 78 74 79 84 98 95 0

The strength of each classifier is exposed in the Table 2. A cell (i, j) of the
table corresponds to the number of pattern recognized by the classifier j and
not recognized by the classifier i. It exhibits the strength and the weakness of
each classifier versus the others in the test database. Firstly, there is a strong
complementarity between the different flips of the NSHP-HMM. Each flip of the
NSHP-HMM can contribute with about more than 200 patterns to the other flips.
In this case, we have clearly a proof that results must be combined. Moreover,
the 4 classifiers extracted from the NSHP-HMM method come from the same
method. A little difference between those classifiers, even coming from the same
algorithm, leads to obtain a high complementarity. Secondly, in spite of the
strength of the different neural networks, all the classifiers can complete them.
The contribution is not as significant as between the NSHP-HMM flips but they
can be combined as they all give different results. These results display that any
classifier makes the same mistake as the others. The results can be combined in
order to extract their local strengths.

Without searching the forces and different relationships between classifiers,
their results can be fused as described in 4.1. Classifiers have been clustered
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Table 3. Combination Results

Test (all classifiers) Test (NSHP-HPP 4 flips) Test (3 NN)
Consensus 87.21/12.75/0.04 87.89/11.37/0.74 97.09/2.65/0.26

Majority Voting 97.93/0.77/1.30 93.97/4.15/1.88 98.91/0.13/0.96
Oracle 99.89/0.00/0.11 98.61/0.00/1.39 99.68/0.00/0.32

Maximum rule 98.54/0.00/1.46 95.66/0.00/4.34 99.03/0.00/0.97
Sum rule 96.76/0.00/3.24 96.44/0.00/3.56 99.03/0.00/0.97

Median rule 95.66/0.00/4.34 96.09/0.00/3.91 98.96/0.00/1.04
BKS 97.94/1.34/0.72 96.11/0.31/3.58 98.42/0.59/0.99

Table 4. Best improvement for each classifier, without rejection

Classifiers used NSHP1 NSHP2 NSHP3 NSHP4 NN1 NN2 NN3
All +5.10 +3.63 +4.54 +3.29 0 -0.19 +0.13

4 NSHP +3.00 +1.53 +2.44 +1.19
3 NN +0.49 +0.30 +0.62

in two groups. The first group contains the 4 NSHP-HMM classifiers and the
second group is composed of the 3 neural networks. The different fusing methods
presented have been tested. The triplet (τr , τs, τq) of each voting method is shown
in the Table 3. Each rows gives for each classifiers cluster the triplet (τr, τs, τq)
for one fusing techniques. The oracle method simulates the results that could
be obtained with an optimal vote: if one of the classifier finds the good class
then this class is selected. It allows estimating limits for the voting methods.
In the BKS case with just the 4 NSHP-HMM flips and with just the 3 neural
networks, the recognition rate did not increase but the error has decreased. It
has though improved the relevance of the global results. The best improvement
achieved for each classifier is presented in the Table 4. The lowest error rate is
obtained by a voting method with the combination of all the classifiers: 0.04%.
The best recognition score, without rejection, is obtained by the maximum rule
with the combination of the 3 neural networks: 99.03%.

6 Conclusion

We have presented the combination of different kinds of classifier for handwritten
digits recognition. These classifiers were from two different approaches: a stochas-
tic model NSHP-HMM and neural network models. They have been combined
using different rules. Their strength and weakness have been highlighted. Thanks
to the combination, we have obtained good results considering the experimen-
tal conditions by combining neural networks. Multi-classifier systems can always
improve a recognition system even in a case where the complementarity between
classifiers is low. When the ensembles of classifiers may not always directly im-
prove the recognition rate, they can improve the reliability of the results by
qualifying the rejection.
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References

1. Alpaydin, E.: Improved classification accuracy by training multiple models and
taking a vote. In: 6th Italian Workshop. Neural Nets Wirn Vietri-93. (1994) 180–
185

2. Bahler, D., Navarro, L.: Methods for Combining Heterogeneous Sets of Classifiers.
17th Natl. Conf. on Artificial Intelligence (AAAI 2000), Workshop on New Research
Problems for Machine Learning, (2000)

3. Bortolozzi, F., de Souza Britto Jr., A., Oliveira, L.S., Morita, M.: Recent Advances
in Handwritting Recognition. International Workshop on Document Analysis’05,
(2005) 1–30

4. Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm
for combining preferences. Journal of Machine Learning Research, vol. 4, (2003)
933–969

5. Gunes, V., Ménard, M., Loonis, P., Petit-Renaud, S.:Systems of classifiers: state
of the art and trends. International Journal of Pattern Recognition and Artificial
Intelligence, vol. 17, no. 8, World-Scientific, (2004)

6. Huang, Y.S., Suen, C.Y.: A method of combining multiple experts for the recogni-
tion of unconstrained handwritten numerals. IEEE Trans Pattern Anal Mach Intell
vol. 17, no. 1, (1995) 90–94

7. Lam, L., Suen, C.Y.: Application of majority voting to pattern recognition: an
analysis of its behavior and performance. IEEE Trans Pattern Anal Mach Intell.
vol. 27, no. 5, (1997) 553–568

8. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-Based Learning Applied to
Document Recognition. Proceedings of the IEEE, vol. 86, no. 11, (1998) 2278–2324

9. Liu, C-L., Nakashima, K., Sako, H., Fujisawa, H.: Handwritten digit recognition:
benchmarking of state-of-the-art techniques. Pattern Recognition, vol. 36, (2003)
2271–2285

10. Ng, C.S., Singh, H.: Democracy in pattern classifications: combinations of votes
from various pattern classifiers. AIE, vol. 12, no. 3, (1998) 189–204

11. Rahman, A.F.R., Fairhurst, M.C: Multiple classifier decision combination strate-
gies for character recognition: A review. International Journal on Document Anal-
ysis and Recognition. vol. 5, (2003) 166–194

12. Raudys, S., Roli, F.: The Behavior Knowledge Space Fusion Method: Analysis
of Generalization Error and Strategies for Performance Improvement. Multiple
Classifier Systems 4. (2003) 55–64

13. Roy, K., Vajda, S., Pal, U., Chaudhuri, B. B.: A System towards Indian Postal
Automation. 9th International Workshop on Frontiers in Handwriting Recognition,
Tokyo, Japan, October, (2004)
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Abstract. We propose a novel approach for finding text in images by
using ridges at several scales. A text string is modelled by a ridge at
a coarse scale representing its center line and numerous short ridges at
a smaller scale representing the skeletons of characters. Skeleton ridges
have to satisfy geometrical and spatial constraints such as the perpen-
dicularity or non-parallelism to the central ridge. In this way, we obtain
a hierarchical description of text strings, which can provide direct input
to an OCR or a text analysis system. The proposed method does not
depend on a particular alphabet, it works with a wide variety in size
of characters and does not depend on orientation of text string. The
experimental results show a good detection.

1 Introduction

The rapid growth of video data creates a need for efficient content-based browsing
and retrieving systems. Text in various forms is frequently embedded into images
to provide important information about the scene like names of people, titles,
locations or date of an event in news video sequences, etc. Therefore, text should
be detected for semantic understanding and image indexation. In the literature,
text detection, localisation, and extraction are often used interchangeably. This
paper is about the problem of detection and localisation. Text detection refers to
the determination of the presence of text in a given image and text localisation
is the process of determining the location of text in the image and generating
bounding boxes around the text.

For text detection we need to define what text is. A text is an “alignment
of characters”, characters being letters or symbols from a set of signs which
we do not specify in advance. In images, text can be characterised by a region
of elongated shape band containing a large number of small strokes. The style
and the size of characters can vary greatly from one text to another. In images
of written documents background as well as text color are nearly uniform, the
detection of text can easily be performed by thresholding the grayscale image.
However, the task of automatic text detection in natural images or video frames
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is more difficult due to the variety in size, orientation, color, and background
complexity. A generic system for text extraction has to cope with these problems.

2 Methods of Text Detection in Images

Approaches for detecting and localizing text in images in the literature can
be classified into three categories: (1) bottom-up methods [6,8], (2) top-down
methods [12,14] and (3) machine learning based top-down methods [5,7]. The
first category extracts regions in image and then groups character regions into
words by using geometrical constraints such as the size of the region, height and
width ratio. These methods avoid explicit text detection but they are very sensi-
tive to character size, noise and background complexity. In the second category,
characters can be detected by exploiting the characteristics of vertical edge, tex-
ture, edge orientation and spatial properties. These methods are fast but give
false alarms in case of complex background. The third category has been de-
veloped recently and receives much attention from researchers. The evaluation
of machine learning based methods showed the best performance in comparison
with other approaches [1]. The principle is to extract some characteristics like
wavelets [5], statistical measures [2,3] or derivatives [7] from fixed-size blocks of
pixels and classify the feature vectors into text or non-text using artificial neu-
ral networks. As usual with this kind of learning method, the quality of results
depends on the quality of the training data and on the features which are fed
into the learning machine.

3 Proposed Approach

The objective of our work presented in this paper is to construct an automatic
text detector which is independent with respect to the size, the orientation and
the color of characters and which is robust to noise and aliasing artifacts. We
propose a new method of text detection in images that is based on a structural
model of text and gives more reliable results than methods using purely local
features like color and texture.

The structural features used here are ridges detected at several scales in the
image. A ridge represents shape at a certain scale. Analyzing ridges in scale
space permits to capture information about details as well as global shape. A
line of text is considered as a structured object. At small scales we can clearly
see the strokes. At lower resolution, the characters disappear and the text string
forms an elongated cloud. This situation can be characterized by ridges at small
scales representing skeletons of characters and at coarser scale representing the
center line of the text string (figure 1). These properties are generic for many
kinds of text (scene text, artificial text or targeted scene text), do not depend on
the alphabet (e.g. latin characters, ideograms), and also apply for hand written
text (figure 2).
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The ridge detection operator is iso-symmetric so it can detect a text string as
straight line or curve at any orientation (figure 2d). The multi-resolution compu-
tation detects a wide variety in text size. Unlike the multi-resolution approach
proposed in [11,12], where candidate text is detected at each scale separately
and requires an additional scale fusion stage, our work directly exploits the
topological change of text over scale. In addition, analyzing the relation between
scales and ridge lengths can predict the number of characters in a text line, and
character dimensions.

(a) (b)

Fig. 1. (a) Image of a slide; detected text regions are bounded by red rectangles. (b)
Ridges detected at two levels σ1 = 2

√
2 (blue) and σ2 = 16 (red): red lines represent

the center lines of text strings, blue lines represent skeletons of characters.

The rest of this paper is organized as follows: In section 4, we present briefly
the definition of ridge and explain the representation of text line based on ridges.
We then analyze in detail the constraints that a text region must satisfy to be
discriminated from a non-text region. Some experimental results and conclusions
will be shown in sections 5 and 6 respectively.

4 Text Detection Based on Ridges

This section explains the method for finding text regions in images based on
ridges. It consists of 2 stages: (1) computing ridges in scale space and (2) clas-
sifying regions corresponding to ridges into 2 classes: text or non-text.

4.1 Computing Ridges at Multiple Scales

This section briefly explains ridge detection. For more technical details, see [9].
Given an image I(x, y) and its laplacian L(x, y) a point (xr, yr) is a ridge point
if the value of its laplacian L(xr , yr) is a local maximum in the direction of the
highest curvature; it is a valley point if the value of its laplacian L(xr , yr) is
a local minimum. In the sequel, we use the term “ridge” to indicate these two
types of points. Ridge points are invariant to image rotation and translation.
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To detect ridge points, we compute the main curvatures and associated direc-
tions at each pixel using the eigenvalues and eigenvectors of the Hessian matrix
[4]. We then link ridge points to form ridge lines by connected components anal-
ysis.

Scale space adds a third dimension σ to the image such that Iσ(x, y) is the
original image I smoothed by a Gaussian kernel with standard deviation σ.
In our system, we use a discrete sampling of scale space, explicitly computing
Iσ(x, y) for a small number of values σ = σ0 . . . σk−1; we then compute ridges
for each of these smoothed images to capture structures of different sizes. The
values of σ we use are: σi =

√
2

i
with level i = 0, . . . log2(min(w,h)) where w,

h are image width and height. These computations are carried out in a very
efficient way using recursive filters [10]. In practice, if we know the dimensions
of characters and text strings, values of i can be limited to a small range. For
example in our database, scales 2 to 8 are sufficient.

Figure 2 shows several images and ridges detected at two scales on regions
extracted from the image. We can see that for each text, one ridge corresponding
to the center line of the text and several small ridges corresponding to the skele-
tons of characters have been detected. The structure “one center line and lots of
small skeletons ” is present for many kinds of text (scene text or artificial text)
with different character sets (latin alphabet or ideograms). Figure 3 illustrates
the independence on orientation of the ridge based text representation.

Fig. 2. First line: Images with rectangle showing the text region. Second line: Zoom on
text regions. Third line: ridges detected at two scales (red in high level, blue in small
level) in the text region that represent local structures of text lines whatever the type
of text (handwritten text or machine text, scene text or artificial text, latin alphabet
or ideograms).
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(a) (b)

Fig. 3. (a) Image of a plate. (b) Ridges detected at scale σ = 2 (blue lines) and σ = 8
√

2
(red lines). This figure shows the independence on orientation of the ridge-based text
representation.

4.2 Classification of Candidate Text Blocks

The output of the previous step is k images containing ridge lines detected at
k scale levels. Now, for each ridge at level i, i = 0 . . . k − 1, we classify the
region corresponding to the ridge as text region or non-text region. The region
corresponding to a ridge detected at scale σ is defined as the set of points such
that the distance from each point to the ridge is smaller than σ. We call the
ridge to be considered the central ridge, the region corresponding to the ridge
the ridge region and all ridges at smaller scale in the ridge region which best fit
character skeletons the skeleton ridges. The scale of the skeleton ridges is half the
width of their strokes. It is not necessary that the skeletons and the center line
be of the same type (“ridge”1, “valley”2). We propose the following criteria to
classify a region corresponding to a central ridge as text. Note that all detected
ridges may be considered as central ridge starting from the largest scale σk−1.

– Ridge Length Constraint: Generally, the length of skeleton ridges repre-
senting the skeleton of the characters is approximately equal to the height
of characters, which is 2 times the scale σ of the central ridge. For round
characters like O, U, the length can reach up to 4 times σ. So the skeleton
ridge length must be inside the interval [σ, 4σ].
Concerning the central ridge, supposing that nbCharacters is the minimal
number of characters in each text string, minlengthwc is the minimal width
of a character. Thus the length of the central ridge has to be longer than
nbCharacters ∗ minlengthwc.

– Spatial Constraint: With printed latin characters, skeleton ridges often
are perpendicular to the central ridge at their center points. A text detector

1 Local maximum of Laplacian.
2 Local minimum of Laplacian.
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should take into account this property. However, this is not true for some
fonts (e.g. italic), and for other character sets (e.g. chinese or japanese). To
construct a generic text detection system, we weaken the perpendicularity
constraint by applying a non-parallel constraint. Thus, a text ridge region
must contain an important number of skeleton ridges which are not parallel
to the central ridge. Above, we supposed that there is at least nbCharacters
in the text string, as each character contributes at least one skeleton ridge,
so the number of skeleton ridges inside the central ridge region has to be
bigger than max{nbCharacters, lengthcentralridge/minlengthwc}.

5 Experimental Results

5.1 Databases for Experiments

The databases for the testing algorithm contain single images and video frames.
The first database (DB1) contains 10 images of a slide presentation. These images
are taken by a camera with a resolution of 640x480 with various lighting condi-
tions. The second database (DB2) consists of 45 images from news video3, some
of them having very complex background. The third database (DB3) contains 20
images extracted from formula 1 racing video4 with a resolution of 352x288. Text
in these images have different orientations (not limited to horizontal and vertical
orientation) and undergo affine distortions. The fourth (DB4) contains 20 frames
of film titles 5. In this database, images contain text of different kinds (scene
text, artificial text, and targeted scene text), sizes and styles. Table1 summarize
these databases.

Table 1. Text detection result

#images #words #detected words #False alarms Recall(%) Precision(%)
DB1 10 172 172 7 100 96.09
DB2 26 103 99 48 96.11 66.67
DB3 45 217 169 114 77.88 59.71
DB4 20 199 177 18 88.9447 90.7692

5.2 Evaluation

In our experiments, text size (the height of characters in the text in pixel)
varies in the interval [4, 73], the text detection algorithm is computed only at
 2 log2(73/2)! = 11 levels (while the maximal level is N = log2(640x480) = 18
with image of resolution of 640x480). The reason is that at scales coarser than

3 http : //www.cs.cityu.edu.hk/ liuwy/PE V TDetect/ used in [13] for evaluation of
text detection

4 http : //www.detect − tv.com
5 http : //www.informatik.uni − mannheim.de/pi4/lib/projects/MoCA
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(a) (b)

(c) (d)

(f)(e)

Fig. 4. Sample results of text detection. (a,b,c,d) When the background is homoge-
neous, detection is correct and does not give false alarms. (e) A table with text, without
clear line structure (f) irregular background : there are false positives, and pieces of
text are missed.

11, detected ridges represent structures of width larger than 2∗√2
11

= 90 pixels
which are not textual structures, so ridges have no sense in the context of text
detection. In fact, the number of levels to be considered can be determined based
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on prior information about the maximal size of text in image. In case where any
information is provided, we use N = log2 (wxh), with w, h the width and the
height of the image.

The minimum number of characters nbCharacter in each text string used is
equal to 2 which appears reasonable because that we attempt to detect text lines,
not isolated character. Moreover, we did not take into account points having the
normalised Laplacian magnitude smaller than a threshold (here we used 5.0) in
order to avoid false detections due to noise or aliasing artifact. As we have no
information about the width of character stroke, we do not know exactly what is
the scale of skeletons ridges. Thus for each central ridge detected at level k, the
skeleton ridges at one among 3 levels k− 3, k− 2 and k− 4 are taken as input of
text constraints verifier. The choice of these 3 levels is based on hypothesis that
the ratio of height and width of character stroke is in the interval [2, 4].

For evaluation, we use recall and precision measures. Table 1 shows the result
of text detection from images in the 4 databases listed above. In the case of
slides, we obtain the best recall as well as the best precision (figure 4a). All
text regions in slide images are detected and localized correctly. The reason is
that the background of slide image is well uniform and characters are distinctive
from background. The detection was easily performed. With scene text having
an orientation like those in images from the second database (Formula 1 car
racing), the proposed algorithm had no difficulty (figure 4b). It is also well
robust to noise and aliasing artifacts and it performs the detection of scene
text as well as embedded text. In figure 4b, the score was not considered as a
text because it appears too opaque in the scene. The performance of detection
diminishes when the background is complex (images in the news video frame
database) where there are cases of missed pieces of text and false alarms (figure
4e,f). The principal reason of false alarms is that the criterion “one center line
and numerous small skeletons” also is satisfied by regions with regular grids. We
either have to restrict our model, or these false responses have to be eliminated
by an OCR system.

To compare with texture based and contour based methods, we implemented
the texture based segmentation algorithm proposed in [12]. We found that with
images in our databases, the clustering did not help to focus interest regions to
be considered in a later stage. The contour based method fails in case where
text is too blurred and scattered. In comparison with [12] where regions must be
fused between scales because of “scale-redundant” regions, our approach verifies
regions at the largest scale first; if it is a text region, this region will be no more
considered later on. Without scale integration, the computation time is reduced
significantly.

6 Conclusion

In this paper, we have proposed a novel approach for text analysis and text
detection. Unlike traditional approaches based mainly on edge detection and
texture, we use ridges as characteristics representing the structure of text lines
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at different scales. The experimental results show good recall and precision of the
method using ridges (average of 90.7% and 78.3% respectively). The strengths of
the method lie in its invariance to the size and the orientation of characters, its
invariance to the form and the orientation of the lines, and that it works without
any change in parameters for different writing systems (alphabets, ideograms).
In addition, based on the scales at which we detect the central ridges and the
skeleton ridges, the height, the number of characters in the text lines are mea-
sured. The current method still gives some false alarms, that can be eliminated
by adding constraints on color and length between characters in text string or
by using an OCR system.
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Abstract. This paper presents a method for accurately segmenting moving 
container trucks in image sequences. This task allows to increase the 
performance of a recognition system that must identify the container code in 
order to check the entrance of containers through a port gate. To achieve good 
tolerance to non uniform backgrounds and the presence of multiple moving 
containers, an optical flow-based strategy is proposed. The algorithm introduces 
a voting strategy to detect the largest planar surface that shows a uniform 
motion of advance. Then, the top and rear limits of this surface are detected by 
a fast and effective method that searches for the limit that maximizes some 
object / non-object ratios. The method has been tested offline with a set of pre-
recorded sequences, achieving satisfactory results. 

1   Introduction 

Currently in most trading ports, the entering and leaving of container trucks are 
controlled by human inspection. Using techniques of computer vision and pattern 
recognition, it is possible to build systems that, placed at the gates of the port, 
automatically monitorize this container activity [12][13]. To achieve that, this kind of 
systems must be able to recognize the character code that identifies each container, 
usually located near the top-rear corner. The process can be quite complex: the system 
has to deal with outdoor scenes involving unstable lighting conditions (changes in 
climatology, day/night cycle) as well as with dirty and damaged container codes (See 
Fig. 1). It is also necessary to consider that the truck is moving when the images are 
acquired. These unfavourable conditions make the recognition process prone to 
errors. 

To increase recognition ratio and performance of the system it is very useful the 
introduction of a previous container segmentation process. This kind of visual process 
makes unnecessary the installation of sensors of presence, like the light-barrier sensor 
used to detect the rear part of a container used in [12][13]. On the other hand, by 
having an adequate estimation of the top-rear corner of the container in the image it is 
possible to limit the code recognition process to a restricted area, instead of 
processing the whole image. This speeds up the recognition process and reduces the 
                                                           
* This work has been partially supported by grant CICYT DPI2003-09173-C02-01. 
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apparition of errors, because of the presence of less character-like forms that could be 
confused with true characters. Finally, by applying the container localization process 
to every acquired frame it is possible to track the position of the container along the 
sequence. This makes feasible the matching of multiple recognition results 
corresponding to different frames. In practice it has been observed that a given 
character can be correctly recognized in a frame and not recognized in other, due to the 
presence of moving shadows or reflections, not uniform surface structure, etc. The 
analysis and integration of the whole sequence can potentially obtain much better 
recognition results than if performed to individual, unconnected frames. 

 

Fig. 1. Examples of container codes 

Different segmentation strategies have been tested, all of them aimed to find the 
top and rear limits of the moving container. Line detection by Hough transform [8] 
obtains relatively good results for the top limit of the container, but finds difficulties 
in detecting a reliable vertical line that corresponds to its rear end. This is due to the 
frequent presence of vertical lines in the background (buildings, other containers) and 
the repetitive pattern of vertical lines that usually present the surface of the containers 
(Fig. 2.a). To overcome the problems involved by the presence of a non-uniform 
background, motion detection techniques have been considered. Fast and simple 
techniques like image subtraction [9] offered promising results, but some problems 
were found due to the presence of multiple moving objects and the operation of the 
auto-iris lens, which induced fast brightness changes detected as false motion (Fig. 
2.b). A more complex but also much more reliable motion detection-based 
segmentation strategy is described in the next section. It is based on optical flow 
computation by a block-matching procedure (see similar approaches in [4] or [5]) and 
the use of a voting strategy to determine dominant motion. Voting processes to 
estimate motion parameters or perform multiple motion segmentation are widely used 
in different approaches [3] [7] [10] [11]. Experimental results for the proposed optical  
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 (a) (b) 

Fig. 2. Difficulties found by other segmentation strategies. (a) Line detection by Hough 
transform. It is difficult to discriminate which vertical line corresponds to the end of the 
container. (b) Motion detection by image subtraction. Brilliant zones correspond to high 
difference values. False motion appears due to the auto iris operation (static parts like the sky 
should be black). A second moving truck is also detected. 

 
flow-based method are also presented, which confirm the suitability of this technique 
for the application of interest. 

2   Optical Flow-Based Segmentation 

In this section we propose a segmentation strategy that achieve reliable results, 
overcoming the problems found by the aforementioned methods. This strategy is 
based on the calculation of the optical flow [1][2] derived from the comparison of two 
consecutive frames ( kk ff ,1− ). By considering the optical flow information and 
adequate object and image formation models it is possible to obtain velocity vectors 
for the scene points. The segmentation strategy consists on isolate the largest planar 
surface of the scene that presents a coherent motion of advance. Consequently, we 
consider as a natural assumption that the container of interest (that nearest to the 
camera) corresponds to that which occupies the largest portion of the image. 

To estimate the dominant motion we propose the use of a parametrization strategy 
that allows to exploit the available a priori knowledge over the physical motion 
(leftward direction, maximum velocity) and structure of the target (vertical planar 
surface, admissible range of orientations). We use two parameters directly related to 
the magnitudes whose variability more strongly affects the characteristics of the 
observed motion field: maximum allowed advance of the truck in a frame time 

)( lΔ and angle of orientation of the container surface with respect to the camera axis 
)(α . These real-world measures are intuitive and adequate constraints for them can 

be easily obtained from the observance of truck orientations and speeds at the port 
gate. They can remain as adjustable parameters for the system operator, who does not 
need to be aware of the image-formation model and the camera calibration process. 
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The estimation of these parameters will be done by means of a voting strategy, 
detailed in Section 2.3. This voting procedure is intended to obtain a robust estimation 
of the dominant motion, in spite of the existence of image areas corresponding to 
static background and the presence of other (small) moving surfaces in the image. 

2.1   Optical Flow Calculation 

Optical flow vectors are obtained by measuring the displacement experimented by 
image blocks from image 1−kf to image kf . An optical flow vector is calculated for 
every 8×8 block in an 8-pixel-wide grid. To obtain the flow vector corresponding to a 
given block, we search for the displacement that minimizes a similarity measure. 
Correlation coefficient [6] has been chosen as similarity measure to achieve tolerance 
to brightness and contrast changes like that occurred due to the auto-iris effect. As we 
are only interested in containers that moves to the left, the location of the matching 
area in kf for every block is established in the x-direction from its position in 1−kf  to 
a maximum leftward displacement. The height of this searching area is limited to a 
few pixels as we are only interested in motion parallel to the ground. Moreover, the y-
component of the optical flow can not be reliably determined because the surfaces of 
containers frequently exhibit lack of texture variation in the y-direction. 

Only blocks containing enough grey-level variation in the x-direction are 
considered to avoid false motion estimations. For that, we select the set )1( −kP of 
central points of 8×8 blocks that fulfil the following condition: 
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Were τ is a fixed threshold value. The value for this parameter has been selected 
experimentally to obtain a high number of points corresponding to the container area, 
while avoiding the selection of low quality points in low-textured areas like the sky 
zone. Good results have been obtained by setting this parameter to 1.0×block size. An 
example of the motion field obtained by this method is shown in Fig. 3. 

2.2   Object and Image Formation Models 

Fig. 4 represents the object model and the image formation model (only X and Z 
components are considered). T is the surface of the container, modelled as a planar 
surface normal to the ground plane, which forms an α  angle with respect to the 
optical axis of the camera Z . 0Z  is the distance from the image plane I  to the 
container surface T  along the optical axis Z . Vector l  represents the position of a 
point over the container surface with respect to the container point that corresponds to 
the centre of the image. Vector u  is the correspondent measure (x-component) 
observed over the image plane. f is the focal length of the lens for the pinhole model. 

By the Law of Sines, it can be derived the equation 

)sin(
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l
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Fig. 3. Optical flow obtained for 8×8 blocks. To enhance clarity of figure, only vectors in a 
16×16 grid are shown (25% of total flow vectors). 

where )/(arctan fu=β  and βαπγ −−= . For simplicity we denote this 
relationship by the expression ),,,( 0 fZuLl α=  or, by dropping the known model 
parameters: ),( uLl α= . We shall use this latter expression to indicate the conversion 
from image plane x-coordinate (u) to feature position over the container surface (l) in 
the next section. 

 

α
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X

 

Fig. 4. Image formation model. I: image plane, T: container surface, Z: optical axis. 
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2.3   Estimating the Motion Parameters of the Largest Container Surface 

The structure and motion parameters of the container surface ),( lΔα  are estimated by 

a voting strategy. For that, we define a voting matrix ],[ lV Δα , with α and lΔ integers 

in the ranges 
]90,90[ maxmax ααα +−∈ , ]1,[ max −Δ−∈Δ ll  

where maxα defines the maximum allowed angle deviation (in degrees) for the 

container surface with respect to the orientation normal to the optical axis Z, and 

maxlΔ represents the maximum expected displacement (in centimetres) between 

consecutive frames. Then, the algorithm works as follows: 

Algorithm 1 
Initialize voting matrix ],[ lV Δα  to zeroes 

)1( −∈∀ kPp  do  /*process all points for which a flow vector is available */ 

]90,90[ maxmax ααα +−∈∀  do  /* try all feasible values for α */ 

Compute ))]((,[),( ppuLpl φαα +=Δ - ))(,( puL α  

where: 
)(•u represents the x-coordinate of a point in the image plane, 

according to the centred coordinate system of the image formation 
model 

)( pφ is the optical flow vector obtained for point p  

if max),(0 lpl Δ≤Δ< α  then 1)],(,[)],(,[ +Δ←Δ αααα plVplV  /* Vote 

for (α , ),( αplΔ ) */ 

Select (α̂ , l̂Δ ) | )max(]ˆ,ˆ[ VlV =Δα /*select the most voted pair */ 

Let }ˆ)ˆ,(|)1({ lplkPpM Δ=Δ−∈= α /*select the points whose corresponding flow 

vectors match with ( α̂ , l̂Δ ) parameters */ 
This strategy assumes that the larger a container surface is, the greater number of 

optical flow vectors will correspond to it, for a given pair of (α̂ , l̂Δ ) parameters. As 
result of this algorithm we obtain the set M of image points whose flow vectors 
correspond to the largest moving surface (see example of Fig. 5). 

2.4   Determining the Limits of the Container 

As result of the previous step, we get a set of optical flow vectors that correspond to 
the container surface. Next, we need to determine the top and rear (right) limits of this 
surface. We propose an algorithm that will try to find the position of a vertical line 
that mark the right limit of the container and an horizontal image line that marks the 
top limit of this area. In other words, these lines will mark the separation between 
object/non-object image areas in horizontal and vertical directions. 

The algorithm processes the optical flow images (8-times less resolution than the 
original grey-level images). This optical flow images are binarized to obtain image B 
in this way: a pixel ),( yxB is set to object (container surface) if the point ),( yxp  



642 V. Atienza et al. 

belongs to M , and is set to background in other case. Then, the algorithm searches 
for the rear limit of the container, by maximizing a measure of object quality to the 
left of the tentative limit and background quality to its right: 

 

Fig. 5. Optical flow vectors that correspond to the most voted pair of surface parameters. Their 
base points form set M. 

Algorithm 2 
max_quality = 0 
for x_limit =  image_width-1, image_width-2,…,1  

leftthetopixelsbckgndleftthetopixelsobjqualityobj ____/_____ =  

rightthetopixelsobjrightthetopixelsbckgndqualitybckgnd ____/_____ =  

litybckgnd_qua*yobj_qualititylimit_qual =  

if limit_quality > max_quality then  
max_quality = limit_quality; best_limit = x_limit 

 
The algorithm that searches for the top limit works in the same way. Fig. 6 shows 

the limits found by means of this strategy for a frame of example.  

3   Experiments and Discussion 

This segmentation strategy has been applied to a set of pre-recorded video sequences. 
A digital video camera was installed in a truck gate at the container terminal of the 
Valencia port (Spain). This camera was equipped with an auto-iris lens and a 
monochrome, non-interlaced ½” CCD sensor. The camera captured lateral views of 
the moving trucks in the selected lane from an approximate distance of 2 meters.  
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Fig. 6. Top and rear limits found for the container area 

Images were digitized at 768×572 pixel resolution by a computer equipped with an 
acquisition card and stored to hard disk. These images were corrected for the slight 
barrel distortion effect introduced by the 8 mm lens to assure undistorted straight lines 
for container limits of the target trucks. The effect of this correction can be noticed by 
observing the pin cushion effect induced in distant lines like that corresponding to the 
street lamp to the right end of the image in Fig. 6. 

To obtain numerical results, a total of 200 frames corresponding to 18 different 
sequences were manually inspected and the position of the top-rear corner of the 
container in every one of them was annotated. This working sequences were acquired 
under day-light illumination and included situations of multiple moving trucks, 
cluttered backgrounds and fast global illumination changes. These changes are due to 
the auto iris operation to compensate for the light increase caused by the motion of a 
truck that progressively uncovers part of the sky zone. Table 1 shows mean values 
and standard deviation of errors obtained in the automatic estimation of the corner 
points for these sequences (errors are computed with respect to the manually 
estimated position of the points).  

Table 1. Statistics for errors committed in the estimation of corner position (pixels) 

 mean error std. deviation 

x-direction -2.2 8.4 

y-direction 2.8 7.5 
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Fig. 7 shows results obtained for two of the processed sequences. The figure 
depicts segmentation results corresponding to cases for which other segmentation 
methods found difficulties due to the presence of vertical lines in the background and 
other moving containers. Flow vectors corresponding to the segmented surface are 
also shown. 

This experiments show satisfactory segmentation results. Low mean error values 
denote a non-biased estimation (these non-zero mean errors are probably due to the 
small protrusion that invariably appears in the corners of containers, which affects the 
manually estimated location of the top-rear corner, as well as to their slightly slanting 
position). The magnitude of standard deviations are in accordance with the 8-pixel 
resolution established in the flow estimation process. The flow-based method 
performs well independently of the static texture present in the background. This is an 
advantage with respect to static segmentation strategies as those based on edge 
detection techniques. On the other hand, the systems demonstrates good tolerance to 
rapid brightness changes as those induced by the operation of the auto iris lens, 
differently from the inadequate behaviour presented by the image subtraction 
strategies.  

However, optical flow computation by means of block matching techniques had 
proved to be a time consuming task. The current off-line implementation of the 
algorithm works at 3 fps on a 2.4 GHz Pentium-4 computer. The current 
implementation of the recognition module takes a mean of 0.7 seconds to process a 
whole image (1.4 fps). It is expected that the inclusion of the presented segmentation 
process will allow the reduction of the size of the area processed for recognition 
purposes by a factor of 6, obtaining a similar reduction in recognition time. Some 
optimization efforts would have to be done in the implementation of the segmentation 
step if higher frame ratios were required. 

 
 

 
 

 

Fig. 7. Example frames from 2 segmentation sequences 
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Abstract. Commercial Optical Character Recognition (OCR) have at
lot improved in the last few years. Their outstanding ability to pro-
cess different kinds of documents is their main quality. However, their
generality can also be an issue, as they cannot recognize perfectly docu-
ments far from the average present-day documents. We propose in this
paper a system combining several OCRs and a specialized ICR (Intelli-
gent Character Recognition) based on a convolutional neural network to
complement them. Instead of just performing several OCRs in parallel
and applying a fusing rule on the results, a specialized neural network
with an adaptive topology is added to complement the OCRs, in function
of the OCRs errors. This system has been tested on ancient documents
containing old characters and old fonts not used in contemporary doc-
uments. The OCRs combination increases the recognition of about 3%
whereas the ICR improves the recognition of rejected characters of more
than 5%.

1 Introduction

Combining multiple classifiers has been recently a topic of great interest in pat-
tern recognition and character recognition. It has been shown in the literature
that several schemes can outperform individual classifiers in order to increase the
performance [1,5,10,15]. To obtain optimal classification system, several classi-
fiers can be combined in a first step. However the global performance will depend
on how they are complemented. Several problems occur in the process of the ob-
taining the best result. In the beginning, the needed complement classifiers have
to be chosen. After, the multi-classifier architecture has to be created. With a
finite number of classifiers, the best combination method has to be found. This
choice depends on the particular number of classifiers, their behavior, and the
size of the training data available for the combination... We propose a hybrid
model where the first stage of the system composed of the classifiers connected
in parallel whereas the second part is a special neural network specialized in
rejected characters of the first stage. This system has been tested on ancient
documents. The classifiers of the first stage are commercial OCRs and the spe-
cialized classifier is a convolutional neural network. In a first part we will describe
the system and then the strategy used to extract and analyze errors. The third
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part will describe the relationship between the OCRs combination and the classi-
fier specialized in rejection. Final part shows the recognition improvement given
by our approach.

2 System Overview

As was mentioned before the paper describes a character recognition system
tailored specifically to the ancient documents. Commercial OCRs are usually
trained to recognize all kind of documents and are not specialized for one of
them particularly. As a consequence, these generic OCR characteristics ensure a
good performance on the majority of the characters. However they unavoidably
lead to a low proportion of the documents, to bad performances, as they are
less frequent or do not correspond to the trained character models. The use of
OCRs for old printed documents is always impeded by the presence of some
characters, which cannot be not well recognized because of their unknown pat-
terns or their deformations. OCRs act in different ways depending on the quality
of the document. Thus their combination should give a better performance on
the classical characters. In order to continue to take advantage of OCRs perfor-
mance on well-written characters, the first stage is completed by an additional
ICR (Intelligent Character Recognition) capable of adapting its topology on the
confusion errors. The error analysis is a very important task in qualifying the
error type that should be processed further. It highlights rejected patterns dur-
ing the test phase. The specific ICR is able to correct the error by specifying its
own topology. The OCRs combination has to enhance the OCR performances
on common characters written in known font styles and to qualify the rejection
errors.

3 Combination Strategy

3.1 Combination Topology

Multi-classifiers systems can be divided into three main categories depending on
their topology. The first category represents vertical combination schemes: serial
combinations. Each classifier is performed sequentially. For example, each clas-
sifier is specialized to process the rejected patterns of the previous classifier. In
this case, each classifier is tailored in order that participates to a multi-classifier
system. The second category represents horizontal combination schemes: paral-
lel combination. The classifiers work independently and concurrently. A fusion
module combines their results. In this solution, there are any direct relationships
between the classifiers. Some classifiers may behave in the same way whereas oth-
ers may well complement themselves to achieve great improvement. The choice
of this solution can also be driven by practical case. Indeed, only the classifier
results are used for the combination. It allows the use of already existing clas-
sifiers. The last category, the hybrid combination schemes, corresponds to the
use of the two previous schemes. Each combination strategy has its drawbacks;
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the first strategy assumes complementary classifiers whereas the second assumes
competitive classifiers. In the proposed system, as the recognition algorithm and
the training data used for each OCR are not be available; the choice of the com-
bination methods is limited. OCR outputs also give the confidence value of only
the first best choice. The system is a hybrid combination. A horizontal topol-
ogy scheme is used for the OCRs combination as the first step of the system.
The relationship between the OCRs combination and the ICR follows a vertical
scheme where the ICR processes rejected characters.

3.2 Fusing Rules

Several combination methods are described in the literature for fusing results:
voting methods, Bayesian combination, Dempster-Shafer, behavior-knowledge
space, neural networks, decision trees, etc. Among them, several methods have
been tested for the OCR combination: majority voting, behavior-knowledge
space and neural networks allowing a double resolution of the label and the
error type. The two first methods work on abstract level and the last one works
on measurement level. The majority voting method is an easy method to imple-
ment and it has shown good results in the literature [2,7]. The voting method
has as consequence to avoid correcting the common errors and leads to reject the
maximum of errors instead of correcting them. Considering only two OCRs, the
phenomena are accentuated, as there are less correction possibilities. Votes can
be weighted with OCR knowledge. Although this method with only two OCRs
may not always improve the recognition rate, it can improve the reliability of
the results. The classifiers must act independently in order to combine them by
the method based on conditional probability as formulated in the Bayes rule.
Indeed, this condition is not easy to verify. That is why we preferred to use the
behavior-knowledge space (BKS) [6] method that makes no assumption about
the classifier dependence. A behavior knowledge space is a D-dimensional space,
each dimension corresponding to the decision of one classifier. Each classifier has
as decision values the total number of classes N . Let x ∈ Ci be the character
to be recognized belonging to the class Ci. Let sk = jk, k ∈ {1..D} be the kth

classifier among D and jk its answer for the current character x. The probability
that x ∈ Ci is defined by the following formulae:

Fig. 1. Errors extraction and combination process
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Belief(Ci) =
P (s1(x) = j1, .., sD(x) = jD, x ∈ Ci)

P (s1(x) = j1, .., sD(x) = jD)

A small database may be a problem in obtaining a good generalization and
many empty cells may occur if the database is not representative. As the BKS
size increases exponentially with the number of classifiers, the data sets has
to increase in the same way [12]. For BKS cells where the most representative
class is represented by a low probability or where the cell is empty, the class is
ambiguous and characters are rejected.

Neural networks can also achieve such combination [14]. Our approach with
the neural network consists in extracting simultaneously the label and the error
type. The neural network in our experiments takes as input two vectors Vα and
Verror. Vα is the confusion vector for each character, whereas Verror is the error
status of the character according to the error types: confusion, addition, deletion,
segmentation, etc. The network is able to perform both a simultaneous error
and label analysis. Moreover, the neural network can solve some generalization
problem of the BKS empty cells. Nevertheless, the neural network learning phase
as the testing phase is slower than the BKS ones, which is fully statistics. The
final result of the combination is, for each character c, the class Cm0. For a
text, we note LCm0, the character list results (D′ is the output document is the
figure 1).

4 Errors Extraction and Categorization

After the combination process, errors have to be extracted properly to specify
the ICR. The OCRs combination complements and solves the ambiguous cases;
the ICR needs the OCRs combination errors to adapt its topology. This analysis
is obtained by differentiating the OCRs results and a ground truth of the docu-
ment. The error analysis of the differentiation of the OCRs combination or the
individual OCR results will provide all the information needed to create the spe-
cialized ICR, directly complementary to the combination. OCRs commit several
types of errors as: confusion, addition, deletion or segmentation. The ICR will
employ these errors in order to adapt its topology. Error types are detected by a
comparison between two character lists: LGT representing the ground truth and
LCm0 obtained by OCRs combination. An appropriate dynamic programming
algorithm is used to optimize the alignment of the lists.

The five main types of errors are: the confusion, the addition, the deletion,
the fusion and the cutting. These errors correspond to rules extracted by using
the edit distance [3,13]. The error types mentioned below are easy to determine
when the error chains are small. Inversely, the errors meaning are very difficult to
locate when the erroneous chains are large. The error covers several contiguous
characters making the error type difficult to determine, as the correspondence
between characters is not obvious. The alignment problem is transforming in
locating the error origin in this long erroneous chain. The errors are located
recursively based on the erroneous chain lengths, starting from the small errors
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to detect the biggest ones. The procedure starts by locating the small erroneous
chains in the entire document. If one of the found errors occurs in the largest
erroneous chain, this chain is divided in two parts: prefix before the known er-
ror, and suffix, after the error, which are both recursively analyzed according to
other smaller errors detected in the document. It is obvious that this approach
can work only when the erroneous chain length is reasonably large. Errors that
cannot be analyzed properly are ignored for the estimation. If a very noisy textual
part of the document is recognized as an image, there will be a long erroneous
chain corresponding to a deletion. However, this deletion is produced by a global
mistake of the OCRs and does not correspond to the real OCRs behavior for
each letters of the chain. Once the errors are detected, a probability function
defined by: Mr: confusion matrix, Mf : fusion matrix, Ms: cutting matrix, Va:
addition vector, Vd deletion vector is generated. For a character x recognized as
belonging the class j, if its recognition rate is greater than a threshold repre-
senting the desired document quality, then the character is accepted. Otherwise
the characters image and the different confusion classes of j are given as input
of the ICR.

5 Error Correction

A specialized classifier: ICR is dedicated to the character recognition for the
error correction, acting directly on the image pixels of the rejected characters.
This ICR is a modified multi-layer Perceptron with convolutional layers [8,16].
The neural network is composed of 5 layers. The first one corresponds to the
input image, normalized by its centering. The next two layers correspond to the
information extraction, performed by convolutions layers using weight sharing.
The fourth layer is composed of neurons pool. Each pool is specialized for a
class. The links between the fourth and the last layers are function of the error
previously detected. The last one corresponds to the output with a number of
neurons equal to the total number of classes. The confusion is the error that can
be performed by the ICR. However, as we do not know if the image corresponds to
a character image or to a character portion occurred as a result of a segmentation

Fig. 2. Rejection processing
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problem, the confusion matrix Mr is weighted by the addition and deletion
vectors. The remaining errors are not integrated because they do not directly
step at the character level (i.e. image level) but they allow better to qualify
the confusion measures. The erroneous character image is taken into account
by the ICR if and only if the maximum of the confusion rate is lower than a
fixed threshold S (i.e. maxi(Mr(i, Cm0)) < α). Considering the image and its
associated result j. In the fourth and last layers, for each neurons pool k, they
are weighted by Mr(j, k), k ∈ {1..N}. The ICR does not work alone for the
rejected patterns but uses the OCR behavior knowledge.

6 Experiments

The system has been tested on ancient documents [11]. These documents are ex-
tracted from a French dictionary of the XVIII century: “dictionnaire de Trevoux”
containing special characters not used in actual documents any more, so natu-
rally disturbing the OCRs. For example, the letter “s” can be written in two
shapes: the standard “s” and the long “s”. In this case the OCR has a confusion
problem between the character “s” and “f”, which looks like the long “s”. Then
the neural network specializes its topology to differentiate shapes of “s” and “f”
to reduce the confusion. In this case, the neural network is a tool used not only to
solve ambiguous case, but also to differentiate classes. The database is composed
of 8 pages of the dictionary chosen to be the best representatives. The pages are
scanned at 300dpi and were binarized. Each selected pages is in two columns
and contains about 8000 characters. Half of the documents are used for training
and the other half is used for testing. The results obtained just by combining 2
OCRs are shown in table 1. The used commercial OCRs are FineReader7 [4] and

Fig. 3. Peculiar characters

Fig. 4. A document extract
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Table 1. OCR and OCRs combination results on the test database

Recognition Rejection Confusion Addition Deletion Cut Fusion
OCR 1 85,14 0,06 6,71 3,28 2,83 0,92 1,06
OCR 2 87,28 0,04 6,12 3,34 1,61 1,21 0,40

Majority Voting 78,59 11,72 2,08 6,84 2,08 0,10 0,03
Oracle Voting 94,07 5,16 0,00 0,77 0,00 0,00 0,00

BKS 88,48 0,01 6,05 0,73 3,45 0,28 0,99
NN 88.18 0,00 5,88 0,87 3,61 0,41 1,05

Table 2. Recognition rate for ambiguous characters

Classical Topology Adaptive Topology
Train 96.63 99.28
Test 93.59 99.27

Omnipage12 [9]. No special dictionary has been used for the OCRs recognition.
OCRs were first trained on the documents before the combination. The BKS
and the neural network give the best improvements. In the rejected pattern and
the confusion classes, the main errors are due to noise, the presence of accents,
or the new classes not found by OCR. The more representative error for these
documents is the confusion between the characters “f” and “long s”, which have
almost the same shape. Figure 3 presents some special characters like the long
“s” and ligature characters with their corresponding in Arial font. If we consider
only the 4 classes: “f,i,l,s” the first OCR has 91.03% and the second has 93.27%.
The two “s” are considered as the same character during the OCR combination
as they cannot separate the classes. With the OCR combination, the recognition
rate is 99.09% for the 4 previous classes. It solves the ambiguity between the 2
“s”. The table 2 presents the recognition rate achieved for the all the rejected
patterns with and without the OCRs errors knowledge inside the topology.

7 Conclusion

A hybrid multi-classifier model has been presented using a specialized neural
network for the rejection processing. The system has been applied on the an-
cient documents and several fusion methods have been compared. This approach
has been successful in several ways. The recognition rate has improved and the
ambiguous characters have been highlighted owing to the error analysis. The
ICR based on the convolutional neural network complements the OCR owing
to its topology, and allows solving ambiguous characters. In practical cases, like
ancient document recognition, fusion rules are not enough due to the OCR be-
haviors. It becomes then necessary to complement them by a specific tool when
the system can be tailored for the one kind of documents.
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Abstract. This paper presents a holistic recognition of handwritten word based 
on prototype recognition. Its main objective is to arrive at a reduced number of 
candidates corresponding to a given prototype class and to determine from them 
the handwritten class to be recognized. The proposed work involves only an 
accurate extraction and representation of three zones namely; lower, upper and 
central zones from the off-line cursive word to obtain a descriptor which 
provides a coarse characterization of word shape. The recognition system is 
based primarily on the sequential combination of Hopfield model and MLP 
based classifier for prototype recognition yielding the handwritten recognition. 
The handwritten words representing the 27 amount classes are clustered in 16 
prototypes or models. These prototypes are used as fundamental memories by 
the Hopfield network that is subsequently fed to MLP for classification. 
Experimental results carried out on real images of isolated wholly lower case 
legal amount bank checks written in mixed cursive and discrete style are 
presented showing an achievement of 86.5 and 80.75 % rate for prototype and 
handwritten word recognition respectively. They confirm that the proposed 
approach shows promising performance results and can be successfully used in 
processing of poor quality bank checks. 

1   Introduction 

The automatic reading of handwritten writing is of considerable interest in the 
achievement of the tiresome tasks such as those which one meets in certain fields: 
reading of the postal checks, bank checks, reading of command... etc. The reading of 
the bank checks is one of the most significant applications of the writing recognition. 
Each day, a bank sorts thousands of checks, which makes the operation of treatment 
fairly expensive. The recognition of the bank checks presents a big challenge of 
research in the field of recognition and document analysis. A reasonably high 
rejection rate could be allowed for the system of treatment of a bank check, but the 
error rate in the recognition must be as small as possible. Thus, the system of 
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treatment must be able to effectively treat the various styles of the written data. 
Moreover, it should carry out the exact signature checking by using only a small 
number of authentic reference specimens. Therefore algorithms of high exactitude are 
employed for the recognition of writing and signature checking [1]. The courtesy 
amount, the legal amount, and the signature zone are treated independently. The 
results obtained by the courtesy amount recognition and the legal amount recognition 
module are then evaluated by a validation module. The handwritten techniques of the 
writing recognition can be classified in two principal categories: analytical and global 
[2]. In the analytical approach, the word is first segmented in characters or in parts of 
characters (pseudo-character), and then the various characters (or pseudo-characters) 
are identified with specified models [3]. Since many combinations of characters are 
not readable, contextual post processing is carried out to detect errors and to correct 
them using a dictionary [4]. The advantage of this approach is that only a little 
number of models or references is necessary for all the words, and the principal 
disadvantage is that the approach is likely to lead to segmentation errors. In order to 
reduce segmentation errors, some methods employ implicit segmentation techniques. 
They carry out recognition and segmentation at the same time [5]. However, they 
cannot completely avoid segmental errors. The individual character models ignore the 
relationship among neighboring characters in a cursive word. Figure 1 shows the 
influence on the characters “u” by its preceding characters. 

 

Fig. 1. Influence on the character “u” by its preceding character 

Another type of method is the global or holistic solution [6][7][8], which identifies 
a word as a simple entity. The global approach recognizes a word as only one entity 
by the use of its characteristics in entirety without consideration of the characters. The 
word is represented by a vector or a list of primitives independent of the identity of 
the characters present. The global solution can avoid the segmental errors, but it needs 
at least a prototype or model for each word. Because this approach does not treat 
characters or pseudo-characters and does not employ the relationship among 
neighboring characters, they are usually regarded as tolerant with the dramatic 
deformations which affect the cursive unconstrained writings [9]. A principal 
disadvantage of the global methods is that the lexicon can only be updated by addition 
of word samples. On the other hand, it is considered to be tolerant with the 
deformations which relate to cursive scripts. 

 

Fig. 2. Poor quality handwritten French legal amounts 
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The analytical approaches are sensitive to the style and the quality of writing (see 
Fig. 2), as they are strongly dependent on the effectiveness of the segmentation 
procedure. Whereas the global solutions are generally employed in the fields with a 
lexicon of reduced size. Although many algorithms were developed by using the two 
approaches [10][11], the handwritten word recognition still represents a challenge for 
the scientific community. 

D. Guillevic and C.Y. Suen [10], used a combination of a global feature scheme 
with a hidden Markov model (HMM) module. The global features consist of the 
encoding of the relative position of the ascenders, descenders and loops within a 
word. The HMM uses one feature set based on the uncertain contour points as well as 
their distance to the baselines. The developed system was also applied to a balanced 
French database of approximately 2000 checks with specified amounts. Paquet and al. 
[11], investigate three different approaches for the global modeling and recognition of 
words used to write the legal amount on French bank checks. A lexicon of 27 
amounts was used, written in mixed cursive and discrete styles. The first model is a 
global one since it does not require any explicit letter level and the two others are 
based on an analytical approach. The three approaches have been tested on real 
images of bank checks scanned for the French Postal Technical Research Service 
(SRTP). De-Almendra-Freitas-CO and al. [12], presented a system for the recognition 
of the handwritten legal amount in Brazilian bank checks. Their recognizer, based on 
hidden markov models, does a global word analysis. The word image is transformed 
into a sequence of observations using pre-processing and feature extraction stages. 
Their experimental results, when tested on database simulating Brazilian bank checks, 
show the viability of the developed approach. 

The paper is organized as follows: section 2 presents briefly the proposed method. 
Section 3 presents the preprocessing of handwritten word. Section 4 describes briefly 
the prototypes creation. Finally, section 5 presents experimental results. 

2   Proposed Method 

In this paper we present a new holistic recognition of handwritten words applied to 
French legal amount of bank checks containing wholly lower case characters. The 
proposed system is addressed to poor and medium quality handwritten word 
recognition where generally the analytical approach fails through the segmental errors 
(see Fig. 2). The proposed system is based primarily on two main phases; 
preprocessing phase yielding a prototype pattern and a recognition phase which 
classifies the incoming prototype pattern (preprocessing output) as illustrated by Fig. 
3. The preprocessing applied consists in filtering, binarizing and correcting the 
handwritten word in order to enhance the three zones namely; upper, lower and 
middle zone (see Fig. 3 (a)). Starting from these zones we end to a global shape of the 
word that will be used to recover the memorized prototype by the means of neural 
network (see Fig. 3 (b)). The handwritten words representing the 27 amount classes 
are clustered in 16 prototypes or models created by superposing only four words from 
each class. The resulting model is processed to yield a final prototype which consists 
of one memory of Hopfield model of the sequential method [13] as described by Fig. 
3. Due to some degradation in the handwritten word we have avoided the use of 
handwritten contour and the structural components as it was usually used. The main 
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objective of the present recognition system is to arrive at a reduced number of 
candidates (βk) and to determine from them the handwritten class to be recognized. 
Each prototype or model corresponds to a finite number of candidates. As an 
example, the second prototype corresponds to the handwritten words (β2=3); “deux”, 
”trois” and “dix” that have the same global shape. Once the prototype is classified 
using the prototype recognition system, the candidate choice is based on the presence 
of dot in the upper zone and the transition number of character-background of the first 
word character. 

 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 

Fig. 3. Proposed method illustration example (a) Handwritten word preprocessing (b) 
sequential combination method for prototype recognition 

3   Handwritten Word Preprocessing 

3.1   Word Horizontal Slant 

In handwritten word, one of the major variation in writing style is caused by slant, 
which is defined as the slope of the general writing trend with respect to the vertical 
line. This operation is performed after skew correction and central zone localization 
(SC-CZL) [14]. The horizontal slant correction operation consists in correcting the 
tilted character in order to return it right. The slant correction method [15], which is 
based primarily on the lower and upper centroid (SC-LUC) is used. The application of 
the slant correction on the vertical segment separately of the image shown in Fig. 4 
(d) yields a slant estimation angle of 50.0 degrees. In our case the horizontal slant 
correction consists in rotating rather shearing horizontally this segment using as origin 
the upper reference line. A comparison result of the application of this method and 
contour method is shown in Fig. 4 (e) and (f) respectively. We note that in Fig. 4 (e), 
the ascender is well pronounced to the image top than in Fig. 4 (f). 
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(a)                    (b)                    (c)                     (d)                   (e)                     (f) 

Fig. 4. Slant correction (a) Original image (b-d) result of application of SC-CZL (e) Result of 
application of SC-LUC on (d). (f) Slant correction based on contour slant estimation 

3.2   Word Size Normalization 

Since word sizes differ significantly, this makes it difficult to feed the Hopfield model 
which requires a standard pattern size for all entries. Thus, images should be 
normalized to a given standard size of 32x50 pixels. The application of SC-CZL 
method, yields the three zones of interest that will be used for horizontal slant 
correction and normalization as shown in Fig. 5 (c) and (d). In the normalized image, 
the baseline or lower reference line is located at ylo=12, and the upper reference line is 
located at yhi=21 from top image. However, the scales are determined by the word 
width and the distances between lower-upper reference lines to the top and the bottom 
of the word as shown in Fig. 5. The scales, Sx and Sy are calculated as follow: 
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where W=xr-xl, and wnorm=50 pixels is the normalized width, and hhi=11 pixels, 
hcent=10 pixels and hlo=11 pixels are, upper, central and lower zones height of the 
normalized word respectively. 

 

Fig. 5. Preprocessing (a) binarized image (b) Application of SC-CZL method (c) Horizontal 
slant correction (d) Normalized version of (c) in the frame 32-by-50 pixels 
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4   Prototype Creation 

The realization of a prototype is carried out by the superposition of four normalized 
word images within the frame of 32-by-50 pixels of various writings of a word class 
written in wholly lower case letters; the resulting form is then dilated (see Fig. 6). 
Figure 6 (e) shows four samples from each word class in the training set used for 
prototype creation. The vocabulary of our application is composed of 27 words. 
During the realization of the 27 prototypes corresponding to these word classes, it can 
be noticed that certain prototypes have similar shapes. Therefore, it is interesting to 
group prototypes that have similar global shapes corresponding to different word 
classes by a unique prototype. This clustering operation yields 16 prototypes (see Fig. 
7) representing the 27 classes (NH) of French legal amounts with βk, k=1,2,…..,P 
(P=16), the number of handwritten word class per prototype class. 

1,2,...,Pk
P

k
kHN ==

=
,

1
β  

 (3) 

           

Fig. 6. Prototype creation (a) Four different normalized words from handwritten word class 
“douze” (b) Superposition operation (c) Dilation and prototype processing (d) Prototype 
result.(e) Samples of handwritten words used for prototype creation 

 
  β1=3          β2=3            β3=1          β4=1           β5=2            β6=2           β7=1          β8=2  
 

 
  β9=2         β10=1           β11=1         β12=1         β13=1           β14=2          β15=2         β16=2  

Fig. 7. Prototypes used for holistic recognition and their corresponding handwritten classes and 
βκ  (below each prototype image)  
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5   Experimental Results 

5.1   Training Phase 

The prototypes shown in Fig. 7 were created using section 4, then fed to Hopfield 
model and memorized for P=16 (number of memorized patterns), and N=1600 
neurons (32x50 pixels), then after the output from Hopfield model is down sampled in 
4x4 pixel block. The MLP was trained only with 810 handwritten words, which 
corresponds to 30 (810/27) words by each handwritten class. This training set was not 
chosen to be large due to the strong similarity of global shapes existing among the 
handwritten words belonging to the same prototype class. However, the global shape 
of words of the same prototype does not change significantly, particularly when the 
word image is down sampled in 8x12 yielding feature vectors of 96 features (see Fig. 
3 (b)). The down sampling operation is acting as a second noise filter which makes 
the patterns of the same prototype class to be very similar in the input of the MLP-
based classifier. Thus, we found experimentally that when increasing the number of 
words per prototype beyond 30=810/27 (for a prototype having one handwritten 
class), the error-reject plot of the proposed method do not change. Finally, the 
resulting feature vectors (8x12=96 features) of 810 handwritten words are used to 
train a two layers of fully connected neural network (MLP) module with α =0.9 (The 
training speed), ξ =0.001 (viscosity coefficient), the number of hidden layer was 

fixed to 40, the number of outputs of the MLP corresponds to the number of prototype 
classes which is in our case sixteen and the total error to 0.001. The expected 
prototype class is simply given by the output unit with the highest value. The MLP 
classifier can reject patterns whose membership cannot be clearly established. A 
typical classification criterion which is used consists of rejecting a pattern if: 

{ }
P1,2,...,i             

Ryy Mi 
=

<= max  
    (4) 

where P is the number of prototype classes, )1,0(∈iy  is the ith output of the 

network, and RM is a proper threshold. An unknown pattern is accepted if only at least 
one output is greater or equal than RM. 

The associative matrix W(o) is directly calculated and stored, whereas the 
connection weights vij and wij corresponding to the two fully connected MLP are 
obtained after convergence and also stored for recognition process. We precise, that 
the Hopfield model memorises the 16 created prototypes as classes. The handwritten 
images were scanned under 300 dpi, which is appropriate for processing. Two word 
characteristics were used to distinguish word classes belonging to the same prototype 
class namely; the dot and the starting loop in case of words starting with “d” (see Fig. 
8) as follows: 

1- The existing dot is detected using an empty mask of dimension 20-by-20 
pixels, fixed experimentally in which the detected dot lies inside. 

2- The starting “d” is detected using the intersection of a vertical line with the 
left part of the word in the lower case zone. 
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Fig. 8. Starting “d” and dot detection (a) Original image word (b) Application of SC-CZL 
method (c) Starting “d” and dot detection (d) Original images (e) Dilated version of the 
normalized image (32-by-50). (f) Hopfield model output (g) Result of prototype recognition by 
Hopf-MLP classifier. (h) Results of holistic word recognition by combining result of (g) and 
word characteristics (“d” and dot) 

These two characteristics are combined with the prototype recognition results to 
make a final decision of the unknown handwritten word. Figure 8 (d-h) illustrates the 
combination of these two characteristics and the results of the combined neural 
network for prototype recognition. All the 27 legal amounts are distinguished using 
prototype recognition results associated with the “d” and dot characteristics. Another 
characteristic was introduced to discriminate classes belonging to the prototype “1” 
namely, “un”, “six” and “euro”. It consists of intersecting a horizontal line at the half 
lower case zone with word parts. 

5.2   Recognition Phase 

The system has been tested using our proper database of 27 basic words written by 
200 writers. The test database consists of 5400 (27x200) legal amounts collected and 
extracted manually from 20 A4 format papers that were scanned at 300 dpi. The 
experiments are conducted in two parts, the first part consists in testing the 
performance of the prototype recognition and the second part presents results of the 
handwritten word recognition. Figure 9 (a) summarizes the results obtained on the 
same database of handwritten words of medium and low quality by the sequential 
combination method. The handwritten words in the test set are uniformly distributed 
(200 words/class). The plots for the prototype and handwritten methods are obtained 
for different values of the rejection threshold RM (0.3 ≤ RM ≤ 0.9). When using the 
sequential combination method, the preprocessed handwritten word character (global 
shape) is processed with Hopfield model for T=1 (Hopfield iteration number), and 
then the resultant output is down sampled before it is fed to the MLP. According to 
the results obtained, it can be noticed that for the same rejection rate, the handwritten 
error rate is always greater than those obtained by prototype recognition. Thus the 
handwritten recognition is strongly dependant on the results of the prototype 
recognition used as global shape classifier. When the rejection rate of the prototype 
recognition system is very low (lower RM), this ensures higher errors for handwritten 
classification when comparing to prototype errors. Whereas for higher rejection rate 
(higher RM), the proposed system ensures lower errors for handwritten classification 
which are similar to those obtained with the prototype recognition. This could be 
explained by the fact that the proposed system rejects (for higher RM) not only the 
poor quality words but also a great part of those of low-medium quality and accepts  
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Fig. 9. Recognition results. (a) Error-reject plots (b) Recognition-reject plots. 

high-medium quality words, and gives less errors in prototypes and consequently in 
handwritten words (dots and starting “d” clearly detected). 

The error-reject plots of Fig. 9 (a) shows that the recognition system gives best 
results for prototype recognition when comparing to handwritten recognition. This 
difference in recognition rate is due to starting “d” and dot detection to determine the 
handwritten class from the recognized prototype. The handwritten recognition rate 
converges to the prototype recognition rate when the above mentioned characteristics 
are correctly detected. Hence the handwritten word recognition can only be as good a 
solution as the prototype recognition, or it can be worse. Figure 9 (b) presents 
recognition-reject plots showing best results for both prototype and handwritten 
recognition for a threshold reject RM=0.6 (in dashed line) corresponding to the same 
global reject of 8.25%, and global errors of 5.25 % and 11.00 % for both prototype 
and handwritten recognition respectively. A recognition rate of 86.50 and 80.75 % for 
prototype and handwritten recognition respectively is achieved. Figure 10 shows 
results of correctly recognized handwritten words. 

 

Fig. 10. Handwritten word samples correctly recognized 

6   Conclusion 

In this paper holistic handwritten word recognition based primarily on accurate zones 
detection namely; upper, lower and central zones is presented. Experimental results 
conducted on prototypes and handwritten word show the robustness of the proposed 
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system. It has been shown that the holistic handwritten word recognition with 
combined neural network involves only few training words. Experiments were 
conducted on data set of handwritten words of medium and low qualities have shown 
promising results. 
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Abstract. This paper presents a new system for handwriting documents denois-
ing and indexing. This work is based on the Hermite Transform, which is a 
polynomial transform and a good model of the human visual system (HVS). We 
use this transformation to decompose handwriting documents into local fre-
quencies and using this decomposition, we analyze the visual aspect of hand-
writings to compute similarity measures. A direct application is the manage-
ment of document databases, allowing to find documents coming from the same 
author or to classify documents containing handwritings that have similar visual 
aspect. Moreover, ancient documents can contain degradations from different 
origins. It is often necessary to clean the backgrounds of those degraded docu-
ments before analysing them. The current results are very promising and show 
that it is possible to characterize handwritten drawings without any a priori 
graphemes segmentation. 

1   Introduction 

There are many different kinds of databases around the world, and all of them have to 
deal with the same problem, what ever information they hold: how to organize this in-
formation cleverly and how to retrieve visually similar information. It is a great chal-
lenge and it can not be resolved with a unique generic solution but it must be adapted 
to each kind of information. In this paper, we are working on handwriting documents 
corpus. Our purpose here is to characterize precisely handwritings whatever their au-
thors are and to classify them into visual writers’ families. Our approach considers 
handwritings as special drawings that create a specific texture we want to analyse by 
considering orientations at different scales. Orientations are considered as sufficiently 
relevant perceptual features to characterize the special texture of handwritten draw-
ings. These orientations information are extracted by using the Hermite transform 
which is a particular polynomial transform and a good model of the receptive field 
profiles of the human visual system. This model leads to the development of an origi-
nal method of handwriting classification by the computation of handwritings signa-
ture and similarity measures that reveal their “visual textural aspects”. 

1.1   Specificities of Patrimonial Handwritings Documents  

The databases we want to treat contain historical handwritings documents and the 
characteristics of these documents had a direct influence on the approach we choose 
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for our orientations extraction. Many digital images of documents and more generally 
ancient manuscripts are degraded by the presence of strong artefacts in the back-
ground (see figure 1). This can either affect the readability of the text and, in our case, 
it compromises a relevant handwriting characterization. Consequently, most of the 
time, it is very difficult to directly extract the handwritings in those images. It be-
comes necessary to pre-process the images with a cleaning and denoising first step.    

Most generally, we consider the documents as a mixed signal composed by a tex-
tured background with a superimposed high frequency handwriting signal. The use of 
thresholding techniques is often not effective since the intensities of background can 
often be close to those of the foreground text. Some approaches for text and back-
ground separation have been proposed in [5] where multistage thresholding tech-
niques have been investigated to segment parts. Other techniques based on adaptative 
filtering have been tested on forensic documents to separate homogeneous textured 
background from handwriting marks, [2]. Some approaches consider a physical model 
of degradation to propose a mathematical model for text enhancement and back-
ground cleansing, [9]. In [11], the authors propose a decomposition of the signal into 
two blind sources where the overlapping texts and the supports (paper) texture are the 
unknown sources to be recovered with the consideration of different spectral bands of 
the documents (bands of colours). 

     
 

Fig. 1. Examples of ancient manuscripts degraded by strong artefacts [3] 

1.2   Texture Feature Extraction and Human Visual System  

Texture features extraction is usually performed by linear transformation or image fil-
tering, [1,7], followed by some energy measures or non-linear operator application 
(e.g. rectification). In this paper, we focus on the multi-channel filtering (MCF) ap-
proach. It is inspired by the MCF theory for processing visual information in the early 
stages of the human visual system, [1,7], where receptive field profiles (RFPs) of the 
visual cortex can be modelled as a set of independent channels. Each of these chan-
nels is tuned on a specific orientation and frequency. The use of these filters leads to 
the decomposition of an input image into multiple features images. Each of these im-
ages captures textural features occurring in a narrow band of spatial frequency and 
orientation. Among the MCF models having the above properties, Gabor filters have 
been widely used in texture feature extraction, [4], image indexing and retrieval, [12]. 
Another model corresponds to Hermite filters of the Hermite transform [6] that agrees 
with the Gaussian derivative model of the HVS. It has also been shown analytically 
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that Hermite and Gabor filters are equivalent models of receptive field profiles 
(RFPs), [6],[8]. However, Hermite filters have some advantages over Gabor ones, like 
being an orthogonal basis leading to information decorrelation and perfect image re-
construction after decomposition. This is the main reason why we are interested in 
this transform. Moreover, a discrete representation of Hermite filters exits (the Kraw-
tchouk polynomials) with the property of separability for an efficient implementation.  

2   Hermite Transform 

In this paper we present a method for image document cleaning and indexing based 
on the Hermite transform. It is exploited here to decompose the initial signal into dif-
ferent parts depending on their frequencies characteristics (high or low). Most of the 
time, the noise or degradations that appear on ancient documents have low frequen-
cies characteristics, while the writing by itself is composed of high frequencies. It is 
of a great interest to separate them. This is exactly what we want to achieve with the 
Hermite transform. In the following paragraph, we present the definition of the Her-
mite transform. 

2.1   Cartesian Hermite Filters and Krawtchouk Filters 

Polynomial transforms are the decomposition of a signal l(x,y) into a linear combina-
tion of polynomials. The original signal is locally treated, window by window. These 
windows are positioned on the signal with a constant translation step, and the poly-
nomials are orthogonal with respect to this specific window shape.  In the case of 
Hermite transform, the window v(x,y) is a Gaussian window. Hermite filters dn-

m,m(x,y) decompose the original signal l(x,y) by computing a localized signal lv(x-p,y-
q) = v2(x-p,y-q) l(x,y) where v(x,y) is a Gaussian window with spread σ and unit en-
ergy, into a set of Hermite orthogonal polynomials Hn-m,m(x/σ , y/σ). Coefficients ln-

m,m(p,q) at lattice positions (p,q)∈P are then derived from the signal l(x,y) by convolv-
ing with the Hermite filters. These filters are equal to Gaussian derivatives where n–m 
and m are respectively the derivative orders in x- and y-directions, for n=0,…,D and 
m=0,…,n. Thus, the two parameters of Hermite filters are the maximum derivative 
order D (or polynomial degree) and the scale σ . Hermite filters are separable both in 
spatial and polar coordinates, so they can be implemented very efficiently. Thus, dn-

m,m(x,y) = dn-m(x) dm(y), where each 1-D filter is: 

                            ( ) 2 2/( ) ( 1) ( 2 ! ) ( / )n n x
n nd x n H x e σπσ σ −= − ⋅        (1) 

where Hermite polynomials Hn(x) are orthogonal with respect to the weighting func-
tion exp(-x2), and are defined by Rodrigues’ formula in [6] by: 

                                          
2 2

( ) ( 1)
n

n x x
n n

d
H x e e

dx
−= −                     (2) 

In the frequency domain, these filters are Gaussian-like band-pass filters with ex-
treme value for (ωσ)2 = 2n, [8], and hence filters of increasing order analyze succes-
sively higher frequencies in the signal. 
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Krawtchouk filters are the discrete equivalent of Hermite filters. They are equal to 
Krawtchouk polynomials multiplied by a binomial window v2(x) = / 2x N

NC , which is 

the discrete counterpart of a Gaussian window. These polynomials are orthonormal 
with respect to this window and they are defined by : 

                                        
0

1
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n n

n N x xn
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− −
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= −                  (3) 

for x=0,…,N and n=0,…,D with D N≤ . It can be shown that the Krawtchouk filters 

of length N approximates the Hermite filters of spread / 2Nσ = . In order to 
achieve fast computations, we present a normalized recurrence relation to compute 
these filters, see [8] : 
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N
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2.2   Steered Hermite Filters and Gabor-Like Hermite Filters 

In order to have a multi-channel filtering (MCF) approach based on Hermite filters, 
they must be adapted to orientation selectivity and multi-scale selection. For that pur-
pose, we apply their property of steerability, [6,8]. The resulting filters may be inter-
preted as directional derivatives of a Gaussian (i.e. the low-pass kernel).  

Since all Hermite filters are polynomials times a radially symmetric window func-
tion (i.e. a Gaussian), it can be proved that the n+1 Hermite filters of order n form a 
steerable basis for every individual filter of order n. More specifically, rotated ver-
sions of a filter of order n can be constructed by taking linear combinations of the fil-
ter of order n. The Fourier transform of Hermite filters dn-m,m(x,y) can be expressed in 

polar coordinates ωx=ω cosθ and ωy=ω sinθ as , ,
ˆ ˆ( , ) ( ) ( )n m m x y n n m md dω ω ω α θ− −=

 

where 
ˆ ( )nd ω , which expresses radial frequency selectivity, is the 1-D Fourier trans-

form of the nth Gaussian derivative in (1) but with radial coordinate r instead of x. 
The cartesian angular functions of order n for m=0,…,n, are given as 

 , ( ) cos sinm n m m
n m m nCα θ θ θ−

− = ⋅                         (5) 

which express the directional selectivity of the filter. 
Steered coefficients ln(θ) resulting of filtering the signal l(x,y) with these steered 

filters can be directly obtained by steering the cartesian Hermite coefficients ln-m,m as: 

, ,
0

( ) ( )
n

n n m m n m m
m

l lθ α θ− −
=

= ⋅
 
                        (6)

 

scale representation that fulfils the desired constraints in the frequency domain, which 
are mainly the number of scales S (radial frequencies ω0) and the number of orienta-



668 S. Bres, V. Eglin, and C. Rivero 

tions R in the filter bank. Since previous works have been done essentially with Gabor 
filters, we have then adopted a similar multi-channel design. Moreover, both Hermite 
and Gabor filters are similar models of the RFPs of the HVS [8]. For these reasons, 
we have named the resulting filters as Gabor-like Hermite filters. 

In summary, construction of a Gabor-like Hermite filter bank requires the follow-
ing procedure. First of all, set the number of desired scales S and orientations R and 
for each of the scales s=0,…,S–1 compute:  

• the radial central frequency ω0 and the spatial spread σx of respective filters. 
• Krawtchouk parameters such as window length N and filter order D. 
• Krawtchouk filters: get the corresponding Krawtchouk polynomials through (4) 

and multiply them by a binomial window of length N. 
• Input image convolutions with Krawtchouk filters to obtain cartesian coeffi-

cients. 
• Steering coefficients to desired orientations through (6) and (5) to obtain the 

equivalent multi-channel outputs. 

3   Patrimonial Documents Denoising Results 

Our proposition uses the Cartesian Hermite transform (computed throw the Kraw-
tchouk filters) that extract the local frequencies of a signal. Figure 2 presents the Her-
mite decomposition of a document at a given scale N=16 and up to degree 2. The 
most top left image is equivalent to a Gaussian low pass filtered image. Using the 
higher degrees in both directions allows extracting high frequencies of the original 
image. As we explain earlier, low frequencies contain information on the background 
and high frequencies contain information on the writings we want to keep, if their lev-
els are sufficient (above a certain threshold). 

     

Fig. 2. 2D - Hermite transform using Krawtchouk filters for N=16 and up to degree n=2 for the 
rows and the columns  

The first step of our denoising process is then to decompose the original image us-
ing the Hermite decomposition. In the second step, we reconstruct the high pass im-
age IH using degrees higher than N/4 in both directions. Too small values are filtered 
at this step (values less than 10% of the maximum). We obtain an image with a 
cleaner background: low frequencies and small high frequencies variations have dis-
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appeared (see Figure 3.1). A more detailed view is presented on figure 3.4. This im-
age IH is used as a mask that localizes the writings we want to keep. Pixels belonging 
to the background have low values in a low values neighbourhood. Pixels belonging 
to writings have a highly contrasted neighbourhood. An example of document denois-
ing is shown on figure 3.2. The original image is presented figure 2. Details of these 
images are presented on figure 3.3 and 3.5. Using denoised images allows focusing on 
the handwritings by itself. 

  3.1  3.2 
 

   

3.3                               3.4                                  3.5 

Fig. 3. Example of document denoising. High pass image based on Hermite decomposition 
(3.1) - Denoised document (3.2) - Detail of original document (3.3) - Image (3.1) detail (3.4) - 
Image (3.2) detail (3.5). 

The main difference between this Hermite based approach and a classical adapta-
tive thresholding comes from the local frequency decomposition we make here. Most 
of the time, adaptative thresholding methods classify pixels as background pixels or 
foreground pixels (handwriting lines) depending on local statistical values. Our 
method uses local frequency decomposition. On their principle, these methods are dif-
ferent, because Hermite based approach allows filtering that take into account the lo-
cal frequency to decide between as background pixels or foreground pixels. This 
could be especially interesting in case of wide degradation areas containing black low 
frequencies. Such areas will not respond to high frequencies Hermite filters but adap-
tative thresholding can still keep some pixels as foreground pixels.   

4   Handwritings Document Signature 

Handwriting characterization will be done using orientations extraction by Gabor-like 
Hermite filters. The two parameters (number of scales S and the number of orienta-
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tions R) needed for Gabor-like Hermite filters are fixed to S=4 and R=6. This will 
lead to 24 oriented filters. For a given pixel, each of these 24 filters will give re-
sponses that characterize a given orientation at a given scale. We only keep responses 
on pixels identified as handwritings lines pixels in the denoising step. Then, we have 
a 24 values vector for each handwritings lines pixel. All these vectors can be repre-
sented as a cloud, in a 24 dimensions space, which is a good characterization of the 
analyzed handwriting. Unfortunately, these signatures are far too big to used directly, 
and have to be reduce to something as small as possible with a minimal information 
loss. We choose to keep geometrical information of the clouds, like their gravity cen-
ter (mean values on each of the 24 coordinates) and main axis (eigenvectors and ei-
genvalues) after an PCA-like step. Our signature for a given handwriting document is 
then the 24 means values of the results coming out of the filters bank,  24 normalized 
eigenvectors and the 24 corresponding eigenvalues of the covariance matrix com-
puted from the centered cloud of orientations vectors. Moreover, experiences show 
that we do not need to keep all the eigenvectors and associated eigenvalues : only the 
3 or 4 greater values need to be stored. 

5   Handwritings Document Indexing 

Now that we have defined a possible signature for every document in a database, we 
need to define a distance between these signatures to introduce the similarity notion in 
the database. Similarity leads to indexing which is the goal we want to reach. With a 
similarity measure, it is easy to build an indexing motor that can classify the docu-
ments and retrieve the most similar documents to a requested one. 

5.1   Similarity Computation 

In practice, our signature for image number i is made of 24 mean values Mi (n), 4 ei-
genvalues and the 4 normalized eigenvectors Vi corresponding to the 4 greater eigen-
values Li. Lio quantifies the importance of the vector Vio in the shape of the cloud. The 
distance D we choose to define uses both information of mean values Mi and the cou-
ples vectors Vi and values Li. This distance D is the combination of the distance DM 

between the mean values Mi and a multiplicative normalized coefficient ED  coming 

from the eigenvectors and eigenvalues. The DM (Hi, Hj) distance between handwriting 
i and handwriting j is defined by :  

=
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24
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n

jijiM nMnMHHD              (7) 

The multiplicative normalized coefficient ED  coming from the eigenvectors and 

eigenvalues is based on the non normalized distance DE between weighted eigenvec-
tors. The weights we use here are their corresponding eigenvalues : 
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We obtain ED after a normalization step. For that purpose, we divide DE  by its 

maximum value to have a value between 0 and 1. Thus : 

=
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Finally, the distance ),( ji HHD between handwriting Hi and handwriting Hj is 

can be expressed as : 

   ),( ji HHD = ),( jiM HHD . ),( jiE HHD                      (10) 

This distance is symmetrical, which is a good property to assure coherent results 
during multiple comparisons of databases documents. A small distance means high 
similarity. 

                

                

                

Fig. 4. Examples of images coming from the same authors (one author per column) 

5.2   Practical Results and Evaluation 

We have tested the whole system on our personal database composed of documents 
coming from different authors but mainly patrimonial handwritings documents. Most 
of the time, we have full pages of the same author and for evaluation purpose, these 
pages are divided into smaller images, 9 per page. Then, most pages give us 9 images 
from the same author, containing what we can suppose to be similar handwritings. 
This is how we build our “ground truth”: images coming from the same original page 
image should look the same and have similar handwritings. It is difficult to complete 
this ground truth with similarities between different author’s handwritings because of 
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the subjective judgment involved in such estimation. Figure 4 gives some examples of 
images coming from the same original page. Our database contains 1438 images com-
ing from 189 different authors, in different languages and alphabets.  

To illustrate the discrimination possibilities of our signatures, we present, on figure 5, 
a 2D representation of the 24D signature space. This 2D representation is obtained by 
PCA on the mean values Mi of the text images of figure 4. The 9 points in the ellipse #1 
correspond to the 9 text images of the author presented in the row #1 of figure 4. The 9 
points in the ellipse #2 correspond to the 9 text images of the author presented in the 
row #2 of figure 4 and so on … 

 

Fig. 5.  2D projection obtained by PCA of the 24D signature space. Each point is the mean 
value of a text image. They are grouped by author presented on figure 4: ellipse #1 corresponds 
to the author of row #1, ellipse #2 corresponds to the author of row #2, and so on. 

 
    6.1              6.2 

Fig. 6. 6.1. Precision curve. 6.2. Recall curve computed on the entire database containing more 
than 1400 handwriting documents. 

The global results we obtain are really promising because, according to our 
ground truth, a given request has in the ten first better answers (documents with the 
higher similarity or equivalently the smaller distance) in average more than 83% of 
correct responses, see recall curve on figure 6. This is an average value computed on 
the documents that have 9 similar images in the database. These precision and recall 
curves are a common way to show the efficiency of an indexing system. They have 
been computed using the 20 first responses. Let’s remember that we only have 9 im-
ages for each handwriting. That is the reason why the precision decreases strongly af-
ter the 9th response. 
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6   Conclusion 

This work is a response to scientific problems of historical handwritten corpus 
digitalization. It deals with the handwriting denoising and indexation and is applied 
here to a multi-language and multi-alphabet corpus. We propose here a biological 
inspired approach for images denoising (by a background cleaning) and handwriting 
characterization for corpus indexing. The developed perception based model lies on 
the Hermite frequencial decomposition for image denoising and indexing. Our 
motivation is directly linked to the difficulty to perform efficient image processing on 
degraded handwriting historical documents without a priori knowledge on the image 
content. In that way, we have chosen a segmentation free approach that is global and 
generic. The current results of handwriting denoising and classification with 
orientation Hermite based features are very promising. We are currently working on 
an enlarged database in connection with recent digitalization European project. 
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Abstract. Texts embedded in video streams convey crucial informa-
tion for documentation. Many text detection and recognition systems
have been designed to automatically extract such documentary data from
video streams. Most of the research teams involved argue that commer-
cial OCR1 do not work properly on images extracted from a video stream.
They thus concieve their own detection systems. Nevertheless, commer-
cial OCR have never been evaluated on such corpora. This article details
a new methodology to evaluate a commercial OCR on a video document.
This methodology is goal directed: the system is penalized proportion-
ally to TFIDF (Term Frequency Inverse Document Frequency) scores of
texts [1]. We experiment our methodology on Abbyy FineReader 6.02.

1 Introduction

At the National Institute ofAudiovisual (INA), video documentation is completely
manual and relies on describing forms containing crucial information about docu-
ments (title, summary, ...). The task of writing these describing forms can be ease
by the automatic recognition of embedded texts which often convey information
about names, places, etc. Commercial OCR can be adapted to video streams and
could thus help to fill describing forms. Nevertheless, most research teams working
on automatic text detection and recognition [2,3,4] explain that commercial OCR
systems perform poorly on images extracted from video streams because of the
poor resolution of such images. They thus propose systems which perform text
detection and resolution improvement and finally send extracted zones to a com-
mercial OCR which performs recognition. Such considerations earned attention

1 Optical Character Recognition.
2 www.abbyy.com

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3686, pp. 674–683, 2005.
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in the last decade but video formats have changed and OCR systems have evolved
in such a way that it is relevant to evaluate them on videos.

This article details a new methodology to evaluate a commercial OCR. This
methodology is goal directed: we penalize the OCR proportionally to TFIDF
(Term Frequency Inverse Document Frequency) scores of texts. The first section
of the article will focus on former methods of ground truth building and evalua-
tion. We will then expose our methodology and apply it to Abbyy Finereader 6.0.

2 State of the Art

Evaluation of text detection and recognition systems requires a ground truth
(expected outputs) and a measure to compare results obtained by the system
with this ground truth. Several data models used to define ground truths and
several evaluation measures will be next discussed.

2.1 Building Ground Truth

Basically, texts are represented in a ground truth by the position of their bound-
ing boxes and by their transcription [5,6,7]. In [8], some other features are com-
puted in order to process finer evaluation: character height variation, skew angle,
color and texture, background complexity, string density, contrast and a recog-
nizability index which reflects the difficulty for a text to be read by a human.
The VIPER system [9] allows the user to design its own temporal ground truth
model for any kind of video object. Concerning layout analysis, ground truth
models must contain relationships between zones. In [10], documents are de-
scribed in accordance with the RDIFF format (Region Description Information
File Format). Different partial orderings of the regions can be defined to reduce
the potential ambiguity of a global ordering. In [11], the data model is hierarchi-
cal: a document is composed of pages, a page is divided into several zones that
contain many lines... Each of these entities has a unique ID which allows the
user to store an ordering. As in the ViPER system, the user can define its own
ground truth data model. DAFS format [12] (used for instance in [13]) qualifies
each zone according to its position, its content and its relationships with other
zones.

2.2 Detecting and Recognizing Texts in Images or Documents: The
Evaluation Issue

Layout Analysis. Usually, criteria of evaluation are based on mutual overlap
rates between the zones detected by the system ({Di}i) and the zones in the
ground truth ({Gj}j) [5,14,6]. These criteria are developped in the equation 1.

Condition 1: A(Gj∩Di)
A(Di)

> Th and
A(Gj∩Di)

A(Gj)
> Th

if ∃ i \ condition 1 is satisfied for {Di, Gj} then Gj is correctly detected
if ∀ i condition 1 is not satisfied for {Di, Gj} then Gj is missed
if ∀ j condition 1 is not satisfied for {Di, Gj} then Di is a false alarm.

(1)
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The results are then exploited to compute precision and recall measures. In [14],
two levels of analysis are considered: the pixel based level and the text box one.
Pixel based information are then combined with text box based information to
get high level interpretations. Cases of multiple matching are quite difficult to
be treated. The proposition exposed in [6] is based on Liang proposal [13]. Two
matrices σ and τ are defined as follows:

σij =
A(Gi ∪ Dj)

A(Gi)
and τij =

A(Gi ∪ Dj)
A(Dj)

Precision and recall are then computed from these matrices assigning costs
depending on the overlap case: one (many) ground truth text box(es) match(es)
against one (many) result text box(es). Multiple matching is also treated in
[8,15]. Besides this issue, two indexes are proposed in [8] to reflect text difficulty
to be detected and how readable the text is (these indexes are fixed empirically).
Concerning layout analysis, performance can be defined according to the number
of lines which have been uncorrectly detected (the most disadvantageous cases
are considered: horizontally merged, horizontally or vertically split or missed)
[16]. In [10], a segmentation evaluation protocol is exposed: each pixel is labelled
depending on the type of the zone it belongs to (split or merged zone...). Each
kind of error is assigned a cost chosen by the user depending on his target appli-
cation. [17] details a measure to evaluate the performance of the layout analysis
stage of an OCR based on the results of its recognition stage. The efficiency of
the layout analysis module is established comparing recognition results obtained
in automatically segmented zones and recognition results obtained in the corre-
sponding ground truth zone: the smaller the difference between these results is,
the more effective the layout analysis module is.

Text Recognition. Output strings and ground truth strings are usually com-
pared with the Levenstein distance [18]. The principle is to compute the minimal
cost of transformations needed to transform the result string sres into the ground
truth string sgt : δ(sgt, sres). The tranformations are composed of a sequence of
three elementary operations: substitution of a character, insertion of a character
and deletion of a character. These operations are associated with the following
costs:

Substitution (a → b) : cost γ(a, b)
Insertion (λ → b) : cost γ(λ, b)
Deletion (a → λ) : cost γ(a, λ)
with δ(a, b) = γ(a, b)

δ(sgt, sres) is defined regarding the sequence of elementary operations needed.
To compare results of recognition between strings of different length, δ(sgt, sres)
must be normalized regarding the number of characters in sgt.

Precision and recall, based on the number of correctly recognized characters
can also be computed [14,2]. The word recognition rate can also be distinguished
from the character recognition rate [2].
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Most of the methods exposed in this section do not focus on application
issues. Furthermore, no considerations are given about repairing issues. In the
case of the simplest applications as video indexing (when does text appear on
screen?), evaluation can be based on criteria detailed in equation 1 since the
semantic content of the texts is useless. Nevertheless, if this content need to
be involved in the evaluation process, no evaluation protocol mentionned in this
section would be sufficient. We expose in the next section our methodology which
is goal oriented: the system is penalized regarding the degree of importance of the
texts. Errors are also assigned to the detection, the localization or the recognition
stage of the system in a reparing perspective. Finally, two indices are defined to
handle both the technical evaluation and the application-driven evaluation. As
in [10], the user is asked for fixing the strictness degree of the evaluation.

3 A Commercial OCR Evaluation Methodology

3.1 Building Ground Truth

Only texts which convey describing information about the document are retained
in the ground truth. In this way, the system is not penalized for having failed
in recognizing irrelevant texts. Documents are divided into temporal segments
which are homogeneous in a semantic content point of view. The describing
forms of these segments underlie our sorting: only texts appearing both in the
describing form of the concerned segment and on screen during the same segment
are retained. This selection is performed over the word level.

Our data model contains basic information (bounding boxes positions, times
of appearing and disparition, transcription) about each text. If text is moving,
key positions and their temporal references are stored. As our evaluation is goal
directed, some other semantic information are added. The figure 1. shows the
XML schema we applied to store our ground truth. The TypologyIndex de-
notes if the text belongs to one of the next classes: artificial (superimposed on the
signal) or scene text (effectively contained in the scene which has been filmed).
The semantic segment designates the segment in which the text appears.
TextType denotes if the text is a block, a line or a word. As no assumption
should be made on the way the OCR performs the layout analysis, words, lines
and blocks are stored. This hierarchy is inspired from the relationships used in
the building of layout analysis ground truths [11].

We compute for each word his TFIDF score, reflecting if the word may be
efficient to discriminate the document with other documents if the final appli-
cation is content-based retrieval. Scores are computed according to the Okapi
formula [1]:

TFIDF = qtft
(K + 1) ∗ tft,d

K ∗ (1 − b + b ∗ Ld) + tft,d︸ ︷︷ ︸
TF

log(
N

Nt︸ ︷︷ ︸
IDF

) (2)

where qtft (set to 1) is the number of occurrences of term t in the query, tft,d

is the number of occurrences of term t in document d, Nt is the number of
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Fig. 1. Ground Truth Annotation XML-Schema

Word1 

Word6 Word5 

Word4 Word3 Word2 

Line2 

Line1 

Block 

<?xml version="1.0" encoding="utf-8"?>

<VideoTextDescription>

<videoTexts>

<VideoText>

<transcription>UNE MARCHANDISE</transcription>

<sceneTextType>true</sceneTextType>

<textMvts>

<TextMvt>

<timeRef>T1</timeRef>

<rectangle>X=40,Y=100,Width=200,Height=32</rectangle>

</TextMvt>

</textMvts>

<TextType>LINE</TextType>

</VideoText>

<VideoText>

<transcription>MARCHANDISE</transcription>

<sceneTextType>true</sceneTextType>

<textMvts>

<TextMvt>

<timeRef>T1</timeRef>

<rectangle>X=65,Y=107,Width=32,Height=27</rectangle>

</TextMvt>

</textMvts>

<TextType>WORD</TextType>

</VideoText>

<...>

Fig. 2. A complete text family (block, lines and words) and the associated XML code
of the ground truth

documents in the considered collection containing term t at least once, N is the
total number of documents in the collection and Ld is the length of document
d divided by the average length of the documents of the collection. b and K
parameters were fixed empirically to 0,86 and 1,2.

We implemented our own tool GTEditor to build ground truths. Figure 2
shows an example of the XML code which is generated in the ground truth.

3.2 Evaluation

We consider that OCR systems are composed of a sequence of three modules:
detection (coarse location of text zones), localization (creation of precise bound-
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ing boxes) and recognition. The evaluation of Abbyy FineReader 6.0 is based
on these modules. First of all, the distinction between perfectly recognized texts
and undetected texts (forgotten texts) is performed. Remaining texts are fur-
ther qualified according to whether the localization stage or the recognition stage
failed. It exists two types of false alarms: either recognition is applied on detected
zones which do not contain text (a post-processing would be sufficient to filter
these outputs) or recognition is applied on texts which have not been retained
in the ground truth. False alarms will not be considered since they are not an
obstacle to the final application (content based retrieval).

In this section, a text denotes either the word, its line or its block. Regarding
temporal redundancy of texts, an occurence denotes a precise spatiotemporal zone.

Correctly Recognized Texts. A text appearing many times in a different
fashion during a same semantic segment is correctly recognized if at least one
occurence of this text is correctly recognized (a null Levenstein distance). To
handle the case when the OCR recognizes lines, we also browse the results to
find the word as it appears in its line (it can be followed by a comma for in-
stance).

Forgotten Texts and Wrongly Recognized Texts

Forgotten Texts. Forgotten texts have been improperly localized. A text is cor-
rectly localized if one of its occurences spatially matches with a zone detected by
the OCR. The matching criterion relies on barycenters: the detected zone must
contain the barycenter of the ground-truth zone and conversely.

Wrongly Recognized Texts. The error is imputed to the recognition stage if the
obtained recognition rate would not be higher for any other localization. The
behaviour of the OCR is assumed to be homogeneous over all occurences of a
same text. Then we can restrict ourselves to explore the neighborhood of one
single localization result: the localization which is the closest to the ground truth
(OCRbest). The ground truth zone which matches with OCRbest is called GTbest.
This zone can correspond to a word, a line or a block. We use the distance drecouv

as a criterion to obtain OCRbest and GTbest:

drecouv(GT, OCR) =
A((GT ∪ OCR) \ (GT ∩ OCR))

A(GT ∩ OCR))

Various recognition strings are obtained applying recognition on some localiza-
tions randomly chosen in the neighborhood of OCRbest. These strings are com-
pared to the transcription of the text contained in GTbest (stGT ). The minimum
Levenstein distance LDneighborhood

min is compared to the distance LD computed
while comparing the string recognized in OCRbest to stGT . If LDneighborhood

min is
higher than LD, then the error is imputed to the recognition stage.

Goal Directed Evaluation Index. A complete evaluation index must answer
two questions: Have the texts been correctly detected and recognized?, Are the
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results useful for our final application ? Formula 3 details the components of
the global success index IOCR which is defined regarding both algorithmic and
semantic aspects.

IOCR = sTFIDF ∗ Isemantic
OCR + (1 − sTFIDF) ∗ Ialgorithmic

OCR where

Ialgorithmic
OCR =

N − (wRINRI + wLINLI + wF NF )
N

Isemantic
OCR =

2 ∗ precision ∗ recall

precision + recall
where

precision =
Nhigh

R

NR
and recall =

Nhigh
R

Nhigh
W+F + Nhigh

R

(3)

NR, NRI , NLI and NF refer respectively to the number of texts belong-
ing to the following classes: Recognized, Recognition Issue (error imputed to the
recognition stage), Localization Issue (error imputed to the localization stage)
and Forgotten. Special cases are considered: IOCR = 1 if NR = N and IOCR = 0
if NF = N . Coefficients wRI , wLI and wF (wRI + wLI + wF = 1) are chosen
according to the final application. Isemantic

OCR is derived from the harmonic mean
used in information retrieval [19]. It quantifies the degree of success of the OCR
in a goal directed point of view. This index varies from 0 to 1 and answers the
questions: Has the OCR recognized interesting texts?, Has the OCR missed in-
teresting texts? Nhigh

R (Nhigh
W+F ) refers to recognized (forgotten or wrongly recog-

nized) texts with a high TFIDF score. These texts are supposed to be interesting
in a documentary point of view. sTFIDF denotes the normalized standard de-
viation of TFIDF scores. This parameter allows to balance the influence of the
semantic index Isemantic

OCR as it can be overestimated when TFIDF scores do not
much vary over the corpus.

4 Experimentations

A French news program is selected. This document is segmented into the 26
reports which compose this document, each one being documented in a describ-
ing form. Many resolutions were available. Resolution 720*576 was chosen to
be close to broadcasting resolution. The VideoTextDescription corresponding to
the ground truth contains 477 VideoTexts: 286 words, 118 lines and 73 blocks.
66 words belong to the scene text category. 58093 describing forms are stored in
a XML database to compute TFIDF scores of the texts retained in the ground
truth.

Abbyy FineReader 6.0 was applied (both layout analysis and recognition
stages) every ten frames to reduce the processing time (a news program contains
about 60 000 frames). Given that texts must stay on screen longer than ten
frames so that they could be read, we obtain a representative sampling of possible
OCR outputs. The resulting VideoTextDescription contains 4183 VideoTexts.
Because of the temporal redundancy of the texts, a same text may be detected
and recognized several times. A manual tracking could have been done, but we
restrict our evaluation to available outputs.
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4.1 Classification of Texts

Correctly Recognized Texts. 167 (NR) words are correctly recognized
(58,40% of the words in the ground truth). 13 of these words belong to the
scene text class. Restricting to artificial text, the system reaches 70% of cor-
rectly recognized words.

Forgotten Texts and Wrongly Recognized Texts

• Forgotten texts: 63 (NF ) words have been forgotten (22% of the words in
the ground truth). 42 words belong to the scene text class. 63% of scene
text words (68 scene text words in the ground truth) are forgotten. This
reinforces the presumption that scene text is more difficult to detect than
artificial text.

• Wrongly recognized texts: 56 texts must be further qualified according to the
error typology exposed in 3.2. 23 (NLI) errors are imputed to the localization
stage (6 scene texts). 33 errors (NRI) are imputed to the recognition stage
(5 scene texts).

4.2 Computation of the Global Success Index

Our aimed final application is to make use of recognized texts in a content-
based retrieval perspective. Hence, the recognition stage is considered to play
the most crucial part in the OCR system and errors regarding this stage must
be penalized in a more stricly fashion than the others. The following constraint
is applied to coefficients wRI , wLI and wF in order to express this point of view:
wRI = 3 ∗wLI and wF = 5 ∗wRI . The factors 3 and 5 are empirically chosen. A
value of 0.82 is computed for Ialgorithmic

OCR .
Concerning the semantic component Isemantic

OCR , sTFIDF is computed over
the set of terms conserved in the ground truth. A value of 0.33 is obtained.
The most crucial stage is then to fix ThTFIDF which denotes the threshold
used to determine which texts are interesant. Rather than choosing this value
empirically, the range of TFIDF values is sampled into 5 segments and several
levels of evaluation are proposed, ThTFIDF being set to the mean value of each
segment. The user can then choose to evaluate the system in a more or less
strict fashion. Each segment is assigned an index called SemanticTolerance which

Table 1. Evolution of Isemantic
OCR and IOCR according to SemanticTolerance

SemanticTolerance 5 4 3 2 1
TFIDF Segment Limits 0.00058 2.88 2.88 5.76 5.76 8.64 8.64 11.52 11.52 14.40
ThTF IDF 1.44 4.32 7.20 10.08 12.96
ISemantic

OCR 0.69 0.64 0.43 0.17 0.04
IOCR 0.77 0.76 0.69 0.60 0.56
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varies from 1 to 5. The descriptive importance of texts decreases proportionally
to this index. Variations of IOCR according to Isemantic

OCR values taken for each
level of evaluation are exposed in table 1. These results show that Isemantic

OCR

allows to balance Ialgorithmic
OCR . The global success index IOCR decreases from

0.77 in the case of the less strict evaluation fashion (no restriction on the nature
of texts which must be recognized and Isemantic

OCR =0.69) to 0.56 if only the most
representative texts are considered (Isemantic

OCR = 0.04).

5 Conclusion and Future Work

This article presents a goal directed evaluation methodology applied to Abbyy
Finereader 6.0. Two indices are designed: Ialgorithmic

OCR refers to the capacity of
the system to detect and recognize properly texts stored in the ground truth,
Isemantic
OCR is computed at different levels of strictness and gives indices about the

utility of the results obtained by the system. Depending on the target application,
the global success index IOCR can be tuned to reflect the capacity of the system
to reach the aimed objectives.
Our methodology requires outputs of every module of the evaluated system
to be easily accessed. Thus, any OCR system can be evaluated if an API is
available. Then, OCR systems performances could be compared, regarding a
precise application . We intend to practice such comparisons in the future. This
study will lead to several potentially different rankings of OCR systems, each
ranking being dedicated to a particular target application. Furthermore, future
work will be dedicated to investigate the influence of post-processing methods
([20]...) on commercial OCR results.
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Ferreira, Márcio J.R. II-424
Finizio, I. II-94
Foggia, Pasquale II-653
Folino, Gianluigi I-54

Gallardo-Caballero, Ramón I-488
Garcia, Christophe II-247
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